Natural Language Processing

Language Modeling I

Dan Klein – UC Berkeley

Acoustic Confusions

the station signs are in deep in english	-14732
the stations signs are in deep in english	-14735
the station signs are in deep into english	-14739
the station 's signs are in deep in english	-14740
the station signs are in deep in the english	-14741
the station signs are indeed in english	-14757
the station 's signs are indeed in english	-14760
the station signs are indians in english	-14790
the station signs are indian in english	-14799
the stations signs are indians in english	-14807
the stations signs are indians and english	-1/1815

Language Models

 A language model is a distribution over sequences of words (sentences)

$$P(w) = P(w_1 \dots w_n)$$

- What's w? (closed vs open vocabulary)
- What's n? (must sum to one over all lengths)
- Can have rich structure or be linguistically naive
- Why language models?
 - Usually the point is to assign high weights to plausible sentences (cf acoustic confusions)
 - This is not the same as modeling grammaticality

Translation: Codebreaking?

"Also knowing nothing official about, but having guessed and inferred considerable about, the powerful new mechanized methods in cryptography—methods which I believe succeed even when one does not know what language has been coded—one naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.' "

Warren Weaver (1947)

Other Noisy Channel Models?

- We're not doing this only for ASR (and MT)
 - Grammar / spelling correction
 - Handwriting recognition, OCR
 - Document summarization
 - Dialog generation
 - Linguistic decipherment
 - ...

N-Gram Models

N-Gram Models

• Use chain rule to generate words left-to-right

$$P(w_1 \dots w_n) = \prod P(w_i | w_1 \dots w_{i-1})$$

Can't condition on the entire left context

P(??? | Turn to page 134 and look at the picture of the)

• N-gram models make a Markov assumption

$$P(w_1 \dots w_n) = \prod_i P(w_i | w_{i-k} \dots w_{i-1})$$

P(please close the door) =

 $P(\text{please}|\text{START})P(\text{close}|\text{please})\dots P(\text{STOP}|door)$

Empirical N-Grams

- How do we know P(w | history)?
 - Use statistics from data (examples using Google N-Grams)
 - E.g. what is P(door | the)?

$$\begin{split} \hat{P}(\text{door}|\text{the}) &= \frac{14112454}{23135851162} \\ &= 0.0006 \end{split}$$

■ This is the *maximum likelihood* estimate

Likelihood and Perplexity

- How do we measure LM "goodness"?
 - Shannon's game: predict the next word

When I eat pizza, I wipe off the ____

• Formally: define test set (log) likelihood

$$\log P(X|\theta) = \sum_{w \in X} \log(P(w|\theta))$$

Perplexity: "average per word branching factor" (not per-step)

$$perp(X, \theta) = exp\left(-\frac{\log P(X|\theta)}{|X|}\right)$$

28048 wipe off the *

Measuring Model Quality (Speech)

- We really want better ASR (or whatever), not better perplexities
- For speech, we care about word error rate (WER)

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

WER: insertions + deletions + substitutions

true sentence size = 4/7 = 57%

 Common issue: intrinsic measures like perplexity are easier to use, but extrinsic ones are more credible

(Linear) Interpolation

• Simplest way to mix different orders: linear interpolation

$$\lambda \hat{P}(w|w_{-1}, w_{-2}) + \lambda' \hat{P}(w|w_{-1}) + \lambda'' \hat{P}(w)$$

- How to choose lambdas?
- Should lambda depend on the counts of the histories?
- Choosing weights: either grid search or EM using held-out data
- Better methods have interpolation weights connected to context counts, so you smooth more when you know less

Idea 2: Discounting

Observation: N-grams occur more in training data than they will later

Empirical Bigram Counts (Church and Gale, 91)

Count in 22M Words	Future c* (Next 22M)
1	0.45
2	1.25
3	2.24
4	3.23
5	4.21

Absolute Discounting

- Absolute discounting
 - Reduce numerator counts by a constant d (e.g. 0.75)
 - Maybe have a special discount for small counts
 - Redistribute the "shaved" mass to a model of new events
- Example formulation

$$P_{\mathrm{ad}}(w|w') = \frac{c(w',w) - d}{c(w')} + \alpha(w')\hat{P}(w)$$

Idea 3: Fertility

- Shannon game: "There was an unexpected ____
 - "delay"?
 - "Francisco"?
- Context fertility: number of distinct context types that a word occurs in
 - What is the fertility of "delay"?
 - What is the fertility of "Francisco"?
 - Which is more likely in an arbitrary new context?

Kneser-Ney Smoothing

- Kneser-Ney smoothing combines two ideas
 - Discount and reallocate like absolute discounting
 - In the backoff model, word probabilities are proportional to context fertility, not frequency

$$P(w) \propto |\{w': c(w', w) > 0\}|$$

- Theory and practice
 - Practice: KN smoothing has been repeatedly proven both effective and efficient
 - Theory: KN smoothing as approximate inference in a hierarchical Pitman-Yor process [Teh, 2006]

Kneser-Ney Details*

All orders recursively discount and back-off:

$$P_k(w|prev\;k-1) = \frac{c'(w,prev\;k-1)-d}{\sum_v c'(v,prev\;k-1)} + \alpha(prev\;k-1)P_{k-1}(w|prev\;k-2)$$

- Alpha is computed to make the probability normalize (see if you can figure out an expression).
- For the highest order, c' is the token count of the n-gram. For all others it is the context fertility of the n-gram:

$$c'(x) = |\{u \colon c(u, x) > 0\}|$$

- The unigram base case does not need to discount.
- Variants are possible (e.g. different d for low counts)

Idea 4: Big Data

There's no data like more data.

What Actually Works?

- Trigrams and beyond:
 - Unigrams, bigrams generally useless
 - Trigrams much better
 - 4-, 5-grams and more are really useful in MT, but gains are more limited for speech
- Discounting
 - Absolute discounting, Good-Turing, held-out estimation, Witten-Bell, etc...
- Context counting
 - Kneser-Ney construction of lower-order models
- See [Chen+Goodman] reading for tons of graphs...

[Graph from Joshua Goodman]

What about...

Unknown Words?

- What about totally unseen words?
- Most LM applications are closed vocabulary
 - ASR systems will only propose words that are in their pronunciation dictionary
 - MT systems will only propose words that are in their phrase tables (modulo special models for numbers, etc)
- In principle, one can build open vocabulary LMs
 - E.g. models over character strings rather than words
 - Back-off needs to go down into a "generate new word" model
 - Typically if you need this, a high-order character model is almost as good

Grammar?

- The N-Gram assumption hurts one's inner linguist!
 - Many linguistic arguments that language isn't regular
 - Long-distance effects: "The computer which I had just put into the machine room on the fifth floor ____."
 - Recursive structure
- Answers
 - N-grams only model local correlations, but they get them all
 - As N increases, they catch even more correlations
 - N-gram models scale much more easily than structured LMs
- Not convinced?
 - Can build LMs out of our grammar models (later in the course)
 - Take any generative model with words at the bottom and marginalize out the other variables

What Gets Captured?

- Bigram model:
 - [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]
 - [outside, new, car, parking, lot, of, the, agreement, reached]
 - [this, would, be, a, record, november]
- PCFG model:
 - [This, quarter, 's, surprisingly, independent, attack, paid, off, the, risk, involving, IRS, leaders, and, transportation, prices, .]
 - [It, could, be, announced, sometime, .]
 - [Mr., Toseland, believes, the, average, defense, economy, is, drafted, from, slightly, more, than, 12, stocks, .]

Other Techniques?

- Lots of other techniques
 - Maximum entropy LMs (soon)
 - Neural network LMs (soon)
 - Syntactic / grammar-structured LMs (much later)