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The Noisy Channel Model
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Speech Recognition Architecture
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Feature Extraction




Digitizing Speech
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Frame Extraction

= Aframe (25 ms wide) extracted every 10 ms

Figure: Simon Arnfield




Mel Freq. Cepstral Coefficients

= Do FFT to get spectral information
= Like the spectrogram we saw earlier

=  Apply Mel scaling

= Models human ear; more sensitivity
in lower fregs

= Approx linear below 1kHz, log above,
equal samples above and below 1kHz

m  Plus discrete cosine transform

Mels scale
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Final Feature Vector

= 39 (real) features per 10 ms frame:
= 12 MFCC features

12 delta MFCC features

12 delta-delta MFCC features

1 (log) frame energy

1 delta (log) frame energy

1 delta-delta (log frame energy)

= So each frame is represented by a 39D vector




Emission Model




HMMs for Continuous Observations

Before: discrete set of observations
Now: feature vectors are real-valued

Solution 1: discretization

Solution 2: continuous emissions
= Gaussians
= Multivariate Gaussians
=  Mixtures of multivariate Gaussians

A state is progressively

= Context independent subphone (~3 per
phone)

= Context dependent phone (triphones)
= State tying of CD phone
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Vector Quantization

Codebook of 256

Idea: discretization
= Map MFCC vectors onto

I
|
discrete symbols L

Input Feature Vector (A
= Compute probabilities [
just by counting
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This i called vector compucto cocs L por e
qua ntization or VQ (A of best vector

Not used for ASR any

more T

But: useful to consider as
a starting point
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Gaussian Emissions

= VQ is insufficient for top-
guality ASR
= Hard to cover high- 308.3

dimensional space with
codebook

* Moves ambiguity from the 608.94
model to the preprocessing

F, (Hz)

" |nstead: assume the
possible values of the
observation vectors are

normally distributed. 1210

: 3040 2188 1337 485.3
= Represent the observation Fs (Hz)

likelihood function as a
Gaussian?

From bartus.org/akustyk
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/. Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

P(aln,0) = —b=exp (— 45

o

- P(X): P(x) is highest here at mean

P(x) is low here, far from mean
P(x)
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Multivariate Gaussians

= Instead of a single mean u and variance G2

P(aln,0) = —b=exp (— 45

" Vector of means u and covariance matrix 2

P(z|p, X) = Goysrepre exp (—5(z — p) T2z — p))

= Usually assume diagonal covariance (!)
= This isn’t very true for FFT features, but is less bad for MFCC features
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Gaussians: Size of X

u=[00] u=[00] u=[00]
> = > = 0.6 > =2l

As 2. becomes larger, Gaussian becomes more spread
out; as 2~ becomes smaller, Gaussian more
compressed

Text and figures from Andrew Ng
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Gaussians: Shape of X
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= As we increase the off diagonal entries, more correlation between

value of x and value of y

Text and figures from Andrew Ng
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But we're not there yet

= Single Gaussians may do a
bad job of modeling a
complex distribution in any
dimension

= Even worse for diagonal
covariances

= Solution: mixtures of
Gaussians
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From openlearn.open.ac.uk
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Mixtures of Gaussians

= Mixtures of Gaussians:

P(CBLLLZ, ZZ) — (27T)k/21|2i|1/2 exXp (—%(ZC _ :LLZ)TEz_l(:U o IMZ))

P(CE‘/L,E,C) — Zz C@P(ZI}“LZ-,Z?;)

From robots.ox.ac.uk http://www.itee.ug.edu.au/~comp4702
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GMMs

Summary: each state has an emission
distribution P(x|s) (likelihood function)
parameterized by:

= M mixture weights
= M mean vectors of dimensionality D

= Either M covariance matrices of DxD or M
Dx1 diagonal variance vectors

Like soft vector quantization after all

= Think of the mixture means as being
learned codebook entries

= Think of the Gaussian densities as a
learned codebook distance function

= Think of the mixture of Gaussians like a
multinomial over codes

= (Even more true given shared Gaussian
inventories, cf next week)
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State Model
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State Transition Diagrams

= Bayes Net: HMM as a Graphical Model

= State Transition Diagram: Markov Model as a Weighted FSA
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ASR Lexicon

Word model for "the"

-~ ©

Word model for " need"”

Word model for "on"
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Word model for "I

Figure:J & M
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Lexical State Structure

Word Model

Observation
Sequence
(spectral feature
vectors)

Figure:J & M

23



Adding an LM

B(W, | W)

P(W, [ W)

P(W, | W)

P(W, | W)

P(W, W)
P(W, | W)

@ Wy

P(W, | W)

P(W, w,)\

P(W, | W,)

Figure from Huang et al page 618
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State Space

= State space must include
= Current word (|V| on order of 20K+)
* |Index within current word (|L| on order of 5)

= Acoustic probabilities only depend on phone type
= E.g. P(x|lec[t]ure) = P(x|t)

" From a state sequence, can read a word sequence
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State Refinement
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Need to Use Subphones

Phone Model
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Figure:J & M
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A Word with Subphones

Figure:J & M
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Lots of Triphones

Possible triphones: 50x50x50=125,000

How many triphone types actually occur?

20K word WSIJ Task (from Bryan Pellom)

= Word internal models: need 14,300 triphones
= Cross word models: need 54,400 triphones

Need to generalize models, tie triphones
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State Tying / Clustering

= [Young, Odell, Woodland

1994] Initial set of untied states
= How do we decide which

triphones to cluster 1. Nasal?

together?

= Use phonetic features (or
‘broad phonetic classes’)
= Stop
= Nasal
= Fricative
= Sibilant
= Vowel
= |ateral

R-Liquid?

Tie states in each leaf node

Figure:J & M




State Space

= State space now includes
= Current word: |W| is order 20K
= Index in current word: |L| is order 5
= Subphone position: 3

= Acoustic model depends on clustered phone context
= But this doesn’t grow the state space
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Decoding
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Inference Tasks

Most likely word sequence:
d - ae - d

Most likely state sequence:
d,-d¢-d.-d,-aec-ae,-ae;-ae,-d,-d,-d;-d-d.

36



Viterbi Decoding

d)t(stast—l) = P($t|8t)P(8t|8t—1)

vi(8¢) = max @y (s, 51-1)vi-1(51-1)
t—1

Figure: Enrique Benimeli
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Figure: Enrique Benimeli




Emission Caching

= Problem: scoring all the P(x|s) values is too slow
= |dea: many states share tied emission models, so cache them

Word model for " need"”
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Prefix Trie Encodings

= Problem: many partial-word states are indistinguishable

= Solution: encode word production as a prefix trie (with
pushed weights)

= A specific instance of minimizing weighted FSAs [Mohri, 94]

Figure: Aubert, 02
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Beam Search

= Problem: trellis is too big to compute v(s) vectors

= |dea: most states are terrible, keep v(s) only for top states at

each time the ba.

the be.

s ~ the bi. a ~
the b.

the ba.
the ma.
the me. the be.
and then. the mi.
at then.
\_ ) then a. \_

then e.
then i.

the m.

the ma.

then a.

—

= |mportant: still dynamic programming; collapse equiv states
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LM Factoring

= Problem: Higher-order n-grams explode the state space

= (One) Solution:
= Factor state space into (word index, Im history)
= Score unigram prefix costs while inside a word
= Subtract unigram cost and add trigram cost once word is complete
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AN LM Reweighting

Noisy channel suggests
P(z|w)P(w)
In practice, want to boost LM
P(z|w)P(w)*
Also, good to have a “word bonus” to offset LM costs
P(z|w)P(w)*wl|’

These are both consequences of broken independence
assumptions in the model
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