

Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
 - Like the spectrogram we saw earlier
- Apply Mel scaling
 - Models human ear; more sensitivity in lower freqs
 - Approx linear below 1kHz, log above, equal samples above and below 1kHz
- Plus discrete cosine transform

[Graph: Wikipedia

Final Feature Vector

- 39 (real) features per 10 ms frame:
 - 12 MFCC features
 - 12 delta MFCC features
 - 12 delta-delta MFCC features
 - 1 (log) frame energy
 - 1 delta (log) frame energy
 - 1 delta-delta (log frame energy)
- So each frame is represented by a 39D vector

Emission Model

HMMs for Continuous Observations

- Before: discrete set of observations
- Now: feature vectors are real-valued
- Solution 1: discretization
- Solution 2: continuous emissions

 - GaussiansMultivariate Gaussians
 - Mixtures of multivariate Gaussians
- A state is progressively
 - Context independent subphone (~3 per
 - Context dependent phone (triphones) State tying of CD phone

Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and a variance:

$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

P(x):

Multivariate Gaussians

• Instead of a single mean μ and variance σ^2 :

$$P(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

• Vector of means μ and covariance matrix Σ

$$P(x|\mu, \Sigma) = \frac{1}{(2\pi)^{k/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^{\top}\Sigma^{-1}(x-\mu)\right)$$

- Usually assume diagonal covariance (!)
 - This isn't very true for FFT features, but is less bad for MFCC features

But we're not there yet

- Single Gaussians may do a bad job of modeling a complex distribution in any dimension
- Even worse for diagonal covariances
- Solution: mixtures of Gaussians

From openlearn.open.ac.u

- Think of the mixture means as being
 - learned codebook entries

 Think of the Gaussian densities as a
 - Think of the Gaussian densities as a learned codebook distance function
- Think of the mixture of Gaussians like a multinomial over codes
- (Even more true given shared Gaussian inventories, cf next week)

State Model

State Space

- State space must include
 - Current word (|V| on order of 20K+)
 - Index within current word (|L| on order of 5)
- Acoustic probabilities only depend on phone type
 - E.g. P(x|lec[t]ure) = P(x|t)
- From a state sequence, can read a word sequence

State Refinement

Phones Aren't Homogeneous

A Word with Subphones

Figure: I & M

"Need" with triphone models

Figure: J & M

Lots of Triphones

- Possible triphones: 50x50x50=125,000
- How many triphone types actually occur?
- 20K word WSJ Task (from Bryan Pellom)
 - Word internal models: need 14,300 triphones
 - Cross word models: need 54,400 triphones
- Need to generalize models, tie triphones

State Space

- State space now includes
 - Current word: |W| is order 20K
 - Index in current word: |L| is order 5
 - Subphone position: 3
- Acoustic model depends on clustered phone context
 - But this doesn't grow the state space

Decoding

LM Reweighting

Noisy channel suggests

In practice, want to boost LM

$$P(x|w)P(w)^{\alpha}$$

• Also, good to have a "word bonus" to offset LM costs

$$P(x|w)P(w)^{\alpha}|w|^{\beta}$$

These are both consequences of broken independence assumptions in the model