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Unsupervised Tagging




Unsupervised Tagging?

= AKA part-of-speech induction
" Task:

= Raw sentences in

» Tagged sentences out
= Obvious thing to do:
= Start with a (mostly) uniform HMM
= Run EM
" |nspect results




EM for HMMs: Process

Alternate between recomputing distributions over hidden variables (the
tags) and reestimating parameters

Crucial step: we want to tally up how many (fractional) counts of each
kind of transition and emission we have under current params:

count(w,s) = > Pt = s|w)

1IW;=w

count(s — s') = Y P(ti_1=s,t; = s'|w)
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= Same quantities we needed to train a CRF!
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Merialdo: Setup

= Some (discouraging) experiments [Merialdo 94]

= Setup:
= You know the set of allowable tags for each word

= Fix k training examples to their true labels
= Learn P(w]t) on these examples
= Learn P(t|t,t,) on these examples

= On n examples, re-estimate with EM

= Note: we know allowed tags but not frequencies




Merialdo: Results

Number of tagged sentences used for the initial model

0 100 2000 5000 10000 20000 all

Iter Correct tags (% words) after ML on 1M words

0 770 900 94 962 956.6 96.9 97.0
1 805 926 958 983 96.6 96.7 96.8
2 818 930 957 96.1 96.3 96.4 90.4
3 830 931 954 958 96.1 96.2 96.2
4 840 93.0 952 955 958 96.0 96.0
5 848 929 951 954 956 958 95.8
6 853 928 949 952 955 95.6 95.7
7 858 928 947 951 95.3 95.5 95.5
8 861 927 946 950 952 95.4 95.4
9 863 926 945 949 951 953 95.3
10

86.6 926 944 948 95.0 95.2 95.2




Latent Variable PCFGs




The Game of Designing a Grammar

S
-
NP”S VP
| —
PRP VBD NP"VP
| | —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]




/D The Game of Designing a Grammar

PRP VBD NP-noise
| | _
She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins ’99, Charniak '00]




"\ The Game of Designing a Grammar

S
-
NP-1 VP
| —
PRP VBD NP-2
| | —

She heard DT NN
| |
the noise

= Annotation refines base treebank symbols to improve
statistical fit of the grammar
= Parent annotation [Johnson '98]
= Head lexicalization [Collins ’99, Charniak '00]
= Automatic clustering?
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Latent Variable Grammars

S
T N —
NP VP
| il ™
PRP VBD ADJP
I il "W
He was right

Parse Tree T
Sentence ¢

Grammar G

Sg — NPO VP(] ?

5-1 Sy — NP, VP, ?

e R ——, Sy — NP, VP; ?

NP-0 VP-1 -0 Sy — NP, VP, ?

? e ! S; - NP, VP, ?
PRP-1 VBD-0 ADJP-0 o

| ! T S; > NP, VP; ?

He was  right L
NPQ — PRPO ?
- mmmmp NP, —PRP; ?

S-0 e

e ——— e e e
NP-1 VP-1 -0 Lexicon
J — | PRP; — She ?
PRP-0 VBD-0 ADJP-1 PRP; — She ?
| I e,

VBD,; — was ?
VBD,; — was ?
VBD; - was ?

He was right

Derivations ¢ : T Parameters @
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Learning Latent Annotations

Forward

—

EM algorithm:

» Brackets are known
» Base categories are known
» Only induce subcategories

S[X1]
- N
NP[X2] VP[X4] 1 X7]
! — |
PRP[X3] VBD[X5] ADJP[X5]
I | —
He was right

—

Just like Forward-Backward for HMMs.

Backward
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Refinement of the DT tag

DT
the (0.50)
a (0.24)
The (0.08)

P e f’ ‘ "‘“-\.\.*
a (0.61) the (0.80) this (0.39) some (0.20)
the (0.19) The (0.15) that (0.28) all (0.19)
an (0.11) a (0.01) That (0.11) those (0.12)

DT-1 DT2 DT-3  DT-4




Hierarchical refinement
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~"Hierarchical Estimation Results
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Refinement of the, tag

= Splitting all categories equally is wasteful:

, (1.00)

«— T — @ T
, (1.00) , (1.00) , (1.00) , (1.00)
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Adaptive Splitting

= \Want to split complex categories more

» |dea: split everything, roll back splits which

were |least useful

- the {u.o4)

a (0.25)

T2 (0)

the (0.19)
an (0.11)

206D

a (0.01)
The (0.01)

the (0.96) | [ The (0.93)

A (0.02)
No (0.01)
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Number of Lexical Subcategories
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Learned Splits

= Proper Nouns (NNP):

NNP-14

NNP-12
NNP-2
NNP-1

NNP-15
NNP-3

Oct. Nov. Sept.
John Robert James
J. E. L.
Bush Noriega Peters
New San Wall
York Francisco  Street

= Personal pronouns (PRP):

PRP-0
PRP-1
PRP-2

It He I
it he they
it them him
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Learned Splits

= Relative adverbs (RBR):

RBR-0
RBR-1
RBR-2

further lower higher
more less More
earlier Earlier later

= Cardinal Numbers (CD):

CD-7
CD-4
CD-11
CD-0
CD-3
CD-9

one two Three
1989 1990 1988
million billion trillion
1 50 100
1 30 31

/8 58 34
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Final Results (Accuracy)

< 40 words all
F1 F1
m |Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
I'G?'I Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
O Chiang et al. ‘02 80.0 76.6
T
=z Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods
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Efficient Parsing for
Hierarchical Grammars
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Coarse-to-Fine Inference

= Example: PP attachment

S

/\
NP VP
‘ /\
PRP
‘ 7?77?77
They
\Y NP PP
| RN RN
raised DT NN IN NP
| | AN

a  point of order
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split in eight: ...

coarse:
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Bracket Posteriors
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1621 min
111 min
35 min

15 min

(no search error)
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Other Syntactic Models
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Parse Reranking

= Assume the number of parses is very small

= We can represent each parse T as an arbitrary feature vector ¢(T)
= Typically, all local rules are features
= Also non-local features, like how right-branching the overall tree is
= [Charniak and Johnson 05] gives a rich set of features

PP




K-BESt Pa rSing Pauls, Klein, Quirk 10]

S

NP VP
NP VP

‘Y—|—ﬁL +ﬂ(, +ﬁR /\
DT NN A > DT NN
AR

pr  Pc

[Huang and Chiang 05,
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Dependency Parsing

= Lexicalized parsers can be seen as producing dependency trees

S(questioned)
questioned
— T
NP(lawyer) VP(questioned) lawyer witness
DT(the) NN(lawyer) i . , l l
| | Vt(questioned) NP(witness) the the
the lawyer |

questioned DT(the) NN(witness)
| I

the witness

= Each local binary tree corresponds to an attachment in the dependency
graph
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Dependency Parsing

= Pure dependency parsing is only cubic [Eisner 99]

X[h] h

i h k h’ | h Kk h’
= Some work on non-projective dependencies
= Common in, e.g. Czech parsing
= Can do with MST algorithms [McDonald and Pereira 05]

NN NN

root  John saw a dog yesterday which was a  Yorkshire

Terrier
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Shift-Reduce Parsers

= Another way to derive a tree:

Remaining Text

Parsing

= No useful dynamic programming search
= Can still use beam search [Ratnaparkhi 97]




Data-oriented parsing:

= Rewrite large (possibly lexicalized) subtrees in a single step

The post office  will

discounts and service concessions

= Formally, a tree-insertion grammar

= Derivational ambiguity whether subtrees were generated atomically
or compositionally

= Most probable parse is NP-complete
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TIG: Insertion

NP | VP

V NP

saw

NP
N
Dl N NP VP
| N P il
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Tree-adjoining grammars

Start with local trees

Can insert structure
with adjunction
operators

Mildly context-
sensitive

Models long-distance
dependencies
naturally

... as well as other
weird stuff that CFGs
don’t capture well
(e.g. cross-serial
dependencies)

S
NP VP NP
| NP VP |
NNP NG VB NP NNS
| MD VP | |
Qintex | sell assets
would
S
.//\
NP “.'VP
e VB o NP
NP” VP S8 N
| ~_  sell ™.
er\IP M|D VP PI|2T NIP
Qintex would R|P NP|~JS

off assets
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TAG: Long Distance

| P
does NP VP

| /\*
Bill \I/ S

think
S

R

NP(wh); S
I /\
who NP VP
| N
Harry V. NP

likes &

s
/\
NPwh); s

| | /\

who
I

does  \p VP

| /\

Bill

think NP

|
Harry

S
| PN

VP

N

v
I

likes

NP,
I

g
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F 5%
# %

CCG Parsing

= Combinatory John = NP
Categorial Grammar
Fully (mono-) shares = NP
lexicalized grammar
Categories encode b”yS = (S\NP)/NP

argument sequences
Very closely related Sleeps = S\N P

to the lambda well = (S\NP)\ (S\NP)

calculus (more later)

Can have spurious
ambiguities (why?) S
0N
NP S\NP
| . ~
John (S\NP)/NP NP
|

buys shares
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