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The Noisy Channel Model
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Acoustic model: HMMs over Language model:
word positions with mixtures Distributions over sequences
of Gaussians as emissions of words (sentences)
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Feature Extraction

Digitizing Speech
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Frame Extraction

= Aframe (25 ms wide) extracted every 10 ms
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Mel Freq. Cepstral Coefficients

Do FFT to get spectral information
= Like the spectrogram we saw earlier

Apply Mel scaling

= Models human ear; more sensitivity
in lower fregs
Approx linear below 1kHz, log above,
equal samples above and below 1kHz

Plus discrete cosine transform

[Graph: Wikipedia]

Final Feature Vector

= 39 (real) features per 10 ms frame:

= 12 MFCC features

= 12 delta MFCC features

= 12 delta-delta MFCC features
= 1 (log) frame energy

= 1 delta (log) frame energy

= 1 delta-delta (log frame energy)

= So each frame is represented by a 39D vector

Emission Model

. HMMs for Continuous Observations

= Before: discrete set of observations

= Now: feature vectors are real-valued

= Solution 1: discretization
= Solution 2: continuous emissions

= Gaussians
= Multivariate Gaussians
= Mixtures of multivariate Gaussians

= Astate is progressively

= Context independent subphone (~3 per
phone)

= Context dependent phone (triphones)
= State tying of CD phone

Vector Quantization

Idea: discretization
= Map MFCC vectors onto
discrete symbols

= Compute probabilities
just by counting

Input Feature Vector

This is called vector
quantization or VQ

Not used for ASR any
more

But: useful to consider as
a starting point

Compare to Codebool

Codebook of 256

i 1 44
Output index
of best vector

Gaussian Emissions

VQ is insufficient for top-
quality ASR
* Hard to cover high-
dimensional space with
codebook

Moves ambiguity from the e
model to the preprocessing

Instead: assume the
possible values of the
observation vectors are
normally distributed.
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= Represent the observation

likelihood function as a
Gaussian?
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Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

P(z|p,0) = —L—exp (—(1_")2)
5 ovon 502

= P(x):

P(x) is highest here at mean

P(x) is low here, far from mean
P()

Multivariate Gaussians

= |nstead of a single mean p and variance 6%

1 _(@—p)?
P(z|p,0) = ovar SXP ( 552
= Vector of means p and covariance matrix X

P(z|p, ) = W exp (—5(z — p) T (@ — )

= Usually assume diagonal covariance (!)
= This isn’t very true for FFT features, but is less bad for MFCC features

Gaussians: Size of X

" u=[00] n=[00] n=[00]
R =06l =2l

= As X becomes larger, Gaussian becomes more spread
out; as X becomes smaller, Gaussian more
compressed

Text and figures from Andrew Ng
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Gaussians: Shape of X
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= As we increase the off diagonal entries, more correlation between
value of x and value of y

Text and figures from Andrew Ng

But we’re not there yet

Single Gaussians may do a e
bad job of modeling a
complex distribution in any
dimension

Even worse for diagonal
covariances |}

Solution: mixtures of
Gaussians T =

From openlear.open.ac.uk

Mixtures of Gaussians
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= Mixtures of Gaussians:

P(alpi, Ti) = Gy oxp (3@ — pa) TS (@ — w)

P(z|p,X,c) =", ¢;P(x|pi, Xi)

From robots.ox.ac.uk http://wwuw.itee.uq.edu.au/~compa702




GMMs

= Summary: each state has an emission
distribution P(x|s) (likelihood function)
parameterized by:
= M mixture weights

= M mean vectors of dimensionality D

= Either M covariance matrices of DxD or M
Dx1 diagonal variance vectors

= Like soft vector quantization after all

= Think of the mixture means as being
learned codebook entries

Think of the Gaussian densities as a
learned codebook distance function

Think of the mixture of Gaussians like a
multinomial over codes |

(Even more true given shared Gaussian
inventories, cf next week)

State Model

State Transition Diagrams

= Bayes Net: HMM as a Graphical Model

= State Transition Diagram: Markov Model as a Weighted FSA
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Lexical State Structure
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Adding an LM
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State Space

i

= State space must include
= Current word (| V| on order of 20K+)
= Index within current word (|L| on order of 5)

= Acoustic probabilities only depend on phone type
= E.g. P(x]lec[t]ure) = P(x|t)

= From a state sequence, can read a word sequence

Phones Aren’t Homogeneous
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State Refinement
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A Word with Subphones

Figure:J & M

Modeling phonetic context
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“Need” with triphone models

#-n+iy n-iy+d iy-d+#

Figure:J & M

Lots of Triphones

= Possible triphones: 50x50x50=125,000
= How many triphone types actually occur?

= 20K word WSJ Task (from Bryan Pellom)
= Word internal models: need 14,300 triphones
= Cross word models: need 54,400 triphones

= Need to generalize models, tie triphones

State Tying / Clustering

[Young, Odell, Woodland
1994] Initial set of untied states
How do we decide which

triphones to cluster L-Nasal?

together? Ty

Use phonetic features (or

‘broad phonetic classes’)
= Stop
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Figure:J& M

State Space

i

= State space now includes
= Current word: |W| is order 20K
= Index in current word: |L| is order 5
= Subphone position: 3

= Acoustic model depends on clustered phone context
= But this doesn’t grow the state space

Decoding

Inference Tasks

Most likely word sequence:
d - ae - d

Most likely state sequence:
d,-dg-dg-d,-aes-ae,-ae;-ae,-d,-d,-d;-d,-dg




Viterbi Decoding
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Figure: Enrique Benimeli

Viterbi Decoding

Figure: Enrique Benimeli

Emission Caching

= Problem: scoring all the P(x|s) values is too slow
= |dea: many states share tied emission models, so cache them

Word model for “need™

Prefix Trie Encodings

= Problem: many partial-word states are indistinguishable

= Solution: encode word production as a prefix trie (with
pushed weights)

= A specific instance of minimizing weighted FSAs [Mohri, 94]

Figure: Aubert, 02

Beam Search

= Problem: trellis is too big to compute v(s) vectors

= |dea: most states are terrible, keep v(s) only for top states at

each time the ba.

the be.
the bi.

the b. the ma.

the m. the me.
and then. the mi.

at then.

then a.
then e.
then i.

= |mportant: still dynamic programming; collapse equiv states

LM Factoring

= Problem: Higher-order n-grams explode the state space
= (One) Solution:
= Factor state space into (word index, Im history)
= Score unigram prefix costs while inside a word
= Subtract unigram cost and add trigram cost once word is complete




LM Reweighting

-
:
.
i

Noisy channel suggests
P(x|w)P(w)
In practice, want to boost LM
P(x|w)P(w)™
Also, good to have a “word bonus” to offset LM costs
P(z|w)P(w)*|w|?

These are both consequences of broken independence
assumptions in the model




