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[Martins and Smith 2009]
[Woodsend and Lapata 2010]
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Features

COUNT: Bucketed document counts

STOP: Stop word indicators

POSITION: First document position 
indicators

CONJ: All two- and three-way 
conjunctions of above

BIAS: Always one

f(b)Bigram Features Cut Features f(c)

COORD: Coordinated phrase, four 
versions: NP,  VP,  S,  SBAR

S-ADJUNCT: Adjunct to matrix verb, 
four versions:  CC,  PP, 
ADVP,  SBAR

REL-C: Relative clause indicator

ATTR-C: Attribution clause indicator

ATTR-PP: PP attribution indicator

TEMP-PP: Temporal PP indicator

TEMP-NP Temporal NP indicator

BIAS: Always one
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quality
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for all possible guess summaries:s.t.

Structured SVM Training:

w>f(S⇤
)� w>f(S) � loss(S⇤, S) � ⇠

Exponentially many constraints!

h i
⇠+min

w
kwk22
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