Natural Language Processing

Berkeley

il
N L P

Classification IlI
Dan Klein — UC Berkeley

Classification

Linear Models: Perceptron

= The perceptron algorithm
= |teratively processes the training set, reacting to training errors
= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:

= Start with zero weights w w
= Visit training instances one by one
= Try to classify f(£
. yi)
§ = argmaxw ' f(y) ! £(%)
YEV(x) y

= |f correct, no change!
= If wrong: adjust weights

w—w+f(y))

w—w —f(¥) ')

Duals and Kernels

Nearest-Neighbor Classification

= Nearest neighbor, e.g. for digits:
= Take new example
= Compare to all training examples 4
= Assign based on closest example

= Encoding: image is vector of intensities:

4 =(0.00003080701...00)

= Similarity function:
= E.g. dot product of two images’ vectors

PNQOVO~O

sim(z,y) ="y = ay

2

: Non-Parametric Classification

= Non-parametric: more examples means
(potentially) more complex classifiers

= How about K-Nearest Neighbor?
= We can be a little more sophisticated, averaging
several neighbors
= But, it’s still not really error-driven learning
= The magic is in the distance function

= Overall: we can exploit rich similarity
functions, but not objective-driven learning

ah A Tale of Two Approaches...

= Nearest neighbor-like approaches
= Work with data through similarity functions
= No explicit “learning”

= Linear approaches
= Explicit training to reduce empirical error
= Represent data through features

= Kernelized linear models
= Explicit training, but driven by similarity!
= Flexible, powerful, very very slow

The Perceptron, Again

= Start with zero weights
= Visit training instances one by one
= Try to classify

y = arg mawafi(y)
yeY(x)

= |f correct, no change!
= |If wrong: adjust weights

w—w+fi(y])
w—w— ()

=
w—w+ (fi(y;) — £;(F))

o[—
W — W+ mistake vectors

Perceptron Weights

= No! It's built by adding up feature vectors (mistake vectors).

= What is the final value of w?
= Can it be an arbitrary real vector?

w=2)+ 20+

w= Z a;(¥)A;(y) mistake counts
Ly
= Can reconstruct weight vectors (the primal representation) from

update counts (the dual representation) for each i

a; = (0(y1) ai(y2) ... ai(yn))

w = 2: ai(y)Ai(y)

iy

. Dual Perceptron

Track mistake counts rather than weights

Start with zero counts (o)
For each instance x
= Try to classify

y=argmax > a,(_v’)&J-;(}-’)Tf,_(y)
}"Ey(xj) i’y

vy = argmaxw f(y)

yvey(x)

= If correct, no change!
= If wrong: raise the mistake count for this example and prediction

() — ai(3) + 1 W W A()

~, Dual / Kernelized Perceptron

= How to classify an example x?

.
score(y) = wfi(y) = | ¥ ar(¥)Au(y) |)
vy

= 3 ar(y) (2:())
= Z_;Zy,aym (£ (i) "B (y) — 8D TR())
= _iyﬂ;r(y’) (K(yiny) = KGLy)

iy’

= |f someone tells us the value of K for each pair of candidates,
never need to build the weight vectors

_ Issues with Dual Perceptron

Problem: to score each candidate, we may have to compare
to all training candidates

score(y) = Y- ay(y) (K y) = K\))

iy

Very, very slow compared to primal dot product!

One bright spot: for perceptron, only need to consider candidates we
made mistakes on during training

Slightly better for SVMs where the alphas are (in theory) sparse

This problem is serious: fully dual methods (including kernel
methods) tend to be extraordinarily slow

Of course, we can (so far) also accumulate our weights as we
go...

Kernels: Who Cares?

= So far: a very strange way of doing a very simple
calculation

= “Kernel trick”: we can substitute any* similarity
function in place of the dot product

= Lets us learn new kinds of hypotheses
* Fine print: if your kernel doesn't satisfy certain

technical requirements, lots of proofs break.
E.g. convergence, mistake bounds. In practice,

illegal kernels sometimes work (but not always).

Some Kernels

Kernels implicitly map original vectors to higher dimensional
spaces, take the dot product there, and hand the result back

Linear kernel: , , ,
K(z,2)=2"-2 Zinx,;
i

Quadratic kernel:
K(z,2) = (z -2+ 1)2

]

:inszéz;--i-QZwix;-l-l
i

RBF: infinite dimensional representation
K(z,2") = exp(—||z — 2/||%)

Discrete kernels: e.g. string kernels, tree kernels

Tree Kernels oo

P o 0 N O N heape O N O N

N9 N he apphe the apgin
the apple

= Want to compute number of common subtrees between T, T’
= Add up counts of all pairs of nodes n, n’
= Base: if n, n’ have different root productions, or are depth 0:
Clny,na) =0

= Base: if n, n’ are share the same root production:
meing
Clay,ng) = A H (1 + Clefin, j), ching. j)))

i=1

Dual Formulation for SVMs

We want to optimize: (separable case for now)
1
min Z|jw||?
w 2
Viyy wlE(y)) = wfi(y) +6i(y)

This is hard because of the constraints
Solution: method of Lagrange multipliers
The Lagrangian representation of this problem is:

min max Aw,a) = JIIwl? = X aily) (wHGD - W) - 6()

All we've done is express the constraints as an adversary which leaves our
objective alone if we obey the constraints but ruins our objective if we
violate any of them

Lagrange Duality

= We start out with a constrained optimization problem:
FOW) = min f(w)
g(w) =0
= We form the Lagrangian:
Alw,a) = f(w) —ag(w)

= This is useful because the constrained solution is a saddle
point of A (this is a general property):
N = mi A = i
f(w*) min Tﬁ())((w,a) Tg())(m“lln Aw,a)
%/ N ~—

Primal problem in w Dual problem in o

Dual Formulation II

Duality tells us that
W

mjn max 2wl - ¥ i) (wTHGD - WTH®) - 6)

has the same value as 7((\)

1 - r . - \
max min w||? =N oy (w Ry —w {y) — £i(v))
azl W 2 5 \ ! g
This is useful because if we think of the as as constants, we have an
unconstrained min in w that we can solve analytically.

Then we end up with an optimization over o instead of w (easier).

Dual Formulation Il

= Minimize the Lagrangian for fixed os:

Aw,a) = ZIIWIP = X aity) (WD - w) - 60))
Ly

P = W Tam 66D -6
ON(w,a) _ w="Ya;(¥) Ky — fily)
e=o B wepuwon i
= So we have the Lagrangian as a function of only o’s:
1 2
min Z(a) = 3 Yoai(y) (i) —)| — D aiy)ly)
= iy iy

Back to Learning SVMs

= We want to find o which minimize

2

= > ai(Mly)

By

) 1 i
nmzlg Na) = > %Qi(y) (fi(y) - fi(Y))

Vi, Y aiy)=C
y

= This is a quadratic program:
= Can be solved with general QP or convex optimizers
= But they don’t scale well to large problems
= Cf. maxent models work fine with general optimizers (e.g.
CG, L-BFGS)
= How would a special purpose optimizer work?

Coordinate Descent |

2
=Y ai(n)tiy)

min Z(a) = min
a>0 a> iy

1
0 2

> o) GG - i)
Ly

= Despite all the mess, Z is just a quadratic in each o;(y)
= Coordinate descent: optimize one variable at a time

Z(aily)) Z(eily))

0 0

If the unconstrained argmin on a coordinate is negative, just
clip to zero...

Coordinate Descent Il

= Ordinarily, treating coordinates independently is a bad idea, but here the
update is very fast and simple

i) -w' (66D -
a;j(y) — max (O.al(y) + w)

2
() -)|
= So we visit each axis many times, but each visit is quick

= This approach works fine for the separable case

For the non-separable case, we just gain a simplex constraint and so we
need slightly more complex methods (SMO, exponentiated gradient)

Vi, > ai(y)=C
y

= Each candidate corresponds to a primal
constraint

R TR

min —||w C i

min SIWIP+ Y6

viyy w2 w i) +6y) - &

= In the solution, an a;(y) will be: Support vectors
= Zero if that constraint is inactive

= Positive if that constrain is active
= j.e. positive on the support vectors

= Support vectors contribute to weights:

w=> a(y) (fi(y}) — ()

iy

Structure

Handwriting recognition

| Silad = brace

Sequential structure

[Slides: Taskar and Klein 05]

CFG Parsing

X y
NP v
Thescreen was gy °° * Vo
a Sea Of red The screen was NE .I’l.’
DI NN IN NP
of NN

red

Recursive structure

Bilingual Word Alignment

En

X vertu
y de
What les
N . nouvelle
What is the ar_ltlmpated is propositions
cost of collecting fees _ the s
under the new proposal? anticipated quel
cost est
of le
En vertu de nouvelle Co”ecf‘é';g cout
propositions, quel est le under z:"“
cout prévt_J de perception the perception
de les droits? new de
proposal le
?\droits

?

Combinatorial structure

Structured Models

s

prediction(x, w) = arg max score(y, w)
YEV(X)

4
space of feasible outputs

Assumption:

score(y,w) = wa(y) = ZWTf(yp)
P

Score is a sum of local “part” scores

Parts = nodes, edges, productions

CFG Parsing

P(y|[x)oc][&(A—a)

A—ae(x,y)
g #(NP — DT NN)
NP VF
DT NN VAD NP f:xXxyY— éRd
' s - #(PP > IN NP)

DT KN IN NP

u of NN

#(NN — ‘sea’)

II exp {wa(A — a)} = exp{w ' f(x,y)}
A—ac(x,y)

Bilingual word alignment

Z WTf(xjk) =w f(x,y)

Yjk€Y
En
vertu
de
What les
is nouvelle f(x.:
the k propositions (]k)
anticipated f
cost quel = association
" ,Of yjk est
collecting le L] iti
fees cout pOS|tI0n
under &
prévu
der pr = orthography
new / perception
proposal] de
? le
droits

2

[e.g.

Option 0: Reranking Siomakend

N-Best List Output
(e.g. n=100)

x= Baseline Non-Structured
“The screen was a sea of red.” Parser Classification

Reranking

= Advantages:
= Directly reduce to non-structured case
= No locality restriction on features

= Disadvantages:
= Stuck with errors of baseline parser
= Baseline system must produce n-best lists
= But, feedback is possible [McCloskey, Charniak, Johnson 2006]

Efficient Primal Decoding

Common case: you have a black box which computes

prediction(x) = arg maxw ' f(y)
yey(x)

at least approximately, and you want to learn w

Many learning methods require more (expectations, dual representations,
k-best lists), but the most commonly used options do not

Easiest option is the structured perceptron [Collins 01]
= Structure enters here in that the search for the best y is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)
= Prediction is structured, learning update is not

Structured Margin

= Remember the margin objective:

1
min =[|wl||?
w 2

Vi,y wliy) > wiiy) + LK)

= This is still defined, but lots of constraints

Full Margin: OCR

= We want:

argmaxy w'f(

,y) = ‘“brace”

= Equivalently:
w (BRI, “orace”) > w | f(HEIE, “aaaaa”

w | f(BRE, “brace”) > w | f(HEHE,“aaaab”)
a lot!

w f (BRI, “brace”) > w ! f (O, ‘22222

Parsing example

= We want:

arg maxy WTf(twasred |y) = &

= Equivalently:
w T (1t was red Ai;b) > w ! f(rtwas red, "fir)

WTf(‘Itwas red; ")}D) > WTf(‘Itwas red, Lﬁi”)

WTf(‘Itwas red, Aiab) > WTf(‘Itwas red), ff‘)

’

a lot!

Alignment example

= We want:

T£(‘What is the’ _ 1t
arg maxy w f(‘Quel est le’ ’y) - g:i

= Equivalently:

T Whatis the' 1*21 Tg(Whatis the' Sees
w f(‘QueI estle’? Seeg) > w f(‘QueI estle’? §X§)
“ v leel 4 s 1 1
wa(‘Whallslhe 2“2) > wa(lWhalt |stlhg7 2%
poos Quelestle’? Sqoq3 a Iotl

%
Quel estle’? 5

T g (Whatis the' 1*21 Tg(whatis the' 3323
W W 2082
f(‘Quel estle’’ g:g) > f(‘Quel estle’’ 3 3)

Cutting Plane

i

= A constraint induction method [Joachims et al 09]

= Exploits that the number of constraints you actually need per instance
is typically very small

= Requires (loss-augmented) primal-decode only

= Repeat:
= Find the most violated constraint for an instance:

vy w f(yE) = w E(y) 4+ 6(y)
argmaxw ' f;(y) + £:(y)
!

= Add this constraint and resolve the (non-structured) QP (e.g. with
SMO or other QP solver)

Cutting Plane

= Some issues:
= Can easily spend too much time solving QPs
= Doesn’t exploit shared constraint structure

= |n practice, works pretty well; fast like perceptron/MIRA,
more stable, no averaging

M3Ns

= Another option: express all constraints in a packed form
= Maximum margin Markov networks [Taskar et al 03]
= Integrates solution structure deeply into the problem structure

= Steps
= Express inference over constraints as an LP
= Use duality to transform minimax formulation into min-min

Constraints factor in the dual along the same structure as the primal;
alphas essentially act as a dual “distribution”

Various optimization possibilities in the dual

Likelihood, Structured

)]

L(w) = —k||w|[?+Y (w Thi(ys) —1 explw Ly _]))

o

i

AL(w) _
dw

kw43 (f,-(_\',') 3 P(vix)E(y])
i ¥
= Structure needed to compute:

= Log-normalizer

= Expected feature counts

= E.g.if a feature is an indicator of DT-NN then we need to compute posterior
marginals P(DT-NN |sentence) for each position and sum

= Also works with latent variables (more later)

