Natural Language Processing

Parsing III

Dan Klein – UC Berkeley

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

EM for HMMs: Process

- Alternate between recomputing distributions over hidden variables (the tags) and reestimating parameters
- Crucial step: we want to tally up how many (fractional) counts of each kind of transition and emission we have under current params:

$$count(w,s) = \sum_{i:w_i=w} P(t_i = s|\mathbf{w})$$

$$count(s \to s') = \sum_{i} P(t_{i-1} = s, t_i = s'|\mathbf{w})$$

Same quantities we needed to train a CRF!

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]
- Setup:
 - You know the set of allowable tags for each word
 - Fix k training examples to their true labels
 - Learn P(w|t) on these examples
 - Learn P(t|t₋₁,t₋₂) on these examples
 - On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

Merialdo: Results

	0	100	2000	5000	10000	20000	all
Iter	Correct tags (% words) after ML on 1M words						
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8
2	81.8	93.0	95. <i>7</i>	96.1	96.3	96.4	96.4
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Latent Variable Grammars

Learning Latent Annotations

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

Just like Forward-Backward for HMMs.

Refinement of the DT tag

Hierarchical refinement

Refinement of the, tag

Splitting all categories equally is wasteful:

Adaptive Splitting

- Want to split complex categories more
- Idea: split everything, roll back splits which were least useful

Number of Lexical Subcategories

Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	I
PRP-1	it	he	they
PRP-2	it	them	him

Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Final Results (Accuracy)

		≤ 40 words F1	all F1
ENG	Charniak&Johnson '05 (generative)	90.1	89.6
G	Split / Merge	90.6	90.1
ြ	Dubey '05	76.3	-
GER	Split / Merge	80.8	80.1
^오	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Still higher numbers from reranking / self-training methods

Coarse-to-Fine Inference

Example: PP attachment

Hierarchical Pruning

Bracket Posteriors

1621 min
111 min
35 min
15 min
(no search error)

Parse Reranking

- Assume the number of parses is very small
- We can represent each parse T as an arbitrary feature vector $\varphi(T)$
 - Typically, all local rules are features
 - Also non-local features, like how right-branching the overall tree is
 - [Charniak and Johnson 05] gives a rich set of features

K-Best Parsing

[Huang and Chiang 05, Pauls, Klein, Quirk 10]

Dependency Parsing

Lexicalized parsers can be seen as producing dependency trees

 Each local binary tree corresponds to an attachment in the dependency graph

Dependency Parsing

Pure dependency parsing is only cubic [Eisner 99]

- Some work on non-projective dependencies
 - Common in, e.g. Czech parsing
 - Can do with MST algorithms [McDonald and Pereira 05]

Shift-Reduce Parsers

Another way to derive a tree:

- Parsing
 - No useful dynamic programming search
 - Can still use beam search [Ratnaparkhi 97]

Data-oriented parsing:

Rewrite large (possibly lexicalized) subtrees in a single step

- Formally, a *tree-insertion grammar*
- Derivational ambiguity whether subtrees were generated atomically or compositionally
- Most probable parse is NP-complete

TIG: Insertion

Tree-adjoining grammars

- Start with *local trees*
- Can insert structure with adjunction operators
- Mildly contextsensitive
- Models long-distance dependencies naturally
- ... as well as other weird stuff that CFGs don't capture well (e.g. cross-serial dependencies)

TAG: Long Distance

CCG Parsing

- CombinatoryCategorial Grammar
 - Fully (mono-) lexicalized grammar
 - Categories encode argument sequences
 - Very closely related to the lambda calculus (more later)
 - Can have spurious ambiguities (why?)

 $John \vdash NP$ $shares \vdash NP$ $buys \vdash (S \setminus NP) / NP$ $sleeps \vdash S \setminus NP$ $well \vdash (S \setminus NP) \setminus (S \setminus NP)$