Natural Language Processing

Classification I

Dan Klein – UC Berkeley

Classification

- Automatically make a decision about inputs
 - Example: document → category
 - Example: image of digit → digit
 - Example: image of object → object type
 - Example: query + webpages → best match
 - Example: symptoms → diagnosis
 - **...**

Three main ideas

- Representation as feature vectors / kernel functions
- Scoring by linear functions
- Learning by optimization

Some Definitions

 \mathbf{x}_i close the **INPUTS CANDIDATE** $\mathcal{Y}(\mathbf{x})$ {door, table, ...} SET table **CANDIDATES** \mathbf{y}_i^* **TRUE** door **OUTPUTS FEATURE** f(x,y) [0 0 1 0 0 0 1 0 0 0 0 0] **VECTORS** "close" in $x \wedge y$ ="door" x_{-1} ="the" \wedge y="door" y occurs in x x_{-1} ="the" \wedge y="table"

Feature Vectors

Example: web page ranking (not actually classification)

$$x_i$$
 = "Apple Computers"

$$) = [0.3500...]$$

$$) = [0.8421...]$$

Block Feature Vectors

 Sometimes, we think of the input as having features, which are multiplied by outputs to form the candidates

Non-Block Feature Vectors

- Sometimes the features of candidates cannot be decomposed in this regular way
- Example: a parse tree's features may be the productions of the productions of the productions of the productions of the productions.

$$f(\begin{array}{c} \stackrel{S}{\underset{N \ N}{\bigvee}} \stackrel{VP}{\underset{V}{\bigvee}}) = [1 \ 0 \ 1 \ 0 \ 1] \\ f(\begin{array}{c} \stackrel{NP}{\underset{N \ V}{\bigvee}} \stackrel{VP}{\underset{N}{\bigvee}} \\ \stackrel{S}{\underset{N}{\bigvee}} \\ \stackrel{NP}{\underset{N \ V}{\bigvee}} \\ \stackrel{VP}{\underset{N}{\bigvee}} \\ \stackrel{VP}{\underset{N}{\underset{N}{\bigvee}} \\ \stackrel{VP}{\underset{N}{\bigvee}} \\ \stackrel{VP}{\underset{N}{\bigvee}} \\ \stackrel{VP}{\underset{N}{\bigvee}} \\ \stackrel{VP}{\underset{N}{\underset{N}{\bigvee}} \\ \stackrel{VP}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} } \\ \stackrel{VP}{\underset{N}} \\ \stackrel{V}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} } \\ \stackrel{VP}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} } \\ \stackrel{VP}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} } \\ \stackrel{VP}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} } \\ \stackrel{V}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} } \\ \stackrel{V}{\underset{N}{\underset{N}{\underset{N}{\underset{N}{\bigvee}} } \\ \stackrel{N}{\underset{N}{\underset{N}$$

- Different candidates will thus often share features
- We'll return to the non-block case later

Linear Models: Scoring

In a linear model, each feature gets a weight w

We score hypotheses by multiplying features and weights:

$$score(\mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

$$score(POLITICS, \mathbf{w}) = 1 \times 1 + 1 \times 1 = 2$$

Linear Models: Decision Rule

The linear decision rule:

$$\begin{aligned} \textit{prediction}(...\textit{ win the election}..., \mathbf{w}) &= \arg\max_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}) \\ \textit{score}(\overset{...\textit{win the election}....}{\textit{SPORTS}}, \mathbf{w}) &= 1 \times 1 + (-1) \times 1 = 0 \\ \textit{score}(\overset{...\textit{win the election}....}{\textit{POLITICS}}, \mathbf{w}) &= 1 \times 1 + 1 \times 1 = 2 \\ \textit{score}(\overset{...\textit{win the election}....}{\textit{OTHER}}, \mathbf{w}) &= (-2) \times 1 + (-1) \times 1 = -3 \\ & & & & & & & & & & & & & & & \\ \textit{prediction}(...\textit{win the election}..., \mathbf{w}) &= \overset{...\textit{win the election}....}{\textit{POLITICS}} \end{aligned}$$

We've said nothing about where weights come from

Binary Classification

- Important special case: binary classification
 - Classes are y=+1/-1

$$f(x,-1) = -f(x,+1)$$

 $f(x) = 2f(x,+1)$

Decision boundary is a hyperplane

$$\mathbf{w}^{\top}\mathbf{f}(\mathbf{x}) = 0$$

 \mathbf{W}

Multiclass Decision Rule

- If more than two classes:
 - Highest score wins
 - Boundaries are more complex
 - Harder to visualize

$$prediction(\mathbf{x}_i, \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}}{arg \max} \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

There are other ways: e.g. reconcile pairwise decisions

Learning Classifier Weights

- Two broad approaches to learning weights
- Generative: work with a probabilistic model of the data, weights are (log) local conditional probabilities
 - Advantages: learning weights is easy, smoothing is well-understood, backed by understanding of modeling
- Discriminative: set weights based on some error-related criterion
 - Advantages: error-driven, often weights which are good for classification aren't the ones which best describe the data
- We'll mainly talk about the latter for now

How to pick weights?

- Goal: choose "best" vector w given training data
 - For now, we mean "best for classification"
- The ideal: the weights which have greatest test set accuracy / F1 / whatever
 - But, don't have the test set
 - Must compute weights from training set
- Maybe we want weights which give best training set accuracy?
 - Hard discontinuous optimization problem
 - May not (does not) generalize to test set
 - Easy to overfit

Though, min-error training for MT does exactly this.

Minimize Training Error?

A loss function declares how costly each mistake is

$$\ell_i(\mathrm{y}) = \ell(\mathrm{y}, \mathrm{y}_i^*)$$

- E.g. 0 loss for correct label, 1 loss for wrong label
- Can weight mistakes differently (e.g. false positives worse than false negatives or Hamming distance over structured labels)
- We could, in principle, minimize training loss:

$$\min_{\mathbf{w}} \sum_{i} \ell_{i} \left(\arg\max_{\mathbf{y}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

This is a hard, discontinuous optimization problem

Linear Models: Perceptron

- The perceptron algorithm
 - Iteratively processes the training set, reacting to training errors
 - Can be thought of as trying to drive down training error
- The (online) perceptron algorithm:
 - Start with zero weights w
 - Visit training instances one by one
 - Try to classify

$$\widehat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}(\mathbf{x})}{\text{arg max }} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y})$$

- If correct, no change!
- If wrong: adjust weights

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{y}_i^*) \ \mathbf{w} \leftarrow \mathbf{w} - \mathbf{f}(\widehat{\mathbf{y}})$$

Example: "Best" Web Page

$$\mathbf{w} = \begin{bmatrix} 1 & 2 & 0 & 0 & \dots \end{bmatrix}$$

 x_i = "Apple Computers"

$$) = [0.3500...]$$

$$) = [0.3500...]$$
 $\mathbf{w}^{\top} \mathbf{f} = 10.3$ $\hat{\mathbf{y}}$

$$) = [0.8421...]$$

$$(0.8421...]$$
 $\mathbf{w}^{\top} \mathbf{f} = 8.8$ \mathbf{y}_{i}^{*}

$$\mathbf{w} \leftarrow \mathbf{w} + \mathbf{f}(\mathbf{y}_i^*) - \mathbf{f}(\widehat{\mathbf{y}})$$

$$w = [1.5 \ 1 \ 2 \ 1 \ ...]$$

Examples: Perceptron

Separable Case

20

Perceptrons and Separability

- A data set is separable if some parameters classify it perfectly
- Convergence: if training data separable, perceptron will separate (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

Separable

Non-Separable

Examples: Perceptron

Non-Separable Case

22

Issues with Perceptrons

- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining isn't the typically discussed source of overfitting, but it can be important

- Regularization: if the data isn't separable, weights often thrash around
 - Averaging weight vectors over time can help (averaged perceptron)
 - [Freund & Schapire 99, Collins 02]

 Mediocre generalization: finds a "barely" separating solution

Problems with Perceptrons

Perceptron "goal": separate the training data

$$orall i, orall \mathbf{y}
eq \mathbf{y}^i \quad \mathbf{w}^ op \mathbf{f}_i(\mathbf{y}^i) \geq \mathbf{w}^ op \mathbf{f}_i(\mathbf{y})$$

- 1. This may be an entire feasible space

2. Or it may be impossible

Objective Functions

- What do we want from our weights?
 - Depends!
 - So far: minimize (training) errors:

$$\sum_{i} step\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right)$$

 $\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}^i) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})$

- This is the "zero-one loss"
 - Discontinuous, minimizing is NP-complete
 - Not really what we want anyway
- Maximum entropy and SVMs have other objectives related to zero-one loss

Linear Separators

Which of these linear separators is optimal?

27

Classification Margin (Binary)

- Distance of \mathbf{x}_i to separator is its margin, \mathbf{m}_i
- Examples closest to the hyperplane are support vectors
- Margin γ of the separator is the minimum m

Classification Margin

• For each example \mathbf{x}_i and possible mistaken candidate \mathbf{y} , we avoid that mistake by a margin $m_i(\mathbf{y})$ (with zero-one loss)

$$m_i(\mathbf{y}) = \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y})$$

• Margin γ of the entire separator is the minimum m

$$\gamma = \min_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) \right)$$

• It is also the largest γ for which the following constraints hold

$$\forall i, \forall \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$$

Maximum Margin

Separable SVMs: find the max-margin w

$$\max_{\substack{||\mathbf{w}||=1}} \gamma \qquad \qquad \ell_i(\mathbf{y}) = \begin{cases} 0 & \text{if } \mathbf{y} = \mathbf{y}_i^* \\ 1 & \text{if } \mathbf{y} \neq \mathbf{y}_i^* \end{cases}$$

$$\forall i, \forall \mathbf{y} \quad \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$$

- Can stick this into Matlab and (slowly) get an SVM
- Won't work (well) if non-separable

Why Max Margin?

- Why do this? Various arguments:
 - Solution depends only on the boundary cases, or support vectors (but remember how this diagram is broken!)
 - Solution robust to movement of support vectors
 - Sparse solutions (features not in support vectors get zero weight)
 - Generalization bound arguments
 - Works well in practice for many problems

Max Margin / Small Norm

Reformulation: find the smallest w which separates data

Remember this condition? $\begin{array}{c} \max \ \gamma \\ ||\mathbf{w}|| = 1 \end{array}$ $\forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \gamma \ell_i(\mathbf{y})$

 γ scales linearly in w, so if ||w|| isn't constrained, we can take any separating w and scale up our margin

$$\gamma = \min_{i, \mathbf{y} \neq \mathbf{y}_i^*} [\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y})] / \ell_i(\mathbf{y})$$

• Instead of fixing the scale of w, we can fix $\gamma = 1$

$$\begin{aligned} \min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 \\ \forall i, \mathbf{y} \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + 1\ell_i(\mathbf{y}) \end{aligned}$$

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting in a soft margin classifier

Maximum Margin

Note: exist other choices of how to penalize slacks!

- Non-separable SVMs
 - Add slack to the constraints
 - Make objective pay (linearly) for slack:

$$\min_{\mathbf{w},\xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i$$

$$\forall i, \mathbf{y}, \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \geq \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

- Can still stick this into Matlab if you want
- Constrained optimization is hard; better methods!
- We'll come back to this later

Maximum Margin

Linear Models: Maximum Entropy

- Maximum entropy (logistic regression)
 - Use the scores as probabilities:

Maximize the (log) conditional likelihood of training data

$$L(\mathbf{w}) = \log \prod_{i} P(\mathbf{y}_{i}^{*} | \mathbf{x}_{i}, \mathbf{w}) = \sum_{i} \log \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right)$$

$$= \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Maximum Entropy II

- Motivation for maximum entropy:
 - Connection to maximum entropy principle (sort of)
 - Might want to do a good job of being uncertain on noisy cases...
 - ... in practice, though, posteriors are pretty peaked
- Regularization (smoothing)

$$\max_{\mathbf{w}} \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right) - \frac{k||\mathbf{w}||^{2}}{\min_{\mathbf{w}} \frac{k||\mathbf{w}||^{2}}{\sum_{i}} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Maximum Entropy

Log-Loss

If we view maxent as a minimization problem:

$$\min_{\mathbf{w}} k||\mathbf{w}||^2 + \sum_i - \left(\mathbf{w}^{\top}\mathbf{f}_i(\mathbf{y}_i^*) - \log\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_i(\mathbf{y}))\right)$$

This minimizes the "log loss" on each example

$$-\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}))\right) = -\log \mathsf{P}(\mathbf{y}_{i}^{*}|\mathbf{x}_{i}, \mathbf{w})$$

$$step\left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right)$$

One view: log loss is an upper bound on zero-one loss

Remember SVMs...

We had a constrained minimization

$$\min_{\mathbf{w}, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \xi_i$$
$$\forall i, \mathbf{y}, \quad \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) + \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y})$$

• ...but we can solve for ξ_i

$$\forall i, \mathbf{y}, \quad \xi_i \ge \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*)$$
$$\forall i, \quad \xi_i = \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*)$$

Giving

$$\min_{\mathbf{w}} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{i} \left(\max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) - \mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

Hinge Loss

Plot really only right in binary case

Consider the per-instance objective:

$$\min_{\mathbf{w}} \ k||\mathbf{w}||^2 + \sum_i \left(\max_{\mathbf{y}} \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) + \ell_i(y) \right) - \mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) \right)$$

- This is called the "hinge loss"
 - Unlike maxent / log loss, you stop gaining objective once the true label wins by enough
 - You can start from here and derive the SVM objective
 - Can solve directly with sub-gradient decent (e.g. Pegasos: Shalev-Shwartz et al 07)

$$\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \left(\mathbf{w}^{\top}\mathbf{f}_{i}(\mathbf{y})\right)$$

Max vs "Soft-Max" Margin

SVMs:

$$\min_{\mathbf{w}} k||\mathbf{w}||^2 - \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_i(\mathbf{y}) + \ell_i(\mathbf{y}) \right) \right)$$

You can make this zero

Maxent:

$$\min_{\mathbf{w}} \ k ||\mathbf{w}||^2 - \sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$$

... but not this one

- Very similar! Both try to make the true score better than a function of the other scores
 - The SVM tries to beat the augmented runner-up
 - The Maxent classifier tries to beat the "soft-max"

Loss Functions: Comparison

Zero-One Loss

$$\sum_{i} step\left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y} \neq \mathbf{y}_{i}^{*}} \mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})\right)$$

Hinge

$$\sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \max_{\mathbf{y}} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}) + \ell_{i}(y) \right) \right)$$

Log

$$\sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}) \right) \right)$$

$$\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y}_i^*) - \max_{\mathbf{y}
eq \mathbf{y}_i^*} \left(\mathbf{w}^{ op}\mathbf{f}_i(\mathbf{y})
ight)$$

Separators: Comparison

Example: Sensors

Reality

Raining

Sunny

$$P(+,+,r) = 3/8$$
 $P(-,-,r) = 1/8$ $P(+,+,s) = 1/8$ $P(-,-,s) = 3/8$

$$P(+,+,s) = 1/8$$

$$P(-,-,s) = 3/8$$

NB Model

NB FACTORS:

- P(s) = 1/2
- P(+|s) = 1/4
- P(+|r) = 3/4

PREDICTIONS:

- $P(r,+,+) = (\frac{1}{2})(\frac{3}{4})(\frac{3}{4})$
- $P(s,+,+) = (\frac{1}{2})(\frac{1}{4})(\frac{1}{4})$
- P(r|+,+) = 9/10
- P(s|+,+) = 1/10

Example: Stoplights

Reality

Lights Working

$$P(q,r,w) = 3/7$$

$$P(g,r,w) = 3/7$$
 $P(r,g,w) = 3/7$

$$P(r,r,b) = 1/7$$

NB Model

NB FACTORS:

- P(w) = 6/7 P(b) = 1/7
- P(r|w) = 1/2 P(r|b) = 1
- P(g|w) = 1/2 P(g|b) = 0

Example: Stoplights

What does the model say when both lights are red?

```
■ P(b,r,r) = (1/7)(1)(1) = 1/7 = 4/28

■ P(w,r,r) = (6/7)(1/2)(1/2) = 6/28 = 6/28

■ P(w|r,r) = 6/10!
```

- We'll guess that (r,r) indicates lights are working!
- Imagine if P(b) were boosted higher, to 1/2:

■
$$P(b,r,r) = (1/2)(1)(1) = 1/2 = 4/8$$

■ $P(w,r,r) = (1/2)(1/2)(1/2) = 1/8 = 1/8$
■ $P(w|r,r) = 1/5!$

Changing the parameters bought accuracy at the expense of data likelihood