Natural Language Processing

Language Modeling III

Dan Klein – UC Berkeley

Improving on N-Grams?

N-grams don't combine multiple sources of evidence well

P(construction | After the demolition was completed, the)

- Here:
 - "the" gives syntactic constraint
 - "demolition" gives semantic constraint
 - Unlikely the interaction between these two has been densely observed in this specific n-gram
- We'd like a model that can be more statistically efficient

Maximum Entropy Models

Some Definitions

INPUTS

 \mathbf{X}_i

close the

CANDIDATE

SET

 $\mathcal{Y}(\mathbf{x})$

{door, table, ...}

CANDIDATES

table

TRUE OUTPUTS \mathbf{y}_i^*

door

FEATURE VECTORS

f(x, y) $[0\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0]$ x_{-1} ="the" \wedge y="door"

"close" in $x \wedge y$ ="door"

 x_{-1} ="the" \wedge y="table"

y occurs in x

More Features, Less Interaction

$$x = closing the ____, y = doors$$

■ N-Grams
$$x_{-1}$$
="the" \wedge y="doors"

• Skips
$$x_{-2}$$
="closing" \land y="doors"

• Lemmas
$$x_{-2}$$
="close" \wedge y="door"

Caching y occurs in x

Data: Feature Impact

Features	Train Perplexity	Test Perplexity
3 gram indicators	241	350
1-3 grams	126	172
1-3 grams + skips	101	164

Exponential Form

Weights w

Features f(x, y)

- Linear score $\mathbf{w}^{\top}\mathbf{f}(\mathbf{x},\mathbf{y})$
- Unnormalized probability

$$P(y|x, w) \propto exp(w^{T}f(x, y))$$

Probability

$$P(\mathbf{y}|\mathbf{x},\mathbf{w}) = \frac{\exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{x},\mathbf{y}))}{\sum_{\mathbf{y}'} \exp(\mathbf{w}^{\top}\mathbf{f}(\mathbf{x},\mathbf{y}'))}$$

Likelihood Objective

Model form:

$$P(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{y}))}{\sum_{\mathbf{y}'} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{y}'))}$$

Likelihood of training data

$$L(\mathbf{w}) = \log \prod_{i} P(\mathbf{y}_{i}^{*} | \mathbf{x}_{i}, \mathbf{w}) = \sum_{i} \log \left(\frac{\exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}))} \right)$$

$$= \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}_{i}(\mathbf{y})) \right)$$

Training

History of Training

 1990's: Specialized methods (e.g. iterative scaling)

 2000's: General-purpose methods (e.g. conjugate gradient)

 2010's: Online methods (e.g. stochastic gradient)

What Does LL Look Like?

Example

- Data: xxxy
- Two outcomes, x and y
- One indicator for each
- Likelihood

$$\log \left(\left(\frac{e^x}{e^x + e^y} \right)^3 \times \frac{e^y}{e^x + e^y} \right)$$

Convex Optimization

The maxent objective is an unconstrained convex problem

One optimal value*, gradients point the way

Gradients

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y})) \right)$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \sum_{i} \left(\mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i}) \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}) \right)$$

Count of features under target labels

Expected count of features under model predicted label distribution

Gradient Ascent

The maxent objective is an unconstrained optimization problem

- Gradient Ascent
 - Basic idea: move uphill from current guess
 - Gradient ascent / descent follows the gradient incrementally
 - At local optimum, derivative vector is zero
 - Will converge if step sizes are small enough, but not efficient
 - All we need is to be able to evaluate the function and its derivative

(Quasi)-Newton Methods

 2nd-Order methods: repeatedly create a quadratic approximation and solve it

E.g. LBFGS, which tracks derivative to approximate (inverse)
Hessian

Regularization

Regularization Methods

Early stopping

■ L2: LL(w)-|w|₂²

■ L1: LL(w)-|w|

Regularization Effects

Early stopping: don't do this

L2: weights stay small but non-zero

- L1: many weights driven to zero
 - Good for sparsity
 - Usually bad for accuracy for NLP

Scaling

Why is Scaling Hard?

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y})) \right)$$

Big normalization terms

Lots of data points

Hierarchical Prediction

Hierarchical prediction / softmax [Mikolov et al 2013]

- Noise-Contrastive Estimation [Mnih, 2013]
- Self-Normalization [Devlin, 2014]

Image: ayende.com

Stochastic Gradient

View the gradient as an average over data points

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i} \left(\mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_{i}) \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}) \right)$$

Stochastic gradient: take a step each example (or mini-batch)

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{1}{1} \left(\mathbf{f}(\mathbf{x}_i, \mathbf{y}_i^*) - \sum_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}_i) \mathbf{f}(\mathbf{x}_i, \mathbf{y}) \right)$$

Substantial improvements exist, e.g. AdaGrad (Duchi, 11)

Other Methods

Neural Net LMs

Image: (Bengio et al, 03)

Neural vs Maxent

Maxent LM

$$P(y|x, w) \propto exp(w^{T}f(x, y))$$

Neural Net LM

$$P(y|x, w) \propto \exp(B\sigma(Af(x)))$$

 σ nonlinear, e.g. tanh

Mixed Interpolation

- But can't we just interpolate:
 - P(w|most recent words)
 - P(w|skip contexts)
 - P(w|caching)
 - **-** ...
- Yes, and people do (well, did)
 - But additive combination tends to flatten distributions, not zero out candidates

Decision Trees / Forests

Decision trees?

- Good for non-linear decision problems
- Random forests can improve further [Xu and Jelinek, 2004]
- Paths to leaves basically learn conjunctions
- General contrast between DTs and linear models