Natural Language Processing

The Speech Signal

Dan Klein – UC Berkeley

Speech in a Slide

Frequency gives pitch; amplitude gives volume

Frequencies at each time slice processed into observation vectors

Articulation

Articulatory System

Sagittal section of the vocal tract (Techmer 1880)

Text from Ohala, Sept 2001, from Sharon Rose slide

Space of Phonemes

	LABIAL		CORONAL				DORSAL			RADIO	LARYNGEAL	
	Bilabial	Labio- dental	Dental	Alveolar	Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Epi- glottal	Glottal
Nasal	m	m		n		η	ŋ	ŋ	N			
Plosive	рb	фф		t d		t d	c j	k g	q G		?	7
Fricative	φβ	f v	θð	s z	∫ 3	ફ દ્ય	çj	хγ	χR	ħ ç	2 H	h h
Approximant		υ		J		ન	j	щ	Б	1	1	11 11
Trill	В			r					R		R	
Tap, Flap		V		ſ		r						
Lateral fricative				łЬ		1	X	Ł				
Lateral approximant				1		l	λ	L				
Lateral flap				J		1						

Standard international phonetic alphabet (IPA) chart of consonants

Place

Places of Articulation

Labial place

Coronal place

Dorsal Place

Space of Phonemes

	LABIAL		CORONAL				DORSAL			RADIO	LARYNGEAL	
	Bilabial	Labio- dental	Dental		Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Epi- glottal	Glottal
Nasal	m	m		n		η	n	ŋ	N			
Plosive	рb	фф		t d		t d	c j	k g	q G		?	7
Fricative	φβ	f v	θð	S Z	∫ 3	şζ	çj	хγ	χR	ħ ç	2 H	h h
Approximant		υ		J		ન	j	щ	Ь	1	1	11 11
Trill	В			r					R		R	
Tap, Flap		V		ſ		r						
Lateral fricative				łЬ		1	X	Ł				
Lateral approximant				1	-		λ	L				
Lateral flap				J		1						

Standard international phonetic alphabet (IPA) chart of consonants

Manner

Manner of Articulation

- In addition to varying by place, sounds vary by manner
- Stop: complete closure of articulators, no air escapes via mouth
 - Oral stop: palate is raised (p, t, k, b, d, g)
 - Nasal stop: oral closure, but palate is lowered (m, n, ng)
- Fricatives: substantial closure, turbulent: (f, v, s, z)
- Approximants: slight closure, sonorant: (I, r, w)
- Vowels: no closure, sonorant: (i, e, a)

Space of Phonemes

	LABIAL		CORONAL				DORSAL			RADIO	LARYNGEAL	
	Bilabial	Labio- dental	Dental		Palato- alveolar	Retroflex	Palatal	Velar	Uvular	Pharyngeal	Epi- glottal	Glottal
Nasal	m	m		n		η	n	ŋ	N			
Plosive	рb	фф		t d		t d	c j	k g	q G		?	7
Fricative	φβ	f v	θð	S Z	∫ 3	şζ	çj	хγ	χR	ħ ç	2 H	h h
Approximant		υ		J		ન	j	щ	Ь	1	1	11 11
Trill	В			r					R		R	
Tap, Flap		V		ſ		r						
Lateral fricative				łЬ		1	X	Ł				
Lateral approximant				1	-		λ	L				
Lateral flap				J		1						

Standard international phonetic alphabet (IPA) chart of consonants

Vowels

Vowel Space

Vowels at right & left of bullets are rounded & unrounded.

Acoustics

"She just had a baby"

What can we learn from a wavefile?

- No gaps between words (!)
- Vowels are voiced, long, loud
- Length in time = length in space in waveform picture
- Voicing: regular peaks in amplitude
- When stops closed: no peaks, silence
- Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
- Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])
- Fricatives like [sh]: intense irregular pattern; see .33 to .46

Time-Domain Information

Simple Periodic Waves of Sound

- Y axis: Amplitude = amount of air pressure at that point in time
 - Zero is normal air pressure, negative is rarefaction
- X axis: Time.
- Frequency = number of cycles per second.
- 20 cycles in .02 seconds = 1000 cycles/second = 1000 Hz

Complex Waves: 100Hz+1000Hz

Spectrum

Frequency components (100 and 1000 Hz) on x-axis

Part of [ae] waveform from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in .036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Spectrum of an Actual Soundwave

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Source / Channel

Why these Peaks?

Articulation process:

- The vocal cord vibrations create harmonics
- The mouth is an amplifier
- Depending on shape of mouth, some harmonics are amplified more than others

Vowel [i] at increasing pitches

Figures from Ratree Wayland

Resonances of the Vocal Tract

The human vocal tract as an open tube:

- Air in a tube of a given length will tend to vibrate at resonance frequency of tube.
- Constraint: Pressure differential should be maximal at (closed) glottal end and minimal at (open) lip end.

From Sundberg

Computing the 3 Formants of Schwa

- Let the length of the tube be L
 - $F_1 = c/\lambda_1 = c/(4L) = 35,000/4*17.5 = 500Hz$
 - $F_2 = c/\lambda_2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz$
 - $F_3 = c/\lambda_3 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

From Mark

Seeing Formants: the Spectrogram

Vowel Space

Vowels at right & left of bullets are rounded & unrounded.

Spectrograms

How to Read Spectrograms

- [bab]: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- [dad]: first formant increases, but F2 and F3 slight fall
- [gag]: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

"She came back and started again"

Deriving Schwa

- Reminder of basic facts about sound waves
 - $f = c/\lambda$
 - c = speed of sound (approx 35,000 cm/sec)
 - A sound with λ =10 meters: f = 35 Hz (35,000/1000)
 - A sound with λ =2 centimeters: f = 17,500 Hz (35,000/2)

American English Vowel Space

Figures from Jennifer Venditti, H. T. Bunnell

Dialect Issues

- Speech varies from dialect to dialect (examples are American vs. British English)
 - Syntactic ("I could" vs. "I could do")
 - Lexical ("elevator" vs. "lift")
 - Phonological
 - Phonetic
- Mismatch between training and testing dialects can cause a large increase in error rate

