

Memory: Theory

- How much memory does this require?
 - Have to store the score cache
 - Cache size: |symbols|*n² doubles
 - For the plain treebank grammar:
 - X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
 Big, but workable.
- What about sparsity?

Time: Theory

Memory: Practice

Memory:

- Still requires memory to hold the score table
- Pruning:
 - score[X][i][j] can get too large (when?)
 - can instead keep beams scores[i][j] which only record scores for the top K symbols found to date for the span [i,j]

- A nice property:
 - It doesn't matter what policy we use to order the agenda (FIFO, LIFO, random).
 - Why? Invariant: before popping an edge:
 - Any edge X[i,j] that can be directly built from chart edges and a single grammar rule is either in the chart or in the agenda.
 - Convince yourselves this invariant holds!

