Natural Language Processing

Berkeley

(N

N L P

Classification Il
Dan Klein — UC Berkeley

Classification

%
Y

Linear Models: Perceptron

= The perceptron algorithm
= |teratively processes the training set, reacting to training errors

= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:

= Start with zero weights w W
= Visit training instances one by one T
= Try to classify f (y*)
~ [
y = arg mawaf(y) £(5)
yeY(x) M

= |f correct, no change!
= |f wrong: adjust weights

W<—W-|—f(y;k)

/
w—w—f() £y')

Duals and Kernels

Nearest-Neighbor Classification

= Nearest neighbor, e.g. for digits:
= Take new example
= Compare to all training examples 1
= Assign based on closest example

= Encoding: image is vector of intensities:

A =(0.0 00030807 0.1...00)

= Similarity function:
= E.g. dot product of two images’ vectors

PNQOQ~0

sim(z,y) =z'y =z

[

. Non-Parametric Classification

Non-parametric: more examples means
(potentially) more complex classifiers

How about K-Nearest Neighbor?

= We can be a little more sophisticated, averaging
several neighbors

= But, it’s still not really error-driven learning
= The magic is in the distance function

Overall: we can exploit rich similarity
functions, but not objective-driven learning

A Tale of Two Approaches...

= Nearest neighbor-like approaches
= Work with data through similarity functions
= No explicit “learning”

= Linear approaches
= Explicit training to reduce empirical error
= Represent data through features

= Kernelized linear models
= Explicit training, but driven by similarity!
= Flexible, powerful, very very slow

The Perceptron, Again

= Start with zero weights

= Visit training instances one by one
= Try to classify

y = arg max wai(y)
yeY(x)

= |f correct, no change!
= |f wrong: adjust weights

w — w + £;(y))
w—w — f;(¥)
-
w—w+ (£(y;) — £i(F))
O
w— w+ (A (¥) mistake vectors

&£ 5

Perceptron Weights

= What is the final value of w? w— W+ A;(y)

= Canit be an arbitrary real vector?

= No! It’s built by adding up feature vectors (mistake vectors).
— /
w=A;y)+A2;()+"

w=> aj(y)A;(y) mistake counts
LY

= Can reconstruct weight vectors (the primal representation) from
update counts (the dual representation) for each i

a; = (o (y1) o(y2) ... ai(yn))

Dual Perceptron ™= 2 (&)

Track mistake counts rather than weights

Start with zero counts (o)

For each instance x
= Try to classify

y =argmax Y ay(y) A fi(y)
yey(xi) i”y’

y = argmaxw ' f(y)
yeY(x)

= |f correct, no change!
= |f wrong: raise the mistake count for this example and prediction

a;j(y) «— o;(¥y) +1 w—w+ A(Y)

10

/. Dual / Kernelized Perceptron

= How to classify an example x?

.
score(y) =w'f;(y) =Y ax(NAG) | £(y)
z",y’
=Y () (s) TH(Y))
i’,y’
= > ay(y) (i) () = () (1))
i’,y’
=> ay(y") (K(yjy) = K&\ y))
z",y’

= |f someone tells us the value of K for each pair of candidates,
never need to build the weight vectors

11

Issues with Dual Perceptron

= Problem: to score each candidate, we may have to compare
to all training candidates

score(y) = Y oy (y") (K(y},y) = K(Y,y))
z",y’
= Very, very slow compared to primal dot product!

= One bright spot: for perceptron, only need to consider candidates we
made mistakes on during training

= Slightly better for SVMs where the alphas are (in theory) sparse

= This problem is serious: fully dual methods (including kernel
methods) tend to be extraordinarily slow

= Of course, we can (so far) also accumulate our weights as we
go...

12

Kernels: Who Cares?

So far: a very strange way of doing a very simple
calculation

“Kernel trick”: we can substitute any* similarity
function in place of the dot product

Lets us learn new kinds of hypotheses

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.
E.g. convergence, mistake bounds. In practice,

illegal kernels sometimes work (but not always).

13

Some Kernels

Kernels implicitly map original vectors to higher dimensional
spaces, take the dot product there, and hand the result back

Linear kernel: , . /
Kz, 2')) =2 - = szxz

Quadratic kernel: ¢ 5
K(z,2)=(z -2+ 1)

-, /
= inxjasiazj—l—QZmimi—l— 1
1,7)

RBF: infinite dimensional representation
K(z,2') = exp(—|lz — 2'||?)

Discrete kernels: e.g. string kernels, tree kernels

14

Tree Kernels (Colins and

a) S b) NP NP D N NP NP
I\‘] V/!\NP the apple the apple

T

Jeff ate D N

| | h

| |
the apple

= Want to compute number of common subtrees between T, T’
= Add up counts of all pairs of nodes n, n’
= Base: if n, n’ have different root productions, or are depth O:

C(ny,ne) =0

= Base: if n, n’ are share the same root production:

ne(ny)

C(’I’Ll,TLQ = A H +C Ch(nl J) Ch(”%])))

15

Dual Formulation for SVMs

We want to optimize: (separable case for now)
1
min —||w| |2
w 2
Vi,y w! £y} >w' () + ()

This is hard because of the constraints
Solution: method of Lagrange multipliers
The Lagrangian representation of this problem is:

min max A(w,a) = %nwn2 - %axy) (WIEGD —w i) - ()

All we’ve done is express the constraints as an adversary which leaves our
objective alone if we obey the constraints but ruins our objective if we
violate any of them

16

Lagrange Duality

= We start out with a constrained optimization problem:
f(w*) = min f(w)
g(w) >0

= We form the Lagrangian:

ANw,a) = f(w) —ag(w)

= This is useful because the constrained solution is a saddle
point of A (this is a general property):

* .
W = minmaxA(w,a) = maxmin A(w, «
W) = minmax A(w,) = maxmin A(w,)
— 4 — 4
I VT
Primal problem in w Dual problem in a

17

Dual Formulation Il

Duality tells us that

. 1
min max [|w|> = > a;(y) (w iy} = wEi(y) - 4(y))
a>0 2 iy

has the same value as Z(a)
A
R
max min _||w|[? - zzgcxi(y) (WD —wii(y) — ()

This is useful because if we think of the a’s as constants, we have an
unconstrained min in w that we can solve analytically.

Then we end up with an optimization over o instead of w (easier).

18

A

Dual Formulation Il

= Minimize the Lagrangian for fixed a’s:

Aw,a) = SlIwl2 = Y aiy) (WD) - w TG - 60))
iy

P = o a6 1)
ON(W, a) =S (y¥) — £
B Sw =0 |:> w zzy: s(Y) (fa(Yz.) f.:,(Y))

= So we have the Lagrangian as a function of only o’s:

2

= =Y ai()()
Ly

g}gg Z(a) = 5 %ai()’) (£:(y7) —£(y))

19

/. Backto Learning SVMs

= \We want to find oo which minimize

2

- Z a;(y)4i(y)
i,y

>) (6O — i)
LY

1
min A =
a>0 () 2

y

= This is a quadratic program:
= Can be solved with general QP or convex optimizers
= But they don’t scale well to large problems

= Cf. maxent models work fine with general optimizers (e.g.

CG, L-BFGS)
= How would a special purpose optimizer work?

20

Coordinate Descent |

—> a;(y)4(y)

min Z(«a) = mln
- i,y

a>0

ZO‘@(Y) (f:(y) — fi(y))

= Despite all the mess, Zis just a quadratic in each o;(y)
= Coordinate descent: optimize one variable at a time

Z(ai(¥)) \/ / Z(ai(y))

0 0

= |f the unconstrained argmin on a coordinate is negative, just
clip to zero...

21

Coordinate Descent Il

Ordinarily, treating coordinates independently is a bad idea, but here the
update is very fast and simple

fi —WT f?, : _fi
o (y) — max (O,az_(y) L) T () <y>))

(5D - 1)

So we visit each axis many times, but each visit is quick

This approach works fine for the separable case

For the non-separable case, we just gain a simplex constraint and so we
need slightly more complex methods (SMO, exponentiated gradient)

y

22

What are the Alphas?

Each candidate corresponds to a primal
constraint

1, s
min ;WH+C;&

Vi,y w ' fi(y?) > w fi(y) + 4(y) — &

In the solution, an a;(y) will be:
= Zero if that constraint is inactive
= Positive if that constrain is active
= j.e. positive on the support vectors

Support vectors contribute to weights:

w=> ai(y) (f(y}) — fi(¥))

1,y

Support vectors

23

Structure

24

Handwriting recognition

Sdd4d = brace

Sequential structure

[Slides: Taskar and Klein 05]

25

CFG Parsing

X y

//S\\—-_‘
NP \A
e T
The screen was DT NN vBD NP

The screen was NP PP

a sea of red aeoore

DT NN IN NP

| | | |
a sea of NN

red

Recursive structure

26

Bilingual Word Alignment

X

What is the anticipated
cost of collecting fees
under the new proposal?

En vertu de nouvelle
propositions, quel est le
cout prévu de perception
de les droits?

What

IS

the
anticipated
cost

of
collecting
fees
under
the

new
proposal

Combinatorial structure

En

vertu

de

les

nouvelle
propositions

quel

est

le

cout
prévu

de
perception
de

le

dr0|ts

27

Structured Models

prediction(x, w) = arg max score(y, w)
yeY(x)

space of feasible outputs

Assumption:

score(y,w) =w ' f(y) = ZWTf(Yp)
p

Score is a sum of local “part” scores

Parts = nodes, edges, productions

28

§§§§§

CFG Parsing

P(y | x) o

S
NP VP
T — T
DT NN VBD NP
| | | T
The screen was NP PP
PN PN
DT NN IN NP
| | | |
sea of NN

|
red

f:XXy—>§Rd

e (PP - IN \P)

H (A — «)

A—ae(x,y)

#(NP — DT NN)

#(NN — ‘sea’)

H exp {wa(A — a)} = eXD{WTf(Xa y)}

A—ace(x,y)

29

Bilingual word alignment

Z WTf(Xjk) = wa(X,y)

Yje<cy
En
vertu
de
What |es
1S nouvelle
the propositions
anticipated ,
cost quel
~of est
collecting le
fees cout
under prévu
the de
new perception
proposal de
? le
droits

?

f(x;k)

= 3ssociation
= position

= orthography

30

[e.q.
Charniak and

Option O0: Reranking e o)

Input N-Best List Output
(e.g. n=100)

NF e
The scrom was NP PP I)I \\ \'Il‘l-).-. \['
X= Baseline oV Non-Structured The sewen was NP PP
“The screen was a sea of red.” Parser o Classification

DT NN IN NP
a sea of NN

red

31

Reranking

Advantages:
= Directly reduce to non-structured case
= No locality restriction on features

B

NP v
f DT NN VBD NP

| I e e
(The screen was NP PP) -

PN AT

DT NN IN NP

| | |

sen of NN

|

red

Disadvantages:

= Stuck with errors of baseline parser
= Baseline system must produce n-best lists

= But, feedback is possible [McCloskey, Charniak, Johnson 2006]

32

Efficient Primal Decoding

= Common case: you have a black box which computes

prediction(x) = arg max wa(y)
yEY(X)

at least approximately, and you want to learn w

= Many learning methods require more (expectations, dual representations,
k-best lists), but the most commonly used options do not

= Easiest option is the structured perceptron [Collins 01]

= Structure enters here in that the search for the best y is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)

= Prediction is structured, learning update is not

33

e

Structured Margin

= Remember the margin objective:

1
min —||w||2
W 2

Vi,y w' fi(yD) > w ' fi(y) + 4(y)

= This is still defined, but lots of constraints

34

Full Margin: OCR

= \We want:

arg maxy w! f(pZEa,y) = “brace”

" Equivalently:
w | f(H&ZE, “brace”) > w ! f(HEIA,“aaaaa”)

w | {(HZ , “brace”) > w'f (X ,“aaaab”)

w ! f (A& , “brace”) > w'f(AEE , “z2227")

\

>a lot!

35

Parsing example

= \We want:

arg maXy WTf(‘Itwas red’ 7Y) — Aﬁli

cD

= Equivalently:

2
WTf(‘It was red, AigD) > WTf(‘It was red’, AR))

R
w ! f(itwasred, 5) > w ! f(1twas red, CﬁiB)
Ter . R T 2
W f(It was red, ACQD) > W f(‘ltwas red’, G;HF))

>a lot!

36

Alignment example

= \We want:

arg maxy wa(‘What is the

‘Quel est le’

= Equivalently:

leeol

leeol
— 2ee?
303

,Y)

leeol

WTf(‘What is the’ cee2) > WTf(:What is the’ 2)

‘Quel estle’’ ;o053

leel

Quel estle’ ? 393

WTf(‘Whatisthe’ 2“2) > WTf(:Whatisthe’ ;x;)

‘Quel estle’’ ;o053

WTf(‘What s the’ 1ol) > WTf(:What is the’ ;X;)

‘Quelestle’’ ;o053

Quelestle’’ Sqq3

Quelestle’’ 3dV3

\

>a lot!

y

37

Cutting Plane

= A constraint induction method [Joachims et al 09]

= Exploits that the number of constraints you actually need per instance
is typically very small

= Requires (loss-augmented) primal-decode only

= Repeat:

®» Find the most violated constraint for an instance:
T T
Vy w fi(y}) >w fi(y)+ 4(y)
arg max w ' £(y) + 4i(y)

= Add this constraint and resolve the (non-structured) QP (e.g. with
SMO or other QP solver)

38

Cutting Plane

"= Some issues:

= Can easily spend too much time solving QPs
= Doesn’t exploit shared constraint structure

» |n practice, works pretty well; fast like perceptron/MIRA,
more stable, no averaging

Summarization Phrase Extraction Parsing
08

06| prees

» —— Adaptive CP
wf NS N 0s . == MIRA

5 10 1
[teration [teration [teration

39

£ %
. -

= Another option: express all constraints in a packed form
= Maximum margin Markov networks [Taskar et al 03]
* |ntegrates solution structure deeply into the problem structure

= Steps
= Express inference over constraints as an LP
= Use duality to transform minimax formulation into min-min

= Constraints factor in the dual along the same structure as the primal;
alphas essentially act as a dual “distribution”

= Various optimization possibilities in the dual

40

Likelihood, Structured

L(w) = —k[|w[|*+Y_ (Wsz‘(y;;k) — log ZeXD(Wsz(Y)))
i y

315(“?) = —2kw+ > (fz'(yff) -> P(Y&)ﬂ:(ﬁ)
\% - .

= Structure needed to compute:
= Log-normalizer

= Expected feature counts

= E.g.if afeature is an indicator of DT-NN then we need to compute posterior
marginals P(DT-NN | sentence) for each position and sum

= Also works with latent variables (more later)

41

