Statistical NLP Spring 2007

Lecture 10: Word Alignment

Dan Klein – UC Berkeley

Machine Translation: Examples

Atlanta, preso il killer del palazzo di Giustizia

ATLANTA - La grande paura che per 26 ore ha attanagliato Atlanta è finita: Brian Nichols, l'uomo che aveva ucciso tre persone a palazzo di Giustizia e che

consegnato alla polizia, dopo avere cercato rifugio nell'alloggio di una donna in un complesso d'appartamenti alla periferia della città. Per tutto il giorno, il centro della città, sede della città della città della città della città per cutto il giorno, il centro della città, sede della città della citt

Atlanta, taken the killer of the palace of Justice

ATLANTA - The great fear that for 26 hours has gripped Atlanta is ended: Brian Nichols, the man who had killed three persons to palace of Justice and that

delivered to the police, after to have tried shelter in the lodging of one woman in a complex of apartments to the periphery of the city. For all the day, the center of the city, center

Machine Translation

Madame la présidente, votre présidence de cette institution a été marquante. Mrs Fontaine, your presidency of this institution has been outstanding. Madam President, president of this house has been discoveries. Madam President, your presidency of this institution has been impressive.

Je vais maintenant m'exprimer brièvement en irlandais I shall now speak briefly in Irish . I will now speak briefly in Ireland .

Nous trouvons en vous un président tel que nous le souhaitions. We think that you are the type of president that we want. We are in you a president as the wanted.

We are in you a president as the wanted.

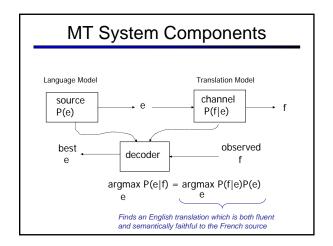
We are in you a president as we the wanted.

I will now speak briefly in Irish .

History

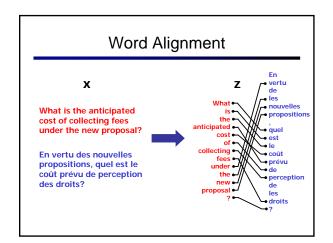
- 1950's: Intensive research activity in MT
- 1960's: Direct word-for-word replacement
- 1966 (ALPAC): NRC Report on MT
 - Conclusion: MT no longer worthy of serious scientific investigation.
- 1966-1975: `Recovery period'
- 1975-1985: Resurgence (Europe, Japan)
- 1985-present: Gradual Resurgence (US)

 $\underline{http://ourworld.compuserve.com/homepages/WJHutchins/MTS-93.htm}$


Levels of Transfer (Vauquois triangle) Decomposition Semantic Structure Semantic Structure Transfer Syntactic Syntactic Syntactic Transfer Syntactic Generation Word Word Structure Morphological Morphological Generation Source Text Target Text

General Approaches

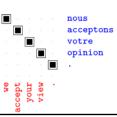
- Rule-based approaches
 - Expert system-like rewrite systems
 - Interlingua methods (analyze and generate)
 - Lexicons come from humans
 - Can be very fast, and can accumulate a lot of knowledge over time (e.g. Systran)
- Statistical approaches
 - Word-to-word translation
 - Phrase-based translation
 - Syntax-based translation (tree-to-tree, tree-to-string)
 - Trained on parallel corpora
 - Usually noisy-channel (at least in spirit)

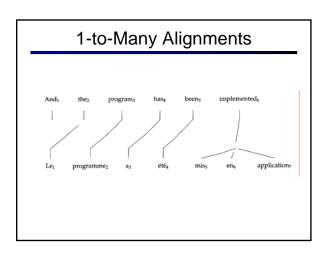

The Coding View

- "One naturally wonders if the problem of translation could conceivably be treated as a problem in cryptography. When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.'
 - Warren Weaver (1955:18, quoting a letter he wrote in 1947)

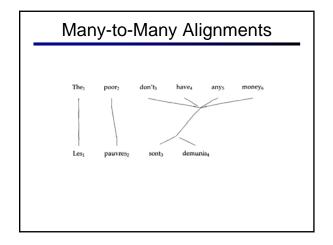
Today

- The components of a simple MT system
 - You already know about the LM
 - Word-alignment based TMs
 - IBM models 1 and 2, HMM model
 - A simple decoder
- Next few classes
 - More complex word-level and phrase-level TMs
 - Tree-to-tree and tree-to-string TMs
 - More sophisticated decoders

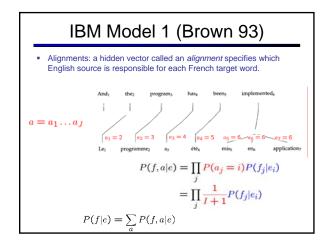



Unsupervised Word Alignment

Input: a bitext: pairs of translated sentences

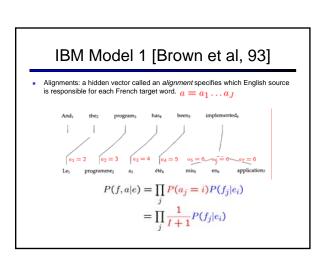

nous acceptons votre opinion . we accept your view .

- Output: alignments: pairs of translated words
 - When words have unique sources, can represent as a (forward) alignment function a from French to English positions



The1 Le1 balance2 reste2 appartenait3 the4 autochtones5 of6 the7 aboriginal8 people9

IBM Model 1


- Obvious first stab: greedy matchings
- Better approach: re-estimated generative models

$$P(f|e) = \sum_{a} P(f, a|e)$$

$$P(f, a|e) = \prod_{j} P(a_j = i|e) P(f_j|e_i)$$

$$P(a_j = i|e, f) = \frac{P(f_j|e_i)}{\sum_{i'} P(f_j|e_{i'})}$$

 Basic idea: pick a source for each word, update cooccurrence statistics, repeat

Problems with Model 1

- There's a reason they designed models 2-5!
- Problems: alignments jump around, align everything to rare words
- Experimental setup:
 - Training data: 1.1M sentences of French-English text, Canadian Hansards
 - Evaluation metric: alignment error Rate (AER)
 - Evaluation data: 447 handaligned sentences

Evaluating TMs

- How do we measure TM quality?
 - Method 1: use in an end-to-end translation system
 - · Hard to measure translation quality
 - Option: human judges
 - Option: reference translations (NIST, BLEU scores)
 - Method 2: measure quality of the alignments produced
 - Easy to measure
 - · Hard to know what the gold alignments should be
 - May not correlate with translation quality (like perplexity in LMs)

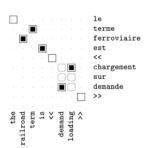
Alignment Error Rate

Alignment Error Rate

= Sure

= Possible

= Predicted


$$AER(\Lambda, S, P) = \left(1 - \frac{|A \cap S| + |A \cap P|}{|A| + |S|}\right)$$
$$= \left(1 - \frac{3+3}{2+4}\right) = \frac{1}{7}$$

Intersected Model 1

- Post-intersection: standard practice to train models in each direction then intersect their predictions [Och and Ney, 03]
- Second model is basically a filter on the first
 - Precision jumps, recall drops
 - End up not guessing hard alignments

Model	P/R	AER
Model 1 E→F	82/58	30.6
Model 1 F→E	85/58	28.7
Model 1 AND	96/46	34.8

Joint Training?

- Overall:
 - Similar high precision to post-intersection
 - But recall is much higher
 - More confident about positing non-null alignments

Model	P/R	AER
Model 1 E→F	82/58	30.6
Model 1 F→E	85/58	28.7
Model 1 AND	96/46	34.8
Model 1 INT	93/69	19.5

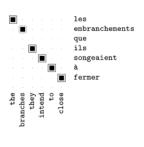
Monotonic Translation

Japan shaken by two new quakes

Le Japon secoué par deux nouveaux séismes

Local Order Change

Japan is at the junction of four tectonic plates Le Japon est au confluent de quatre plaques tectoniques


IBM Model 2

Alignments tend to the diagonal (broadly at least)

$$\begin{split} P(f,a|e) = \prod_{j} P(a_{j} = i|j,I,J) P(f_{j}|e_{i}) \\ P(i - j\frac{I}{J}) \\ \frac{1}{Z} e^{-\alpha(i-j\frac{I}{J})} \end{split}$$

- Other schemes for biasing alignments towards the diagonal:
 - Relative alignment
 - Asymmetric distances
 - Learning a multinomial over distances

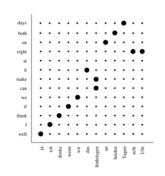
Example

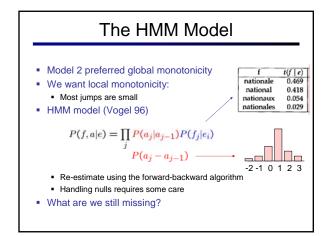
EM for Models 1/2

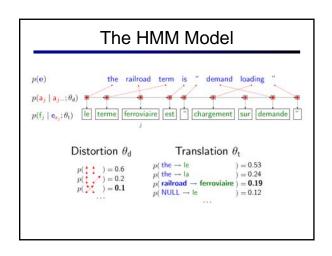
- $\begin{array}{ll} \bullet & \text{Model 1 Parameters:} \\ \text{Translation probabilities (1+2)} \\ \text{Distortion parameters (2 only)} \end{array} \begin{array}{ll} P(f_j|e_i) \\ P(a_j=i|j,I,J) \end{array}$
- Start with $P(f_j|e_i)$ uniform, including $P(f_j|null)$ For each sentence:

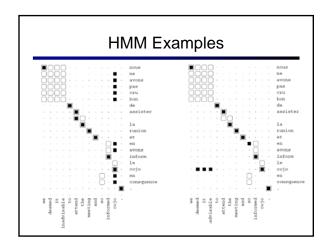
 For each French position j

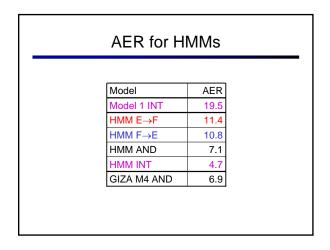
 Calculate posterior over English positions


$$P(a_j = i | f, e) = \frac{P(a_j = i | j, I, J) P(f_j | e_i)}{\sum_{i'} P(a_j = i' | j, I, J) P(f_j | e_i')}$$


- (or just use best single alignment)
 Increment count of word f_j with word e_i by these amounts
 Also re-estimate distortion probabilities for model 2
- Iterate until convergence


Phrase Movement


On Tuesday Nov. 4, earthquakes rocked Japan once again Des tremblements de terre ont à nouveau touché le Japon jeudi 4 novembre.


Phrase Movement

