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Classification

Automatically make a decision about inputs
= Example: document — category
= Example: image of digit — digit
= Example: image of object — object type
= Example: query + webpages — best match
= Example: symptoms — diagnosis

Three main ideas
= Representation as feature vectors / kernel functions
= Scoring by linear functions
= Learning by optimization




Some Definitions

INPUTS Xi close the
CANDIDATE J
oor, table, ...

SET y (X) { /
CANDIDATES y table

>
TRUE yz. door
OUTPUTS

FEATURE f(x,y) [001000100000]

VECTORS 1
/ “close” in x A y="door”

X_="the” A y="door”

X ;=“the” A y="table” y oceurs in x
1= -
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Feature Vectors

= Example: web page ranking (not actually classification)

X; = “Apple Computers”

Apple s

From Wikipedia, the free encyclopedia

This article is about the fruit. For the electronics and software company,

see Apple Inc.. For other uses, see Apple (disambiguation)
. The apple is the pomaceous fruit of Apple O O O
Z the apple tree, species Malus ° e o o

domestica in the rose family 4. B
Rosaceae. It is one of the most widely :
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 ft) tall, with a broad,
often densely twiggy crown.!' The
leaves are alternately arranged simple

Apple Inc. T

From Wikipedia, the free encyclopedia
(R Tom Apple Computer

(R

Apple Inc.. Apple Inc.

fz' __ ):[0.8421...




/. Block Feature Vectors

= Sometimes, we think of the input as having features, which
are multiplied by outputs to form the candidates

X ... win the election ...

<=

[y 1 1 O 1 O
fGom  11010]

... win the election ... &
f(SPORTS)=[101000000000:

f(POLITICS) =[000010100000

... win the election ...

f(OTHER) =[000000001010]

“election”




Non-Block Feature Vectors

= Sometimes the features of candidates cannot be
decomposed in this regular way

S
= Example: a parse tree’s features may be the productiogs™ e
present in the tree

S
(G

N N

2

f( NP VP )
| P
N V N

= Different candidates will thus often share features
= We'll return to the non-block case later




Linear Models




Linear Models: Scoring

= |n alinear model, each feature gets a weight w
... win the election ...

f(poLITICS)=] O O O O 1 O 1 O 0O 0o o0 0]
... win the election ...

f(SPORTSY=[ 1 0 1 0 0 0O O O O 0 0 0]
w=[1l 1-1-2 1-1 1-2-2 -1 -1 1]

=  We score hypotheses by multiplying features and weights:

score(y,w) = w ' £(y)

... win the election ...

f(POLITICSY=[ 0 0 0 O 1 O 1 0O 0O 0 0 0
w=[1l 1-1-2 1-1 1-2 -2 -1 -1 1]

... win the election ...

score(POLITICS,w) =1x14+1x1=2
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Linear Models: Decision Rule

= The linear decision rule:

p']"@diction(... win the election y W) e arg MaxX WTf<y)
yeY (%)
... win the election ...

score(SPORTS,w) =1x14(-1)x1=0
... win the election ...

score(POLITICS,w) =1 x14+1x1=2

score(OTHER,w) = (-2) x14+(-1)x1=-3

... win the election ...

pT’Bd?;Ct?:O’n,(... win the election oy W) pum— POL[T]OS

= We've said nothing about where weights come from
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Binary Classification

" Important special case: binary classification

= Classes are y=+1/-1

= Decision boundary is

f(x,-1) = —f(x,+1)
f(x) = 2f(x,+1)

a hyperplane

WTf(X) — 0 -1 = HAM

A%

BIAS : -3

free 4

money - 2
+1 = SPAM

\1

free

w'f=0
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Multiclass Decision Rule

= |f more than two classes: w ! f(y1)
. . biggest
» Highest score wins
= Boundaries are more —
complex
= Harder to visualize wT£(y5) \ WTf(y3)
biggest biggest

prediction(x;, w) = arg max WTfi(y)

yey

= There are other ways: e.g. reconcile pairwise decisions

13



Learning
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Learning Classifier Weights

= Two broad approaches to learning weights

= Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities

= Advantages: learning weights is easy, smoothing is well-understood,
backed by understanding of modeling

= Discriminative: set weights based on some error-related
criterion

= Advantages: error-driven, often weights which are good for
classification aren’t the ones which best describe the data

= We'll mainly talk about the latter for now
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How to pick weights?

Goal: choose “best” vector w given training data
= For now, we mean “best for classification”

The ideal: the weights which have greatest test set
accuracy / F1 / whatever

= But, don’t have the test set
= Must compute weights from training set

Maybe we want weights which give best training set
accuracy?

= Hard discontinuous optimization problem

= May not (does not) generalize to test set \
= Easy to overfit

Though, min-error
training for MT
does exactly this.

16



Minimize Training Error?

= A loss function declares how costly each mistake is

Li(y) =0y, y;)

= E.g.0loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:
min > ¢, (arg max waz-(y)>
y

= This is a hard, discontinuous optimization problem

17
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Linear Models: Perceptron

= The perceptron algorithm
= |teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:

= Start with zero weights w
= Visit training instances one by one T
= Try to classify *
y = argmaxw ' f(y) tvi)
yeY(x)
= |f correct, no change!
= |f wrong: adjust weights

W<—W-|—f(y;k)
w—w—f(y)

f(y’)

£(y)

18



Example: “Best” Web Page

w=I[1l 2 0 0 ...]

X; = “Apple Computers”

)=[0.3500 ...] w' f=103 §

e )=1[0.8421 ..] wlf—s8s y*
/ ) Z

w—w+f(y;) — £(¥)
w=[15 1 2 1 ..]

19



Examples: Perceptron

= Separable Case

e & =« & w

4 0 & 1 2 2 2 3 B 4 & S5 B

20
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Perceptrons and Separability

= A data setis separable if some Separable
parameters classify it perfectly +
=
- + g
Convergence: if training data _ - .
separable, perceptron will separate - _
(binary case)
Mistake Bound: the maximum Non-Separable
number of mistakes (binary case)
related to the margin or degree of _ + +
separability o
= i

21



Examples: Perceptron

= Non-Separable Case

22
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Issues with Perceptrons

Overtraining: test / held-out accuracy
usually rises, then falls
= Qvertraining isn’t the typically discussed

source of overfitting, but it can be
important

Regularization: if the data isn’t
separable, weights often thrash around
= Averaging weight vectors over time can
help (averaged perceptron)
= [Freund & Schapire 99, Collins 02]

Mediocre generalization: finds a “barely”

separating solution

accuracy

training

test
held-out

iterations
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Problems with Perceptrons

= Perceptron “goal”: separate the training data

Vi,Vy =y wlfi(y") >w' fi(y)

1. This may be an entire 2. Or it may be impossible
feasible space

24



Margin
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Objective Functions

= What do we want from our weights?

Depends! —

So far: minimize (training) errors:

> step < f;(y?) — maxw (Y)>
y7F=

7 yz

T 7 T
. w fi(y") — maxw f;(y)
This is the “zero-one loss” ' yEy,

= Discontinuous, minimizing is NP-complete
= Not really what we want anyway

Maximum entropy and SVMs have other
objectives related to zero-one loss

26
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Linear Separators

= Which of these linear separators is optimal?

27
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Classification Margin (Binary)

Distance of X; to separator is its margin, m,
Examples closest to the hyperplane are support vectors
Margin y of the separator is the minimum m

28



Classification Margin

" For each example X; and possible mistaken candidate y, we avoid
that mistake by a margin mi(y) (with zero-one loss)

mi(y) =w ' f;(y") —w'£;(y)

= Margin y of the entire separator is the minimum m

Y= min <wai<y;<> ~ max wai(y>>
¢ YFY;

= Jtis also the largest y for which the following constraints hold

Vi, Yy  w ' £(y) > w (y) +v4(y)

29



Maximum Margin

= Separable SVMs: find the max-margin w

[lw[l=1
¥

Vi,Vy w'fi(y) > w () + 14(y)

1NN

= Can stick this into Matlab and (slowly) get an SVM
= Won’t work (well) if non-separable

0O ify=y?
0. — )
max -y i(y) {1 ify;ﬁyjf

30



Why Max Margin?

= Why do this? Various arguments:

= Solution depends only on the boundary cases, or support vectors (but
remember how this diagram is broken!)

= Solution robust to movement of support vectors

= Sparse solutions (features not in support vectors get zero weight)
= Generalization bound arguments

= Works well in practice for many problems

Support vectors




Max Margin / Small Norm

= Reformulation: find the smallest w which separates data

Remember this ; llvﬂ?:xlf}f
condition?
7 7 ter'F-(xr).k\ > 1'.UT'F-(U"\ 4 ~0.(~)
VU WM\ /S Y RN/ "N S
= vyscales linearly inw, soif | |w]| | isn’t constrained, we can
take any separating w and scale up our margin
= min [w' ) - w W]/
Y= . *W?,Yg'_wzy/zy

LYFEY;

" |nstead of fixing the scale of w, we can fixy=1

1
2
Vi, y WTfi(yf) > Wsz‘(}’) + 14;(y)

min =||w||?
W

32



Soft Margin Classification

What if the training set is not linearly separable?

Slack variables §; can be added to allow misclassification of difficult or
noisy examples, resulting in a soft margin classifier

33



Maximum Margin

Note: exist other
choices of how to
penalize slacks!

Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

1 >

min =|lw||2+CS ¢
W:QQII | <+ %:&3
Vi,y, w' £(y)+& > w £i(y) + 4(y)

= Cis called the capacity of the SVM — the smoothing
knob

Learning:
= Can still stick this into Matlab if you want
= Constrained optimization is hard; better methods!
= We’ll come back to this later

34



Maximum Margin
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Likelihood
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Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)

= Use the scores as probabilities:

exp(w ! f(y)) Make
doyrexp(wlE(y)) - RoFitiufize

P(ylx,w) =

= Maximize the (log) conditional likelihood of training data

exp(w ' £;(y})) )
>y exp(w ! f;(y))

L(w) = log [] P(y[xi, w) = 3" log (

= Z (WTfi(yf) — log Z exp(wai(y)))
7 y

37
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Maximum Entropy I

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= .. in practice, though, posteriors are pretty peaked

= Regularization (smoothing)
max » (WTfi(yf) — log Zexp(wai(y))) —k||w||?
) y

min  kl[w|*=>" (WTfi(yE‘) —log¥" eXD(WTf@(y)))
y

)

38



Maximum Entropy

39



Loss Comparison

40



Log-Loss

= |f we view maxent as a minimization problem:

min k| |w| 2+5 - (wai(yE‘) —log > exp(wai(y)))

= This minimizes the “log loss” on each example

N
- (wa?-(y;-f") — log Zexo<wa?-<y)>) = —log P(yifxi, w)
y

step (WTfi(Y?) max w w'f; (y))

Tootexp{ <+ LILTOHER L =

= Oneview: log loss is an upper bound on zero-one loss

41



Remember SVMs...

= \We had a constrained minimization
1o
min Sliwl +O;£Z
Vi,y, w fi(y})+&>w fi(y) + 4(y)
= _..but we can solve for ¢

Vi,y, &>w' f;(y)+4y) —w iy}
Vi, & =max(w'fi(y) +4:(y) - w'f(y])
= Giving

min %||w||2 -+ C’%: (m};x (wa@(y) + E@-(y)) — wa@-(y:))

42



Hinge Loss

Plot really only right

= Consider the per-instance objective:

= This is called the “hinge loss”

min KlIwlP+5 (max (w6 +6@) - wTED)

in binary case

Unlike maxent / log loss, you stop
gaining objective once the true label

wins by enough

You can start from here and derive the
SVM objective

Can solve directly with sub-gradient

decent (e.g. Pegasos: Shalev-Shwartz et
al 07)

T * T
w () — max (w ()

2

43



Max vs “Soft-Max” Margin

min KIWIR=3 (W B - max (W) +6)) )
7 NG _
——
You can make this zero

= Maxent:
\

[
min k||w||2—Z (wag;(y;;") —log EV: exp (Wsz(Y)) )

\\ //

Y
... but not this one

= Very similar! Both try to make the true score better
than a function of the other scores

= The SVM tries to beat the augmented runner-up
= The Maxent classifier tries to beat the “soft-max”

44



Loss Functions: Comparison

= Zero-One Loss

= Hinge

Z step (wai(y;‘) — max wai(y)) \
p YEY; \

5 (WD) - max (wTEG) +4())

1

= log .

> (Wsz(yf) —1og ) “exp (wag(y)))
y

()
Te(v¥) — Te
W Bi(yD) — max (W)

45



Separators: Comparison

46



Conditional vs
Joint Likelihood

a7
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Example: Sensors

Reality
Raining sunny
) (D
@@ @@
P(+,+,r) =3/8 P(-,-,r)=1/8 P(+,+,s) =1/8  P(- =3/8
NB Model NB FACTORS: PREDICTIONS:

= P(s) =1/2
w = P(+[s)=1/4
W)

s P(r,+,+) = (2)(34)(34)
s P(s,+,+) = (%) () (V)
= P(r|+,4) =9/10
= P(s|+,+)=1/10

48



Example: Stoplights

Reality

Lights Working

Jo3Fe, e3de

Lights Broken

o3Fe

P(g,rw) = 3/7 P(r,g,w) = 3/7 P(r,r,b) = 1/7
NB Model NB FACTORS:
= P(w)=6/7 = P(b) =1/7
@ = P(rlw)=1/2 = P(rb) =1
" P(g|lw)=1/2 = P(g|b)=0

49
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Example: Stoplights

What does the model say when both lights are red?
= P(b,r,r) =(1/7)(1)(1) =1/7 =4/28
= P(w,r,r) =(6/7)(1/2)(1/2) =6/28 =6/28
= P(w]|r,r)=6/10!

We’'ll guess that (r,r) indicates lights are working!

Imagine if P(b) were boosted higher, to 1/2:

= P(b,r,r) =(1/2)(1)(1) =1/2 =4/8

= P(w,r,r) =(1/2)(1/2)(1/2) =1/8 =1/8

= P(w]r,r)=1/5!
Changing the parameters bought accuracy at the
expense of data likelihood
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