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Improving on N-Grams?

= N-grams don’t combine multiple sources of evidence well

P(construction | After the demolition was completed, the)

= Here:
= “the” gives syntactic constraint
= “demolition” gives semantic constraint

= Unlikely the interaction between these two has been densely
observed in this specific n-gram

= We'd like a model that can be more statistically efficient

Maximum Entropy Models

Some Definitions

INPUTS Xi close the
CANDIDATE
SET V(x) {door, table, ..}
CANDIDATES y table
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“close” in x A y="door”
X ;="the” A y="door”

occurs in x
X ,="the” A y="table” 4

More Features, Less Interaction

x = closing the , ¥ =doors

N-Grams  x_;=“the” A y="doors”
Skips x_,="closing” A y="doors”
Lemmas x_,=“close” A y="door”

Caching  y occurs in x

Data: Feature Impact

m Train Perplexity Test Perplexity

3 gram indicators 241 350
1-3 grams 126 172
1-3 grams + skips 101 164




Exponential Form

" Weights w Features fix, ¥
= Linear score w ' [(x,¥)

= Unnormalized probability
Plv|x, w) x exp(w ' f{x, %))
= Probability
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Likelihood Objective

= Model form:
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Training

History of Training

= 1990’s: Specialized methods (e.g. iterative
scaling)

= 2000’s: General-purpose methods (e.g.
conjugate gradient)

= 2010’s: Online methods (e.g. stochastic
gradient)

What Does LL Look Like?

= Example
= Data: xxxy i
= Two outcomes, x and y
= One indicator for each
= Likelihood
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Convex Optimization

= The maxent objective is an unconstrained convex problem
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= One optimal value*, gradients point the way




Gradients
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target labels under model predicted label
distribution

Gradient Ascent

= The maxent objective is an unconstrained optimization
problem
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= Gradient Ascent
= Basic idea: move uphill from current guess
= Gradient ascent / descent follows the gradient incrementally
= At local optimum, derivative vector is zero
= Will converge if step sizes are small enough, but not efficient
= Allwe need is to be able to evaluate the function and its derivative

(Quasi)-Newton Methods

= 2nd-Order methods: repeatedly create a quadratic
approximation and solve it

L(w)
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= E.g. LBFGS, which tracks derivative to approximate (inverse)
Hessian

Regularization

Regularization Methods

F

= Early stopping

= L2: LL(w)-|w],2 il

= L1: LL(w)-|w] ——

Regularization Effects

= Early stopping: don’t do this

= |2: weights stay small but non-zero

= L1: many weights driven to zero
= Good for sparsity
= Usually bad for accuracy for NLP




Scaling

Why is Scaling Hard?
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= Big normalization terms

= Lots of data points

Hierarchical Prediction

= Noise-Contrastive Estimation [Mnih, 2013]

= Self-Normalization [Devlin, 2014]

Image: ayende.com

Stochastic Gradient

= View the gradient as an average over data points
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= Stochastic gradient: take a step each example (or mini-batch)
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= Substantial improvements exist, e.g. AdaGrad (Duchi, 11)

Other Methods

Neural Net LMs
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Image: (Bengio et al, 03)




Neural vs Maxent

= Maxent LM
Piv|x, w) o explw ' fx ¥))
= Neural Net LM
Fly|x, w) x exp (Bo (Af(x)))

o nonlinear, e.g. tanh

AN Mixed Interpolation

= But can’t we just interpolate:
= P(w|most recent words)
= P(w|skip contexts)
= P(w|caching)

= Yes, and people do (well, did)

= But additive combination tends to flatten
distributions, not zero out candidates

last verb?

= Decision trees?

= Good for non-linear decision problems

= Random forests can improve further [Xu and Jelinek, 2004]
= Paths to leaves basically learn conjunctions

= General contrast between DTs and linear models




