
1

Statistical NLP
Spring 2007

Lecture 14: Parsing I
Dan Klein – UC Berkeley

Phrase Structure Parsing
Phrase structure parsing
organizes syntax into
constituents or brackets
In general, this involves
nested trees
Linguists can, and do,
argue about details
Lots of ambiguity

Not the only kind of
syntax…

new art critics write reviews with computers

PP

NP
NP

N’

NP

VP

S

Constituency Tests

How do we know what nodes go in the tree?

Classic constituency tests:
Substitution by proform

Question answers

Semantic reference

Dislocation

Cross-linguistic arguments, too

Conflicting Tests
Constituency isn’t always clear

Units of transfer:
think about ~ penser à
talk about ~ hablar de

Phonological reduction:
I will go → I’ll go
I want to go → I wanna go
a le centre → au centre

La vélocité des ondes sismiques

Non-Local Phenomena
Dislocation / gapping

Why did the postman think that the neighbors were home?
A debate arose which continued until the election.

Binding
Reference

The IRS audits itself
Control

I want to go
I want you to go

Regularity of Rules
Argumentation
Adjunction
Coordination
X’ Theory

2

PP Attachment PP Attachment

Attachment is a Simplification

I cleaned the dishes from dinner

I cleaned the dishes with detergent

I cleaned the dishes in the sink

Syntactic Ambiguities I

Prepositional phrases:
They cooked the beans in the pot on the stove with
handles.

Particle vs. preposition:
A good pharmacist dispenses with accuracy.
The puppy tore up the staircase.

Complement structures
The tourists objected to the guide that they couldn’t hear.
She knows you like the back of her hand.

Gerund vs. participial adjective
Visiting relatives can be boring.
Changing schedules frequently confused passengers.

Syntactic Ambiguities II
Modifier scope within NPs
impractical design requirements
plastic cup holder

Multiple gap constructions
The chicken is ready to eat.
The contractors are rich enough to sue.

Coordination scope:
Small rats and mice can squeeze into holes or cracks in
the wall.

Treebank Sentences

3

Human Processing
Garden pathing:

Ambiguity maintenance

The Parsing Problem

0 1 2 3 4 5
critics write reviews with computers

NP
PP

VP
NP

6 7
new art

NP

NP

VP

S

Chomsky Normal Form

Chomsky normal form:
All rules of the form X → Y Z or X → w
In principle, this is no limitation on the space of (P)CFGs

N-ary rules introduce new non-terminals

Unaries / empties are “promoted”
In practice it’s kind of a pain:

Reconstructing n-aries is easy
Reconstructing unaries is trickier
The straightforward transformations don’t preserve tree scores

Makes parsing algorithms simpler!

VP

[VP → VBD NP •]

VBD NP PP PP

[VP → VBD NP PP •]

VBD NP PP PP

VP

Unaries in Grammars

TOP

S-HLN

NP-SUBJ VP

VB-NONE-

ε Atone

PTB Tree

TOP

S

NP VP

VB-NONE-

ε Atone

NoTransform

TOP

S

VP

VB

Atone

NoEmpties

TOP

S

Atone

NoUnaries

TOP

VB

Atone

High Low

A Recursive Parser
Here’s a recursive (CNF) parser:

bestParse(X,i,j,s)
if (j = i+1)

return X -> s[i]
(X->YZ,k) = argmax score(X->YZ) *

bestScore(Y,i,k,s) *
bestScore(Z,k,j,s)

parse.parent = X
parse.leftChild = bestParse(Y,i,k,s)
parse.rightChild = bestParse(Z,k,j,s)
return parse

A Recursive Parser

Will this parser work?
Why or why not?
Memory requirements?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

4

An Example

0 1 2 3 4 5
critics write reviews with computers

NP
PP

VP NP

6 7
new art

NP

NP

VP

S

JJ NNS VBP

A Memoized Parser
One small change:

bestScore(X,i,j,s)
if (scores[X][i][j] == null)

if (j = i+1)
score = tagScore(X,s[i])

else
score = max score(X->YZ) *

bestScore(Y,i,k) *
bestScore(Z,k,j)

scores[X][i][j] = score
return scores[X][i][j]

Memory: Theory
How much memory does this require?

Have to store the score cache
Cache size: |symbols|*n2 doubles
For the plain treebank grammar:

X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
Big, but workable.

What about sparsity?

Time: Theory
How much time will it take to parse?

Have to fill each cache element (at worst)
Each time the cache fails, we have to:

Iterate over each rule X → Y Z and split point k
Do constant work for the recursive calls

Total time: |rules|*n3

Cubic time
Something like 5 sec for an unoptimized
parse of a 20-word sentences

Unary Rules
Unary rules?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

max score(X->Y) *
bestScore(Y,i,j)

Same-Span Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NAC

SBARQ

SINV

RRCSQ X

PRT

5

CNF + Unary Closure

We need unaries to be non-cyclic
Can address by pre-calculating the unary closure
Rather than having zero or more unaries, always
have exactly one

Alternate unary and binary layers
Reconstruct unary chains afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Alternating Layers

bestScoreU(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)
return max max score(X->YZ) *

bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

Can also organize things bottom-up

A Bottom-Up Parser (CKY)

bestScore(s)
for (i : [0,n-1])
for (X : tags[s[i]])
score[X][i][i+1] =

tagScore(X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j = i + diff
for (X->YZ : rule)

for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][j],

score(X->YZ) *
score[Y][i][k] *
score[Z][k][j]

Y Z

X

i k j

Efficient CKY
Lots of tricks to make CKY efficient

Most of them are little engineering details:
E.g., first choose k, then enumerate through the Y:[i,k] which
are non-zero, then loop through rules by left child.
Optimal layout of the dynamic program depends on
grammar, input, even system details.

Another kind is more critical:
Many X:[i,j] can be suppressed on the basis of the input
string
We’ll see this next class as figures-of-merit or A* heuristics

Memory: Practice
Memory:

Still requires memory to hold the score table

Pruning:
score[X][i][j] can get too large (when?)
can instead keep beams scores[i][j] which
only record scores for the top K symbols
found to date for the span [i,j]

Time: Theory
How much time will it take to parse?

For each diff (<= n)
For each i (<= n)

For each rule X → Y Z
For each split point k
Do constant work

Total time: |rules|*n3

Y Z

X

i k j

6

Runtime: Practice

Parsing with the vanilla treebank grammar:

Why’s it worse in practice?
Longer sentences “unlock” more of the grammar
All kinds of systems issues don’t scale

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6

Rule State Reachability

Many states are more likely to match larger spans!

Example: NP CC •

NP CC

0 nn-1

1 Alignment

Example: NP CC NP •

NP CC

0 nn-k-1
n AlignmentsNP

n-k

