
Natural Language Processing

Language Modeling III

Dan Klein – UC Berkeley

Improving on N-Grams?

� N-grams don’t combine multiple sources of evidence well

� Here:

� “the” gives syntactic constraint

� “demolition” gives semantic constraint

� Unlikely the interaction between these two has been densely

observed in this specific n-gram

� We’d like a model that can be more statistically efficient

P(construction | After the demolition was completed, the)

Maximum Entropy Models

Some Definitions

INPUTS

CANDIDATES

FEATURE

VECTORS

close the ____

CANDIDATE

SET

y occurs in x

“close” in x ∧ y=“door”
x-1=“the” ∧ y=“door”

TRUE

OUTPUTS

{door, table, …}

table

door

x-1=“the” ∧ y=“table”

More Features, Less Interaction

� N-Grams

� Skips

� Lemmas

� Caching

x = closing the ____, y = doors

x-1=“the” ∧ y=“doors”

x-2=“closing” ∧ y=“doors”

x-2=“close” ∧ y=“door”

y occurs in x

Data: Feature Impact

Features Train Perplexity Test Perplexity

3 gram indicators 241 350

1-3 grams 126 172

1-3 grams + skips 101 164

Exponential Form

� Weights Features

� Linear score

� Unnormalized probability

� Probability

Likelihood Objective

� Model form:

� Likelihood of training data

Training

History of Training

� 1990’s: Specialized methods (e.g. iterative

scaling)

� 2000’s: General-purpose methods (e.g.

conjugate gradient)

� 2010’s: Online methods (e.g. stochastic

gradient)

What Does LL Look Like?

� Example

� Data: xxxy

� Two outcomes, x and y

� One indicator for each

� Likelihood

Convex Optimization

� The maxent objective is an unconstrained convex problem

� One optimal value*, gradients point the way

Gradients

Count of features under

target labels

Expected count of features

under model predicted label

distribution

Gradient Ascent

� The maxent objective is an unconstrained optimization
problem

� Gradient Ascent
� Basic idea: move uphill from current guess

� Gradient ascent / descent follows the gradient incrementally

� At local optimum, derivative vector is zero

� Will converge if step sizes are small enough, but not efficient

� All we need is to be able to evaluate the function and its derivative

(Quasi)-Newton Methods

� 2nd-Order methods: repeatedly create a quadratic

approximation and solve it

� E.g. LBFGS, which tracks derivative to approximate (inverse)

Hessian

Regularization

Regularization Methods

� Early stopping

� L2: LL(w)-|w|2
2

� L1: LL(w)-|w|

Regularization Effects

� Early stopping: don’t do this

� L2: weights stay small but non-zero

� L1: many weights driven to zero

� Good for sparsity

� Usually bad for accuracy for NLP

Scaling

Why is Scaling Hard?

� Big normalization terms

� Lots of data points

Hierarchical Prediction

� Hierarchical prediction / softmax [Mikolov et al 2013]

� Noise-Contrastive Estimation [Mnih, 2013]

� Self-Normalization [Devlin, 2014]

Image: ayende.com

Stochastic Gradient

� View the gradient as an average over data points

� Stochastic gradient: take a step each example (or mini-batch)

� Substantial improvements exist, e.g. AdaGrad (Duchi, 11)

Other Methods

Neural Net LMs

Image: (Bengio et al, 03)

Neural vs Maxent

� Maxent LM

� Neural Net LM

nonlinear, e.g. tanh

Mixed Interpolation

� But can’t we just interpolate:

� P(w|most recent words)

� P(w|skip contexts)

� P(w|caching)

� …

� Yes, and people do (well, did)

� But additive combination tends to flatten

distributions, not zero out candidates

Decision Trees / Forests

� Decision trees?

� Good for non-linear decision problems

� Random forests can improve further [Xu and Jelinek, 2004]

� Paths to leaves basically learn conjunctions

� General contrast between DTs and linear models

Prev Word?

…

last verb?

