Natural Language Processing

Berkeley

(N

N L P

Parsing Il
Dan Klein — UC Berkeley

Unsupervised Tagging

Unsupervised Tagging?

= AKA part-of-speech induction
" Task:

= Raw sentences in

» Tagged sentences out
= Obvious thing to do:
= Start with a (mostly) uniform HMM
= Run EM
" |nspect results

EM for HMMs: Process

Alternate between recomputing distributions over hidden variables (the
tags) and reestimating parameters

Crucial step: we want to tally up how many (fractional) counts of each
kind of transition and emission we have under current params:

count(w,s) = > Pt = s|w)

1IW;=w

count(s — s') = Y P(ti_1=s,t; = s'|w)

7

= Same quantities we needed to train a CRF!

£
AAAAA

Merialdo: Setup

= Some (discouraging) experiments [Merialdo 94]

= Setup:
= You know the set of allowable tags for each word

= Fix k training examples to their true labels
= Learn P(w]t) on these examples
= Learn P(t|t,t,) on these examples

= On n examples, re-estimate with EM

= Note: we know allowed tags but not frequencies

Merialdo: Results

Number of tagged sentences used for the initial model

0 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words

0 770 900 94 962 956.6 96.9 97.0
1 805 926 958 983 96.6 96.7 96.8
2 818 930 957 96.1 96.3 96.4 90.4
3 830 931 954 958 96.1 96.2 96.2
4 840 93.0 952 955 958 96.0 96.0
5 848 929 951 954 956 958 95.8
6 853 928 949 952 955 95.6 95.7
7 858 928 947 951 95.3 95.5 95.5
8 861 927 946 950 952 95.4 95.4
9 863 926 945 949 951 953 95.3
10

86.6 926 944 948 95.0 95.2 95.2

Latent Variable PCFGs

The Game of Designing a Grammar

S
-
NP”S VP
| —
PRP VBD NP"VP
| | —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]

/D The Game of Designing a Grammar

PRP VBD NP-noise
| | _
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins ’99, Charniak '00]

"\ The Game of Designing a Grammar

S
-
NP-1 VP
| —
PRP VBD NP-2
| | —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins ’99, Charniak '00]
= Automatic clustering?

10

Latent Variable Grammars

S
T N —
NP VP
| il ™
PRP VBD ADJP
I il "W
He was right

Parse Tree T
Sentence ¢

Grammar G

Sg — NPO VP(] ?

5-1 Sy — NP, VP, ?

e R ——, Sy — NP, VP; ?

NP-0 VP-1 -0 Sy — NP, VP, ?

? e ! S; - NP, VP, ?
PRP-1 VBD-0 ADJP-0 o

| ! T S; > NP, VP; ?

He was right L
NPQ — PRPO ?
- mmmmp NP, —PRP; ?

S-0 e

e ——— e e e
NP-1 VP-1 -0 Lexicon
J — | PRP; — She ?
PRP-0 VBD-0 ADJP-1 PRP; — She ?
| I e,

VBD,; — was ?
VBD,; — was ?
VBD; - was ?

He was right

Derivations ¢ : T Parameters @

11

Learning Latent Annotations

Forward

—

EM algorithm:

» Brackets are known
» Base categories are known
» Only induce subcategories

S[X1]
- N
NP[X2] VP[X4] 1 X7]
! — |
PRP[X3] VBD[X5] ADJP[X5]
I | —
He was right

—

Just like Forward-Backward for HMMs.

Backward

12

aaaaaa

Refinement of the DT tag

DT
the (0.50)
a (0.24)
The (0.08)

P e f’ ‘ "‘“-\.\.*
a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT2 DT-3 DT-4

Hierarchical refinement

- N

rhe (05040

LEAL LLS A
P A8

b5 %\\\ ?;:3:5

. The (0.09)

N o

that {

RN
§\§

)

N
1

5
1

- some (0.11)

2 (0.61)
the (0.19)
an (0.11)

the (0.80)
The (0.15)
2 (0.01)

this (0.39)
that (0.28)
That (0.11)

some (0.20)
all (0.19)
those (0.12)

14

~"Hierarchical Estimation Results

©
o

(00
o

1)

ol

F
&

(o]
S

@
o

Parsing accuracy (
(0]
N

~
o

~
(@]

~
SN

100

300

500 700 900 11

Total Number of grammg| Flat Training

Model F1
87.3
Hierarchical Training | 88.4

15

Refinement of the, tag

= Splitting all categories equally is wasteful:

, (1.00)

«— T — @ T
, (1.00) , (1.00) , (1.00) , (1.00)

16

Adaptive Splitting

= \Want to split complex categories more

» |dea: split everything, roll back splits which

were |least useful

- the {u.o4)

a (0.25)

T2 (0)

the (0.19)
an (0.11)

206D

a (0.01)
The (0.01)

the (0.96) | [The (0.93)

A (0.02)
No (0.01)

17

88

[

84

- o
> ~
-
F g
/

/

/

78 /
76

/

74

~—Hierarchical Trainin ——

Model

100

300

500 700 900

Total Number of grammar symbols

F1

Previous

88.4

With 50% Merging

89.5

18

€S

S
O
o]0)
Q
)
(qu)
o
O
-
(Vg
(qV)
n
4)
S
-
(ol
G
@)
-
()
O
&
-
=z

157
100d
X
dravHm
Oodd
oydveas
FLNI
dAQVHM
don
OVN
OvdA
drfNOD
0s
ddHM
ldd
ANIS
XN
Ndd
dNHM
dO
dvds
drav

dAav
dd
dA

dN

40

19

Number of Lexical Subcategories

70

60 -

50

s0 1 HHH L

o4 HHHHHHHHH

204dHHHHHHHHHHH

10 A

IRIRINISISINISISISIN] HHHHHHHHﬂﬂﬂﬂmmmﬂﬂﬂﬂﬂmmmﬁﬁmﬁﬁmﬁmﬁ
a3nzZ2z2 omooZNn_Em xrw N ald c/)la ><69I—' 20O »IT S 0 H*
272258g580°08bE053 RESpEgbEe DGR EEFT75 SR

20

Learned Splits

= Proper Nouns (NNP):

NNP-14

NNP-12
NNP-2
NNP-1

NNP-15
NNP-3

Oct. Nov. Sept.
John Robert James
J. E. L.
Bush Noriega Peters
New San Wall
York Francisco Street

= Personal pronouns (PRP):

PRP-0
PRP-1
PRP-2

It He I
it he they
it them him

21

Learned Splits

= Relative adverbs (RBR):

RBR-0
RBR-1
RBR-2

further lower higher
more less More
earlier Earlier later

= Cardinal Numbers (CD):

CD-7
CD-4
CD-11
CD-0
CD-3
CD-9

one two Three
1989 1990 1988
million billion trillion
1 50 100
1 30 31

/8 58 34

22

E
B,

Final Results (Accuracy)

< 40 words all
F1 F1
m |Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
I'G?'I Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
O Chiang et al. ‘02 80.0 76.6
T
=z Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

23

Efficient Parsing for
Hierarchical Grammars

24

Coarse-to-Fine Inference

= Example: PP attachment

S

/\
NP VP
‘ /\
PRP
‘ 7?77?77
They
\Y NP PP
| RN RN
raised DT NN IN NP
| | AN

a point of order

25

split in eight: ...

coarse:

26

Bracket Posteriors

9.0, .
020%020%0%0,4%
90,00, 0. 0.0.¢
€©20:0: 0,000,
.””.”’.”0’

920:0,0.90. 0. X))
oS0 00 %08

90,6020, O)
B<5CIIRRRRKKLS 020,050
Se03eetetedetetedods’ 20 030503

3@&%
070000700036
®’ V020202 Y0030
s %8 J00e

of

the

House
s&l
bailout
of
sick
thrifts

the
agency

and
Means
Committee
new

introduced
can

Influential
members
Ways
legislation
that
would
restrict
how
raise
capital
creating
another
potential
obstacle
sale

government

27

1621 min
111 min
35 min

15 min

(no search error)

28

Other Syntactic Models

29

Parse Reranking

= Assume the number of parses is very small

= We can represent each parse T as an arbitrary feature vector ¢(T)
= Typically, all local rules are features
= Also non-local features, like how right-branching the overall tree is
= [Charniak and Johnson 05] gives a rich set of features

PP

K-BESt Pa rSing Pauls, Klein, Quirk 10]

S

NP VP
NP VP

‘Y—|—ﬁL +ﬂ(, +ﬁR /\
DT NN A > DT NN
AR

pr Pc

[Huang and Chiang 05,

31

Dependency Parsing

= Lexicalized parsers can be seen as producing dependency trees

S(questioned)
questioned
— T
NP(lawyer) VP(questioned) lawyer witness
DT(the) NN(lawyer) i . , l l
| | Vt(questioned) NP(witness) the the
the lawyer |

questioned DT(the) NN(witness)
| I

the witness

= Each local binary tree corresponds to an attachment in the dependency
graph

32

Dependency Parsing

= Pure dependency parsing is only cubic [Eisner 99]

X[h] h

i h k h’ | h Kk h’
= Some work on non-projective dependencies
= Common in, e.g. Czech parsing
= Can do with MST algorithms [McDonald and Pereira 05]

NN NN

root John saw a dog yesterday which was a Yorkshire

Terrier

33

Shift-Reduce Parsers

= Another way to derive a tree:

Remaining Text

Parsing

= No useful dynamic programming search
= Can still use beam search [Ratnaparkhi 97]

Data-oriented parsing:

= Rewrite large (possibly lexicalized) subtrees in a single step

The post office will

discounts and service concessions

= Formally, a tree-insertion grammar

= Derivational ambiguity whether subtrees were generated atomically
or compositionally

= Most probable parse is NP-complete

35

TIG: Insertion

NP | VP

V NP

saw

NP
N
Dl N NP VP
| N P il

36

Tree-adjoining grammars

Start with local trees

Can insert structure
with adjunction
operators

Mildly context-
sensitive

Models long-distance
dependencies
naturally

... as well as other
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)

S
NP VP NP
| NP VP |
NNP NG VB NP NNS
| MD VP | |
Qintex | sell assets
would
S
.//\
NP “.'VP
e VB o NP
NP” VP S8 N
| ~_ sell ™.
er\IP M|D VP PI|2T NIP
Qintex would R|P NP|~JS

off assets

37

TAG: Long Distance

| P
does NP VP

| /*
Bill \I/ S

think
S

R

NP(wh); S
I /\
who NP VP
| N
Harry V. NP

likes &

s
/\
NPwh); s

| | /\

who
I

does \p VP

| /\

Bill

think NP

|
Harry

S
| PN

VP

N

v
I

likes

NP,
I

g

38

F 5%
%

CCG Parsing

= Combinatory John = NP
Categorial Grammar
Fully (mono-) shares = NP
lexicalized grammar
Categories encode b”yS = (S\NP)/NP

argument sequences
Very closely related Sleeps = S\N P

to the lambda well = (S\NP)\ (S\NP)

calculus (more later)

Can have spurious
ambiguities (why?) S
0N
NP S\NP
| . ~
John (S\NP)/NP NP
|

buys shares

39

