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Abstract

We present a generative probabilistic
model, inspired by historical printing pro-
cesses, for transcribing images of docu-
ments from the printing press era. By
jointly modeling the text of the docu-
ment and the noisy (but regular) process
of rendering glyphs, our unsupervised sys-
tem is able to decipher font structure and
more accurately transcribe images into
text. Overall, our system substantially out-
performs state-of-the-art solutions for this
task, achieving a 31% relative reduction
in word error rate over the leading com-
mercial system for historical transcription,
and a 47% relative reduction over Tesser-
act, Google’s open source OCR system.

1 Introduction

Standard techniques for transcribing modern doc-
uments do not work well on historical ones. For
example, even state-of-the-art OCR systems pro-
duce word error rates of over 50% on the docu-
ments shown in Figure 1. Unsurprisingly, such er-
ror rates are too high for many research projects
(Arlitsch and Herbert, 2004; Shoemaker, 2005;
Holley, 2010). We present a new, generative
model specialized to transcribing printing-press
era documents. Our model is inspired by the un-
derlying printing processes and is designed to cap-
ture the primary sources of variation and noise.

One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
are unknown. Some differences between fonts are
minor, reflecting small variations in font design.
Others are more severe, like the presence of the
archaic long s character before 1804. To address
the general problem of unknown fonts, our model

(a)

(b)

(c)
Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).
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learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
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Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
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Old Bailey, 1725:

Old Bailey, 1875:

Trove, 1883:

Trove, 1823:

(a)
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Figure 6: Portions of several documents from our test set rep-
resenting a range of difficulties are displayed. On document
(a), which exhibits noisy typesetting, our system achieves a
word error rate (WER) of 25.2. Document (b) is cleaner in
comparison, and on it we achieve a WER of 15.4. On doc-
ument (c), which is also relatively clean, we achieve a WER
of 12.5. On document (d), which is severely degraded, we
achieve a WER of 70.0.

5 Data

We perform experiments on two historical datasets
consisting of images of documents printed be-
tween 1700 and 1900 in England and Australia.
Examples from both datasets are displayed in Fig-
ure 6.

5.1 Old Bailey

The first dataset comes from a large set of im-
ages of the proceedings of the Old Bailey, a crimi-
nal court in London, England (Shoemaker, 2005).
The Old Bailey curatorial effort, after deciding
that current OCR systems do not adequately han-
dle 18th century fonts, manually transcribed the

documents into text. We will use these manual
transcriptions to evaluate the output of our system.
From the Old Bailey proceedings, we extracted a
set of 20 images, each consisting of 30 lines of
text to use as our first test set. We picked 20 doc-
uments, printed in consecutive decades. The first
document is from 1715 and the last is from 1905.
We choose the first document in each of the corre-
sponding years, choose a random page in the doc-
ument, and extracted an image of the first 30 con-
secutive lines of text consisting of full sentences.5

The ten documents in the Old Bailey dataset that
were printed before 1810 use the long s glyph,
while the remaining ten do not.

5.2 Trove
Our second dataset is taken from a collection of
digitized Australian newspapers that were printed
between the years of 1803 and 1954. This col-
lection is called Trove, and is maintained by the
the National Library of Australia (Holley, 2010).
We extracted ten images from this collection in the
same way that we extracted images from Old Bai-
ley, but starting from the year 1803. We manually
produced our own gold annotations for these ten
images. Only the first document of Trove uses the
long s glyph.

5.3 Pre-processing
Many of the images in historical collections are
bitonal (binary) as a result of how they were cap-
tured on microfilm for storage in the 1980s (Arl-
itsch and Herbert, 2004). This is part of the reason
our model is designed to work directly with bi-
narized images. For consistency, we binarized the
images in our test sets that were not already binary
by thresholding pixel values.

Our model requires that the image be pre-
segmented into lines of text. We automatically
segment lines by training an HSMM over rows of
pixels. After the lines are segmented, each line
is resampled so that its vertical resolution is 30
pixels. The line extraction process also identifies
pixels that are not located in central text regions,
and are part of large connected components of ink,
spanning multiple lines. The values of such pixels
are treated as unobserved in the model since, more
often than not, they are part of ink blotches.

5This ruled out portions of the document with extreme
structural abnormalities, like title pages and lists. These
might be interesting to model, but are not within the scope
of this paper.
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We choose the first document in each of the corre-
sponding years, choose a random page in the doc-
ument, and extracted an image of the first 30 con-
secutive lines of text consisting of full sentences.5

The ten documents in the Old Bailey dataset that
were printed before 1810 use the long s glyph,
while the remaining ten do not.

5.2 Trove
Our second dataset is taken from a collection of
digitized Australian newspapers that were printed
between the years of 1803 and 1954. This col-
lection is called Trove, and is maintained by the
the National Library of Australia (Holley, 2010).
We extracted ten images from this collection in the
same way that we extracted images from Old Bai-
ley, but starting from the year 1803. We manually
produced our own gold annotations for these ten
images. Only the first document of Trove uses the
long s glyph.

5.3 Pre-processing
Many of the images in historical collections are
bitonal (binary) as a result of how they were cap-
tured on microfilm for storage in the 1980s (Arl-
itsch and Herbert, 2004). This is part of the reason
our model is designed to work directly with bi-
narized images. For consistency, we binarized the
images in our test sets that were not already binary
by thresholding pixel values.

Our model requires that the image be pre-
segmented into lines of text. We automatically
segment lines by training an HSMM over rows of
pixels. After the lines are segmented, each line
is resampled so that its vertical resolution is 30
pixels. The line extraction process also identifies
pixels that are not located in central text regions,
and are part of large connected components of ink,
spanning multiple lines. The values of such pixels
are treated as unobserved in the model since, more
often than not, they are part of ink blotches.

5This ruled out portions of the document with extreme
structural abnormalities, like title pages and lists. These
might be interesting to model, but are not within the scope
of this paper.
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is resampled so that its vertical resolution is 30
pixels. The line extraction process also identifies
pixels that are not located in central text regions,
and are part of large connected components of ink,
spanning multiple lines. The values of such pixels
are treated as unobserved in the model since, more
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Abstract

We present a generative probabilistic
model, inspired by historical printing pro-
cesses, for transcribing images of docu-
ments from the printing press era. By
jointly modeling the text of the docu-
ment and the noisy (but regular) process
of rendering glyphs, our unsupervised sys-
tem is able to decipher font structure and
more accurately transcribe images into
text. Overall, our system substantially out-
performs state-of-the-art solutions for this
task, achieving a 31% relative reduction
in word error rate over the leading com-
mercial system for historical transcription,
and a 47% relative reduction over Tesser-
act, Google’s open source OCR system.

1 Introduction

Standard techniques for transcribing modern doc-
uments do not work well on historical ones. For
example, even state-of-the-art OCR systems pro-
duce word error rates of over 50% on the docu-
ments shown in Figure 1. Unsurprisingly, such er-
ror rates are too high for many research projects
(Arlitsch and Herbert, 2004; Shoemaker, 2005;
Holley, 2010). We present a new, generative
model specialized to transcribing printing-press
era documents. Our model is inspired by the un-
derlying printing processes and is designed to cap-
ture the primary sources of variation and noise.

One key challenge is that the fonts used in his-
torical documents are not standard (Shoemaker,
2005). For example, consider Figure 1a. The fonts
are not irregular like handwriting – each occur-
rence of a given character type, e.g. a, will use the
same underlying glyph. However, the exact glyphs
are unknown. Some differences between fonts are
minor, reflecting small variations in font design.
Others are more severe, like the presence of the
archaic long s character before 1804. To address
the general problem of unknown fonts, our model

(a)

(b)

(c)
Figure 1: Portions of historical documents with (a) unknown
font, (b) uneven baseline, and (c) over-inking.

learns the font in an unsupervised fashion. Font
shape and character segmentation are tightly cou-
pled, and so they are modeled jointly.

A second challenge with historical data is that
the early typesetting process was noisy. Hand-
carved blocks were somewhat uneven and often
failed to sit evenly on the mechanical baseline.
Figure 1b shows an example of the text’s baseline
moving up and down, with varying gaps between
characters. To deal with these phenomena, our
model incorporates random variables that specifi-
cally describe variations in vertical offset and hor-
izontal spacing.

A third challenge is that the actual inking was
also noisy. For example, in Figure 1c some charac-
ters are thick from over-inking while others are ob-
scured by ink bleeds. To be robust to such render-
ing irregularities, our model captures both inking
levels and pixel-level noise. Because the model
is generative, we can also treat areas that are ob-
scured by larger ink blotches as unobserved, and
let the model predict the obscured text based on
visual and linguistic context.

Our system, which we call Ocular, operates by
fitting the model to each document in an unsuper-
vised fashion. The system outperforms state-of-
the-art baselines, giving a 47% relative error re-
duction over Google’s open source Tesseract sys-
tem, and giving a 31% relative error reduction over
ABBYY’s commercial FineReader system, which
has been used in large-scale historical transcrip-
tion projects (Holley, 2010).
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Over-inked

It appeared that the Prisoner was veryE :

X :

Wandering baseline Historical font

Figure 2: An example image from a historical document (X)
and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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2 Related Work
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of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
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Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
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P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
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We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
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2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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and its transcription (E).

2 Related Work

Relatively little prior work has built models specif-
ically for transcribing historical documents. Some
of the challenges involved have been addressed
(Ho and Nagy, 2000; Huang et al., 2006; Kae and
Learned-Miller, 2009), but not in a way targeted
to documents from the printing press era. For ex-
ample, some approaches have learned fonts in an
unsupervised fashion but require pre-segmentation
of the image into character or word regions (Ho
and Nagy, 2000; Huang et al., 2006), which is not
feasible for noisy historical documents. Kae and
Learned-Miller (2009) jointly learn the font and
image segmentation but do not outperform mod-
ern baselines.

Work that has directly addressed historical doc-
uments has done so using a pipelined approach,
and without fully integrating a strong language
model (Vamvakas et al., 2008; Kluzner et al.,
2009; Kae et al., 2010; Kluzner et al., 2011).
The most comparable work is that of Kopec and
Lomelin (1996) and Kopec et al. (2001). They
integrated typesetting models with language mod-
els, but did not model noise. In the NLP com-
munity, generative models have been developed
specifically for correcting outputs of OCR systems
(Kolak et al., 2003), but these do not deal directly
with images.

A closely related area of work is automatic de-
cipherment (Ravi and Knight, 2008; Snyder et al.,
2010; Ravi and Knight, 2011; Berg-Kirkpatrick
and Klein, 2011). The fundamental problem is
similar to our own: we are presented with a se-
quence of symbols, and we need to learn a corre-
spondence between symbols and letters. Our ap-
proach is also similar in that we use a strong lan-
guage model (in conjunction with the constraint
that the correspondence be regular) to learn the
correct mapping. However, the symbols are not
noisy in decipherment problems and in our prob-
lem we face a grid of pixels for which the segmen-
tation into symbols is unknown. In contrast, deci-
pherment typically deals only with discrete sym-
bols.

3 Model
Most historical documents have unknown fonts,
noisy typesetting layouts, and inconsistent ink lev-
els, usually simultaneously. For example, the por-
tion of the document shown in Figure 2 has all
three of these problems. Our model must handle
them jointly.

We take a generative modeling approach in-
spired by the overall structure of the historical
printing process. Our model generates images of
documents line by line; we present the generative
process for the image of a single line. Our pri-
mary random variables are E (the text) and X (the
pixels in an image of the line). Additionally, we
have a random variable T that specifies the layout
of the bounding boxes of the glyphs in the image,
and a random variable R that specifies aspects of
the inking and rendering process. The joint distri-
bution is:

P (E, T, R, X) =

P (E) [Language model]
· P (T |E) [Typesetting model]
· P (R) [Inking model]
· P (X|E, T, R) [Noise model]

We let capital letters denote vectors of concate-
nated random variables, and we denote the indi-
vidual random variables with lower-case letters.
For example, E represents the entire sequence of
text, while ei represents ith character in the se-
quence.

3.1 Language Model P (E)

Our language model, P (E), is a Kneser-Ney
smoothed character n-gram model (Kneser and
Ney, 1995). We generate printed lines of text
(rather than sentences) independently, without
generating an explicit stop character. This means
that, formally, the model must separately generate
the character length of each line. We choose not to
bias the model towards longer or shorter character
sequences and let the line length m be drawn uni-
formly at random from the positive integers less
than some large constant M.1 When i < 1, let ei
denote a line-initial null character. We can now
write:

P (E) = P (m) ·
mY

i=1

P (ei|ei�1, . . . , ei�n)

1In particular, we do not use the kind of “word bonus”
common to statistical machine translation models.
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• Google Tesseract

• ABBYY FineReader 11

Baselines

• New York Times

34M words NYT Gigaword

• Old Bailey

32M words manually 
transcribed

Language modelsTest data
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Transcription 

and Ch’: priftmer anhc bar. Jacob Lazarus and his

IHP1  uh:  prifoner.  were  both  together  when!

rcccivcd  lhczn.  I  fold  eievén  pair  of  than

for xiirce guincas, and dclivcrcd the rcll'l:.in-

d:r  hack  lo  :11: prifuner. 1 fold ftvcn pairof

filk  to Mark Simpcr :   nncpuir  of  mixcd. and.

mo  pair  of  Ifircad  to  lhz:  foolnun,  and on:

pair of zhrzad to lh: barber. '

  Q: What is the foolmarfs name?

  Fraum Mgfzr.   I dun’: know.

  Hairy Hzrvir. l was flandingar the Camp

Icr  waizin  far  the  thcrrilfs  ufliceruo employ

in: :  Mo 3‘:  daughter  came  for  me  to  0 am!

take  the  prifoncr.  1  Wm! to  |hc  Old  aailcy

Google Tesseract



Transcription 

and Ch’: priftmer anhc bar. Jacob Lazarus and his

IHP1  uh:  prifoner.  were  both  together  when!

rcccivcd  lhczn.  I  fold  eievén  pair  of  than

for xiirce guincas, and dclivcrcd the rcll'l:.in-

d:r  hack  lo  :11: prifuner. 1 fold ftvcn pairof

filk  to Mark Simpcr :   nncpuir  of  mixcd. and.

mo  pair  of  Ifircad  to  lhz:  foolnun,  and on:

pair of zhrzad to lh: barber. '

  Q: What is the foolmarfs name?

  Fraum Mgfzr.   I dun’: know.

  Hairy Hzrvir. l was flandingar the Camp

Icr  waizin  far  the  thcrrilfs  ufliceruo employ

in: :  Mo 3‘:  daughter  came  for  me  to  0 am!

take  the  prifoncr.  1  Wm! to  |hc  Old  aailcy

Google Tesseract

the prisoner at the bar. Jacob Lazarus and his

wife, the prisoners were both together when I

received them. I sold eleven pair of them

for three guineas, and delivered the remain-

der back to the prisoner. I sold, seven pair of

silk to Mark Simpert one pair of mixed, and

two pair of thread to the footman, and one

pair of thread to the barber,

  Ms. What in the footman's name?

  Franco Asyut,  I don't know-

  Nearly Norris. I was standing at the Comp-

ter waiting for the sherrill's officers to employ

me a Moses's daughter came for me to go and

take the prisoner. I went to the Old Bailey

Ocular
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Conclusion

• Unsupervised font learning yields state-of-the-art 
results on documents where font is unknown

• Generatively modeling sources of noise specific to 
printing-press era documents is effective

• Ocular available as a downloadable tool: 
nlp.cs.berkeley.edu/ocular.shtml



Conclusion

Thanks!


