

Lecture 11: Phrase Alignment

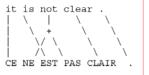
Dan Klein – UC Berkeley

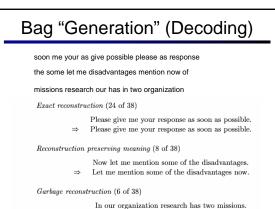
Examples: Translation and Fertility											
f le la les l' ce	la 0.207 0 0.254 es 0.155 l' 0.086			6							
cette	0.011			fa	rmers		I				
	$\begin{array}{c cccc} f & t(f \mid e) & \phi & n(\phi \mid e) \\ \hline \text{agriculteurs} & 0.442 & 2 & 0.731 \end{array}$										
		1			18	1	0.228				
			cultivateurs (0	0.039				
producteurs 0.021											

Example: Idioms

nodding $\frac{n(\phi \mid e)}{0.342}$ t(f | e) 0.164 signe la 0.123 0.293 tête 0.097 oui fait 0.086 0.163 0.073 0.023 0.073 que hoche 0.054 hocher 0.048 faire 0.024 me approuve 0.019 qui 0.019 0.012 un

Example: Morphology

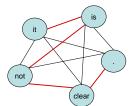

should t(f | e) 0.330 $\frac{n(\phi \mid e)}{0.649}$ devrait devraient 0.123 0.336 devrions 0.109 0.014 faudrait 0.073 faut 0.058 doit 0.058 aurait 0.041 doivent 0.024 devons 0.017 0.013 devrais


Some Results

[Och and Ney 03] Model Training scheme 0.5K 8K128K 1.47M Dice Dice+C 39.6 35.0 46.3 37.6 34.0 Model 1 40.6 33.6 28.6 25.9 29.3 23.3 Model 2 22.0 19.5 HMM 26.3 15.0 10.8 Model 3 43.6 27.5 20.5 18.0 22.5 13.2 25.1 20.2 14.1 9.4 9.3 Model 4 41.726.1 13.1 26.3 21.8 13.3 1⁵H⁵4³5³ 1⁵H⁵3³4³5³ Model 5 26.5 21.5 13.7 20.4 21.6 13.4 12.8 9.4 26.5 Model 6 26.0 8.8

Decoding

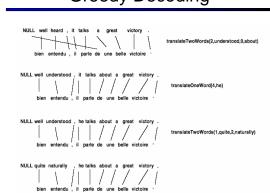
- In these word-to-word models
 - Finding best alignments is easy
 - Finding translations is hard (why?)



In our missions research organization has two.

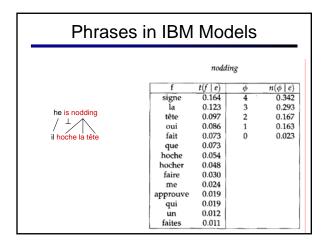
Bag Generation as a TSP

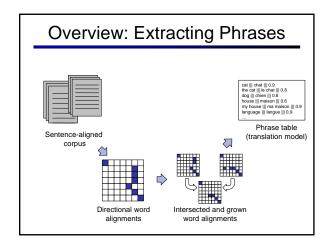
- Imagine bag generation with a bigram LM
 - Words are nodes
 - Edge weights are P(w|w')
 - Valid sentences are Hamiltonian paths
- Not the best news for word-based MT!

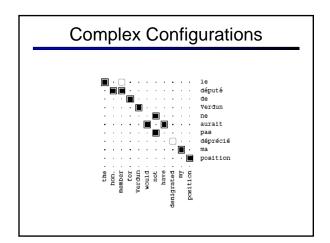

IBM Decoding as a TSP

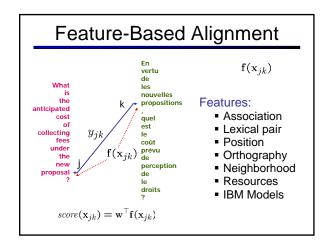
Decoding, Anyway

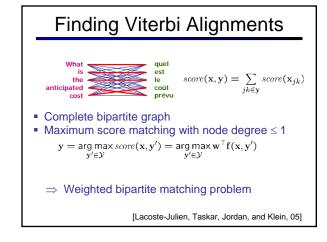
- Simplest possible decoder:
 - Enumerate sentences, score each with TM and LM
- Greedy decoding:
 - Assign each French word it's most likely English translation
 - Operators:
 - Change a translation
 - Insert a word into the English (zero-fertile French)
 - Remove a word from the English (null-generated French)
 - Swap two adjacent English words
 - Do hill-climbing (or annealing)

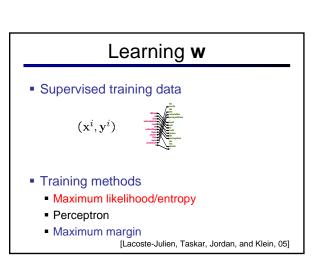

Greedy Decoding

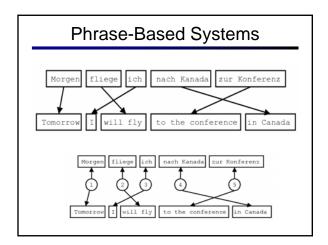


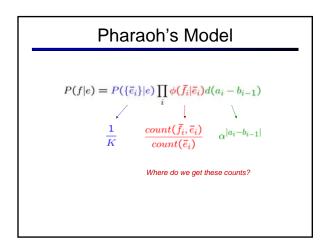

Stack Decoding

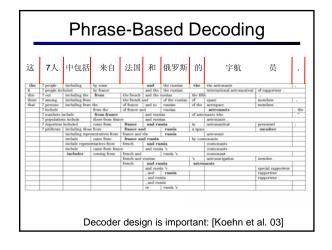

- Stack decoding:
 - Beam search
 - Usually A* estimates for completion cost
 - One stack per candidate sentence length
- Other methods:
 - Dynamic programming decoders possible if we make assumptions about the set of allowable permutations

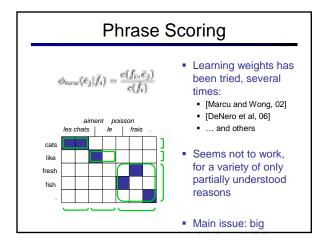

sent length	decoder type	(sec/sent)	search errors	translation errors (semantic and/or syntactic)	NE	PME	DSE	FSE	HSE	CE
6	IP	47.50	0	57	44	57	0	0	0	0
6	stack	0.79	- 5	58	43	53	1	0	0	- 4
6	greedy	0.07	18	60	38	45	5	2	1	10
8	IP	499.00	- 0	76	27	74	- 0	- 0	- 0	- 0
8	stack	5.67	20	75	24	57	1	2	2	15
8	greedy	2.66	43	75	20	38	4	- 5	1	3.3

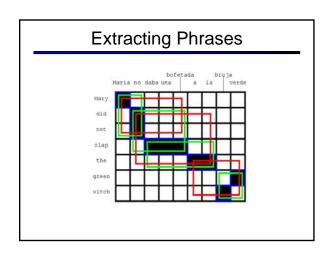


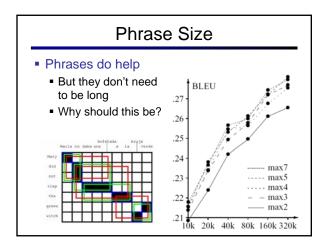


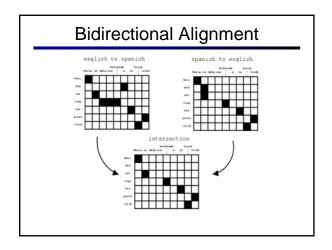


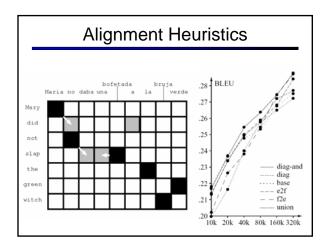


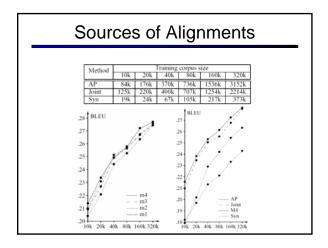


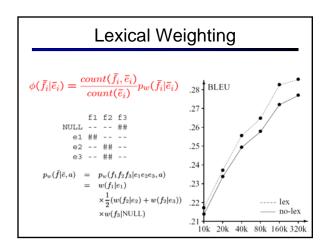


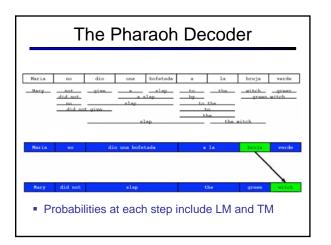


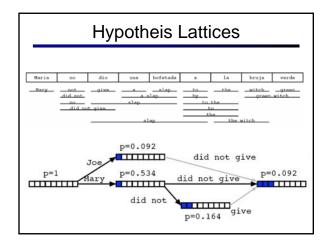


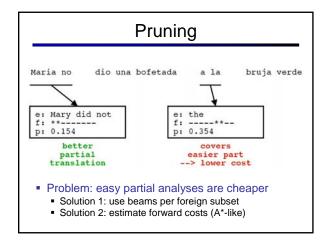












WSD?

- Remember when we discussed WSD?
 - Word-based MT systems rarely have a WSD step
 - Why not?

What's Next?

- Modeling syntax
 - PCFGs and phrase structure
 - Syntactic parsing
 - Grammar induction
 - Syntactic language and translation models
- Speech systems
 - Acoustics
 - Applications