Natural Language Processing

Berkeley

(N

N L P

Parsing |
Dan Klein — UC Berkeley




Syntax




Parse Trees

ROOT
|
S
NP VP .
A I
DT NN VBD NP , S .
I | | T —— | |
The move followed NP PP \ VP
__’_,_——’_”—h_* _‘_'__,—ﬁ_“———_\_h
DT NN IN NP VBG NP
| | | — I T T —_
a round of NP PP reflecting NP PP
|| NNS IN NP DT VBG NN IN NP
| | | T | | | |
similar increases by | NNS a continuing decline in DT NN
| |
other lenders that market

The move followed a round of similar increases by other lenders,
reflecting a continuing decline in that market




Phrase Structure Parsing

Phrase structure parsing
organizes syntax into
constituents or brackets

In general, this involves
nested trees

Linguists can, and do,
argue about details

Lots of ambiguity

Not the only kind of
syntax...

NPSE -\",Psg
— T —
DT NN PP rises to ...
| | — T
The velocity IN NPy

|
of the seismic waves

new art critics write reviews with computers




Constituency Tests

= How do we know what nodes go in the tree?

= Classic constituency tests:

Substitution by proform
Question answers

Semantic gounds
= Coherence
= Reference
= |dioms

Dislocation
Conjunction

S

/\
NP VP
/\ /\
DT NNS VP PP
I PN
The children VBD NP IN NP
VAN AN

ate DT NN  with DT NN

the cake a spoon

= Cross-linguistic arguments, too




Conflicting Tests

= Constituency isn’t always clear

= Units of transfer:
= think about ~ penser a
= talk about ~ hablar de

= Phonological reduction:
= |willgo— I'll go
= | wantto go — | wanna go
= ale centre — au centre

= Coordination

= He went to and came from the store.

NP,
DT NN pP
| | — T
The velocity IN NPp

|
of the sejsmic waves

v

La vélocité des ondes sismiques




Classical NLP: Parsing

= Write symbolic or logical rules:

Grammar (CFG) Lexicon
ROOT —» S NP — NP PP NN — interest
S —> NP VP VP — VBP NP NNS — raises
NP — DT NN VP — VBP NP PP VBP — interest
NP — NN NNS PP — IN NP VBZ — raises

= Use deduction systems to prove parses from words
= Minimal grammar on “Fed raises” sentence: 36 parses
= Simple 10-rule grammar: 592 parses
= Real-size grammar: many millions of parses

= This scaled very badly, didn’t yield broad-coverage tools




Ambiguities




Ambiguities: PP Attachment

S
/\
NP VP
/\ /\
DT NNS PP
| /\ /\
The children VBD NP

VAN

ate DT NN with DT NN

the cake a spoon

S

/\

NP VP

NN T

DT NNS VBD NP

| | | /\

The children ate NP

/\/\

DT NN IN

|||/\

the cake with DT NN

a spoon

The board approved [itdacquisitionNby Royal Trustco Ltd.]

of Toronto]
[for $27 a share]

at its monthly meeting].




&

Attachments

| cleaned the dishes from dinner

| cleaned the dishes with detergent

| cleaned the dishes in my pajamas

| cleaned the dishes in the sink

10



.....

Syntactic Ambiguities |

Prepositional phrases:

They cooked the beans in the pot on the stove with handles.

Particle vs. preposition:
The puppy tore up the staircase.

Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

11



/. Syntactic Ambiguities Il

= Modifier scope within NPs
impractical design requirements
plastic cup holder

= Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

= Coordination scope:
Small rats and mice can squeeze into holes or cracks in the
wall.

12



Dark Ambiguities

= Dark ambiguities: most analyses are shockingly bad
(meaning, they don’t have an interpretation you can get

your mind around) ROOT
é
This analysis corresponds —~
to the correct parse of b=,
“This will panic buyers !'” T;Ls j.L VB/‘\NP
e NN

|
buyin.g
= Unknown words and new usages
= Solution: We need mechanisms to focus attention on the

best ones, probabilistic techniques do this

13



PCFGs

14



.....
AAAAA

= A context-free grammaris a tuple<N, T, S, R>

= N :the set of non-terminals
= Phrasal categories: S, NP, VP, ADJP, etc.
= Parts-of-speech (pre-terminals): NN, JJ, DT, VB
= T:the set of terminals (the words)
= S:the start symbol
= Often written as ROOT or TOP
= Not usually the sentence non-terminal S
= R:the set of rules
= OftheformX—=>Y,Y, .. Y, withX, Y, e N
= Examples:S— NP VP, VP — VP CCVP
= Also called rewrites, productions, or local trees

= A PCFG adds:
= A top-down production probability per rule P(Y; Y,

Y] X)

15



F o5
F 1%
F

Treebank Sentences

( (S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)

(PP by
(NP other Tenders))

(PP against
(NP Arizona real estate loans)))))

(S-ADV (NP-SB] *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC 1in
(NP that market))))))
)

16



Treebank Grammars

Need a PCFG for broad coverage parsing.
Can take a grammar right off the trees (doesn’t work well):

ROOT
| ROOT — S

S
S—> NPVP.

/”’N
NP vp .

| NN NP — PRP
PRP VBD ADJP .

o VP — VBD ADJP
He  was ]]

right

Better results by enriching the grammar (e.g., lexicalization).
Can also get reasonable parsers without lexicalization.

17



Treebank Grammar Scale

= Treebank grammars can be enormous

= As FSAs, the raw grammar has ~10K states, excluding the lexicon

= Better parsers usually make the grammars larger, not smaller

NP

Q ] \
~
7

18



Chomsky Normal Form

= Chomsky normal form:
= Allrules ofthe formX—>YZorX—>w

= |n principle, this is no limitation on the space of (P)CFGs
= N-ary rules introduce new non-terminals

VP
[VP — VBD NP PP o]
VBD NP PP PP t [VP > VBD NP ]
5 NP PP PP

= Unaries / empties are “promoted”
= |n practice it’s kind of a pain:

= Reconstructing n-aries is easy

= Reconstructing unaries is trickier

= The straightforward transformations don’t preserve tree scores
= Makes parsing algorithms simpler!

19



CKY Parsing

20



A Recursive Parser

bestScore(X,i,j,S)
it (g = i+l)
return tagScore(X,s[i])
else
return max score(X->Y7Z) *
bestScore(Y,i,k) *
bestScore(Z,k, j)

= Will this parser work?
= Why or why not?
= Memory requirements?

21



A Memoized Parser

" One small change:

bestScore(X,i,j,S)
1T (scores[X][1]1[3] == null)
it g = i1+l)
score = tagScore(X,s[i])
else
score = max score(X->YZ) *
bestScore(Y,1,k) *
bestScore(Z,K,j)
scores[X][1]1[j] = score
return scores[X][illjl

22



/. A Bottom-Up Parser (CKY)

= Can also organize things bottom-up

bestScore(s)
for (1 - [0,n-1])
for (X : tags[s[i]])
score[X][i][1+1] =
tagScore(X,s[1])
for (diff - [2,n])
for (1 - [O,n-diff])
j =1+ diff
for (X->YZ : rule)
for (k - [i+1, j-1D
score[X][1]1[)] = max score[X][1ll11,
score(X->YZ) *
score[Y][1]1[K] *
score[Z][Kk]1Il]1]




Unary Rules

" Unary rules?

bestScore(X,1,],S)
if (g = i+l)
return tagScore(X,s[i])
else
return max max score(X->YZ) *
bestScore(Y,i1,k) *
bestScore(Z,k,})
max score(X->Y) *
bestScore(Y,i1,})

24



CNF + Unary Closure

= \We need unaries to be non-cyclic

= Can address by pre-calculating the unary closure

= Rather than having zero or more unaries, always have

exactly one
VP SBAR
VP — |
— VBD NP
VBD NP :> | S
N NP |
DT NN — VP
DT NN

= Alternate unary and binary layers
= Reconstruct unary chains afterwards

SBAR

=) |

VP

25



Alternating Layers

bestScoreB(X,1,]},S)
return max max score(X->YZ) *
bestScoreU(Y,1,k) *

bestScoreU(Z,k,j)
bestScoreU(X,i,j,S)
it (g = 1+1)
return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,1,})

26



Analysis

27



Memory

How much memory does this require?

Have to store the score cache
Cache size: | symbols| *n? doubles

For the plain treebank grammar:
= X~ 20K, n=40, double ~ 8 bytes =~ 256 MB
= Big, but workable.

Pruning: Beams

score[X][i][j] can get too large (when?)

Can keep beams (truncated maps score[i][j]) which only store the best few
scores for the span [i,]]

Pruning: Coarse-to-Fine

Use a smaller grammar to rule out most X[i,j]
Much more on this later...

28



Time: Theory

= How much time will it take to parse?

= For each diff (<=n)

= For eachi(<=n)
= ForeachruleX—>YZ
= For each split point k
Do constant work

= Total time: |rules|*n3

= Something like 5 sec for an unoptimized parse of a
20-word sentences

29



Time: Practice

= Parsing with the vanilla treebank grammar:

360

~ 20K Rules

300
z (not an
g 240 / optimized
% 150 parser!)
‘; 120 | Observed
= exponent:

60 i

U 3.6

0 10 20 30 40 50
Sentence Length

= Why’s it worse in practice?
= Longer sentences “unlock” more of the grammar
= All kinds of systems issues don’t scale




2

Same-Span Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP
WHNP

31



Rule State Reachability

Example: NP CC e

@ —mm e ___ ~o—C .¢ 1Alignment

@c——————— . @@ — — = — — — - - N Alignments

= Many states are more likely to match larger spans!

32



Efficient CKY

= | ots of tricks to make CKY efficient

= Some of them are little engineering details:

= E.g., first choose k, then enumerate through the Y:[i,k] which are
non-zero, then loop through rules by left child.

= Optimal layout of the dynamic program depends on grammar,
input, even system details.
= Another kind is more important (and interesting):
= Many X:[i,j] can be suppressed on the basis of the input string

= We'll see this next class as figures-of-merit, A* heuristics, coarse-
to-fine, etc

33



Agenda-Based Parsing

34



Agenda-Based Parsing

= Agenda-based parsing is like graph search (but over a
hypergraph)
= Concepts:

= Numbering: we number fenceposts between words

= “Edges” or items: spans with labels, e.g. PP[3,5], represent the sets of
trees over those words rooted at that label (cf. search states)

= A chart: records edges we’ve expanded (cf. closed set)
= An agenda: a queue which holds edges (cf. a fringe or open set)

PP

Vel

® critics ® write ® reviews with computers
0 1 2 3 4 <)




Word Items

= Building an item for the first time is called discovery. Items go
into the agenda on discovery.

= Toinitialize, we discover all word items (with score 1.0).

AGENDA
critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

@ ® ® ® ® ®

0 1 2 3 4 5
critics write reviews with computers

36



F
£ 55

Unary Projection

= When we pop a word item, the lexicon tells us the tag item
successors (and scores) which go on the agenda

critics[0,1]  write[1,2] reviews[2,3] with[3,4] computers[4,5]

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[4,5]
® critics ® write ® reviews ® with ® computers ®
0 1 2 3 5

critics write reviews with computers

37



ltem Successors

When we pop items off of the agenda:

Queries a chart must support:

Graph successors: unary projections (NNS — critics, NP — NNS)
Y[i,jl with X — Y forms X[i,j]

Hypergraph successors: combine with items already in our chart
YI[i,jl and Z[j,k] with X — Y Z form X[i,K]

Enqueue / promote resulting items (if not in chart already)
Record backtraces as appropriate
Stick the popped edge in the chart (closed set)

Is edge X:[i,j] in the chart? (What score?)
What edges with label Y end at position j?
What edges with label Z start at position i?

38



An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2]
VP[1,3] PP[3,5] ROOTI[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOTI[0,5]
ROOT

39



Empty Elements

= Sometimes we want to posit nodes in a parse tree that don’t
contain any pronounced words:

| want you to parse this sentence
| want [ ] to parse this sentence
= These are easy to add to a chart parser!
= For each position i, add the “word” edge &:]i,i]

= Add rules like NP — ¢ to the grammar
= That’s it!

o @O«
~ @ o

like to parse A empties

N
o1

40



UCS / A*

With weighted edges, order matters

= Must expand optimal parse from
bottom up (subparses first)

= CKY does this by processing smaller
spans before larger ones

= UCS pops items off the agenda in
order of decreasing Viterbi score

= A*search also well defined

You can also speed up the search
without sacrificing optimality
= Can select which items to process first

= Can do with any “figure of merit”
[Charniak 98]

= |f your figure-of-merit is a valid A*
heuristic, no loss of optimiality [Klein
and Manning 03]

41



(Speech) Lattices

= There was nothing magical about words spanning exactly
one position.

= When working with speech, we generally don’t know
how many words there are, or where they break.

= We can represent the possibilities as a lattice and parse
these just as easily.

lvan

eyes

‘.{//”/’~—_—~\\\\\?l' awe
|

saw ‘ve van

42



