Natural Language Processing

Language Modeling III

Dan Klein – UC Berkeley

Improving on N-Grams?

• N-grams don't combine multiple sources of evidence well

P(construction | After the demolition was completed, the)

- Here:
 - "the" gives syntactic constraint
 - "demolition" gives semantic constraint
 - Unlikely the interaction between these two has been densely observed in this specific n-gram
- We'd like a model that can be more statistically efficient

Maximum Entropy Models

More Features, Less Interaction

 $x = closing the ____, y = doors$

■ N-Grams x_{-1} ="the" \wedge y="doors"

• Skips x_{-2} ="closing" \wedge y="doors"

■ Lemmas x_{-2} ="close" \wedge y="door"

Caching y occurs in x

Features	Train Perplexity	Test Perplexity
3 gram indicators	241	350
1-3 grams	126	172
1-3 grams + skips	101	164

Exponential Form

- Weights w
- Features f(x, y)
- Linear score $\mathbf{w}^{\top}\mathbf{f}(\mathbf{x},\mathbf{y})$
- Unnormalized probability

$$P(y|x, w) \propto exp(w^T f(x, y))$$

Probability

$$P(y|x,w) = \frac{\exp(w^{\top}f(x,y))}{\sum_{y'}\exp(w^{\top}f(x,y'))}$$

Likelihood Objective

Model form:

$$\mathsf{P}(y|x,w) = \frac{\mathsf{exp}(w^\top f(y))}{\sum_{y'} \mathsf{exp}(w^\top f(y'))}$$

Likelihood of training data

$$L(\mathbf{w}) = \log \prod_i \mathsf{P}(\mathbf{y}_i^* | \mathbf{x}_i, \mathbf{w}) = \sum_i \log \left(\frac{\exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}))} \right)$$

$$= \sum_i \left(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y}_i^*) - \log \sum_{\mathbf{y}} \exp(\mathbf{w}^\top \mathbf{f}_i(\mathbf{y})) \right)$$

Training

History of Training

- 1990's: Specialized methods (e.g. iterative scaling)
- 2000's: General-purpose methods (e.g. conjugate gradient)
- 2010's: Online methods (e.g. stochastic gradient)

What Does LL Look Like?

- Example
 - Data: xxxy
 - Two outcomes, x and y
 - One indicator for each
 - Likelihood

$$\log_1 \left(\left(\frac{\sigma^2}{\sigma^2 + \sigma^2} \right)^2 \times \frac{\sigma^2}{\sigma^2 + \sigma^2} \right)$$

Convex Optimization

• The maxent objective is an unconstrained convex problem

One optimal value*, gradients point the way

Scaling

Why is Scaling Hard?

$$L(\mathbf{w}) = \sum_{i} \left(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \log \sum_{i} \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}_{i}, \mathbf{y})) \right)$$

- Big normalization terms
- Lots of data points

Hierarchical Prediction

Hierarchical prediction / softmax [Mikolov et al 2013]

- Noise-Contrastive Estimation [Mnih, 2013]
- Self-Normalization [Devlin, 2014]

Image: ayende.coi

4

Stochastic Gradient

• View the gradient as an average over data points

$$\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \sum_{i} \left[f(\mathbf{x}_{i}, \mathbf{y}_{i}^{*}) - \sum_{i} P(\mathbf{y}|\mathbf{x}_{i}) f(\mathbf{x}_{i}, \mathbf{y}) \right]$$

• Stochastic gradient: take a step each example (or mini-batch)

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} \approx \frac{1}{1} \left(f(\mathbf{x}_i, \mathbf{y}_i^*) - \sum_{ij} P(\mathbf{y}|\mathbf{x}_i) f(\mathbf{x}_i, \mathbf{y}) \right)$$

• Substantial improvements exist, e.g. AdaGrad (Duchi, 11)

Other Methods

Neural vs Maxent

Maxent LM

$$\mathsf{P}(y|x,w) \propto \mathsf{exp}(w^{\top}f(x,y))$$

Neural Net LM

$$P(y|x, w) \propto \exp(B\sigma(Af(x)))$$

 σ nonlinear, e.g. tanh

Mixed Interpolation

- But can't we just interpolate:
 - P(w|most recent words)
 - P(w|skip contexts)
 - P(w|caching)
 - ..
- Yes, and people do (well, did)
 - But additive combination tends to flatten distributions, not zero out candidates

Decision Trees / Forests

- Decision trees?
 - Good for non-linear decision problems
 - Random forests can improve further [Xu and Jelinek, 2004]
 - Paths to leaves basically learn conjunctions
 - General contrast between DTs and linear models