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Lindsay Lohan rejects plea deal

Los Angeles (CNN) - Lindsay Lohan wants a jury to decide if she's
guity of stealing a necklace from a Venice, Caiifornia jeweiry store, her
lawyer said Wednesday.

Her lawyer informed the Los Angeles District Attorney’s office
Wednesday afternoon that the actress was rejecting a plea deal.

“She has a strong defense and we are confident that a jury will listen to
the evidence fairly and acquit her,” Shawn Chapman Holley said

A judge gave Lohan unti Wednesday to decide if she would accept a
plea deal that would send her to jail for a felony grand theft charge.

“Ms. Lohan has maintained her innocence from the moment
this case was fied and she has never wavered,” Holley
said. “Though many advised her to follow the safe route by
taking ‘the deal,’ the truth is, Ms. Lohan is innocent.”

A preliminary hearing is now scheduled for April 22 for a
judge to hear evidence to decide if the theft case should go
to trial

The same judge will also decide if Lohan violated her
probation for a 2007 drunk driving conviction by being
charged with the felony.

The actress is accused of walking out of Kamofie and
Company with a $2,500 necklace around her neck on
January 22

The well-publicized case took a twist this month when it was revealed
that a representative of the jewekry store that accused Lohan of theft
taked to a book agent about a possible book deal
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Lindsay Lohan pleaded not guilty
Wednesday to felony grand theft
of a 2,500 necklace, a case that
could return the troubled starlet
to jail rather than the big screen.
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Lindsay Lohan pleaded not guilty
Wednesday to felony grand theft
of a 2,500 necklace, a case that
could return the troubled starlet
to jail rather than the big screen.
Saying it appeared that Lohan had
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 and warned
that if Lohan was accused of
breaking the law while free he
would have her held without bail.
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Lindsay Lohan pleaded not guilty
Wednesday to felony grand theft
of a 2,500 necklace, a case that
could return the troubled starlet
to jail rather than the big screen.

Saying it appeared that Lohan had
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 and warned
that if Lohan was accused of
breaking the law while free he
would have her held without bail.
The Mean Girls star is due back
in court on Feb. 23 an important
hearing in which Lohan could opt
to end the case early.
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Si1: She traveled to France on Friday.
S4: On Friday, She took a trip to France.
Ss:  She plans to stay for two weeks.
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[Carbonell and Goldstein, 1998]
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(she, stopped) (in, france) J (she, remained) J
(stopped, in) (france, she) :

Set of bigrams covered by summary: /3 (3)
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value(b) = freq(b)

[Gillick and Favre 2008]
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S,z
b
s.t. length(s) < Lyaz

bigrams in S are covered

only bigrams in S are covered
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Vo D $nQus > 2
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value(b) = freq(b)
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s.t. length(s) < Lyaz

Parameterize using features:

value(b) = w ' f(b)
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Lindsay Lohan pleaded not guilty
Wednesday to felony grand theft
of a 2,500 necklace, a case that
could return the troubled starlet
to jail rather than the big screen.

Saying it appeared that Lohan had
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 and warned
that if Lohan was accused of
breaking the law while free he
would have her held without bail.
The Mean Girls star is due back
in court on Feb. 23 an important
hearing in which Lohan could opt
to end the case early.
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Lindsay Lohan pleaded not guilty
Mednesday to felony grand theft
of a 2,500 necklace, a—ease—that
-coutdreturn—the—troubled-starlet
Saying it appeared that Lohan ha
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 and—warned
that—f—eohan—was—aceused—eof
breaking—thelaw—while—free—he
The Mean Girls star is due back
in court on Feb. 23 an-important
te-end-the-case—earhx

[Martins and Smith 2009]
[Woodsend and Lapata 2010]
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Joint Extractive / Compressive Model

Imax

_ Z value(b) + Zvalue(c)

beB(s) ceEs

Parameterize using features:
value(b) = w ' f(b)

value(c) = w' f(c)
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score(s) = w ' f(s)
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Linear prediction:

score(s) = w ' f(s)

Feature function factors:

fs)= > fb)+ > [flo)

beB(s) ceESs
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Features

Bigram Features f (D)

COUNT:
STOP:
POSITION:

CONJ:

BIAS:

Bucketed document counts

Stop word indicators

First document position
indicators

All two- and three-way
conjunctions of above

Always one

Cut Features f(c)
COORD: Coordinated phrase, four
versions: NP, VB, S, SBAR

S-ADJUNCT: Adjunct to matrix verb,
four versions: CC, PP,

ADVP SBAR
REL-C: Relative clause indicator
ATTR-C: Attribution clause indicator

ATTR-PP: PP attribution indicator
TEMP-PP: Temporal PP indicator
TEMP-NP Temporal NP indicator
BIAS: Always one
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Lindsay Lohan pleaded not guilty
Mednesday to felony grand theft
of a 2,500 necklace, a—ease—that
-coutdreturn—the—troubled-starlet
Saying it appeared that Lohan ha
violated her probation in a 2007
drunken driving case the judge
set bail at $40,000 and—warned
that—f—eohan—was—aceused—eof
breaking—thelaw—while—free—he
The Mean Girls star is due back
in court on Feb. 23 an-important
te-end-the-case—earhx
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TAC 2009: 44 Document Collections

Maximize Gold
Recall

Intermediate

Extraction
!\ J / Mechanical Turk
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min  |jw||3
w

S.t. for all possible guess summaries:

score of gold exceeds score of guess by loss
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Structured SVM Training:

min | [w|z + ¢
w

S.t. for all possible guess summaries:

w' f(S*) —w' f(S) > loss(S* S)— &

--------------

End-to-end ‘summarization
quality
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Structured SVM Training:

min | [w|z + ¢

w

== == e s e s s s e .. e . .. .. . .S eSS e e e e e e e e e e e e e e === \

S.t. | for all possible guess summaries:

Exponentially many constraints!
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