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Lecture 15: Parsing II
Dan Klein – UC Berkeley

A Recursive Parser

Will this parser work?
Why or why not?
Memory requirements?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

An Example
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A Memoized Parser
One small change:

bestScore(X,i,j,s)
if (scores[X][i][j] == null)

if (j = i+1)
score = tagScore(X,s[i])

else
score = max score(X->YZ) *

bestScore(Y,i,k) *
bestScore(Z,k,j)

scores[X][i][j] = score
return scores[X][i][j]

Memory: Theory
How much memory does this require?

Have to store the score cache
Cache size: |symbols|*n2 doubles
For the plain treebank grammar:

X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
Big, but workable.

What about sparsity?

Time: Theory
How much time will it take to parse?

Have to fill each cache element (at worst)
Each time the cache fails, we have to:

Iterate over each rule X → Y Z and split point k
Do constant work for the recursive calls

Total time: |rules|*n3

Cubic time
Something like 5 sec for an unoptimized
parse of a 20- word sentences
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Unary Rules
Unary rules?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

max score(X->Y) *
bestScore(Y,i,j) 

Same-Span Reachability
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CNF + Unary Closure

We need unaries to be non- cyclic
Can address by pre-calculating the unary closure
Rather than having zero or more unaries, always 
have exactly one

Alternate unary and binary layers
Reconstruct unary chains afterwards
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Alternating Layers

bestScoreU(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)
return max max score(X->YZ) *

bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

Can also organize things bottom-up

A Bottom-Up Parser (CKY)

bestScore(s)
for (i : [0,n-1])
for (X : tags[s[i]])
score[X][i][i+1] = 

tagScore(X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j = i + diff
for (X->YZ : rule)

for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][j],

score(X->YZ) *
score[Y][i][k] *
score[Z][k][j]
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Efficient CKY
Lots of tricks to make CKY efficient

Most of them are little engineering details:
E.g., first choose k, then enumerate through the Y:[i,k] which 
are non-zero, then loop through rules by left child.
Optimal layout of the dynamic program depends on 
grammar, input, even system details.

Another kind is more critical:
Many X:[i,j] can be suppressed on the basis of the input 
string
We’ll see this next class as figures-of-merit or A* heuristics
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Memory: Practice
Memory:

Still requires memory to hold the score table

Pruning:
score[X][i][j] can get too large (when?)
can instead keep beams scores[i][j] which 
only record scores for the top K symbols 
found to date for the span [i,j]

Time: Theory
How much time will it take to parse?

For each diff (<= n)
For each i (<= n)

For each rule X → Y Z 
For each split point k
Do constant work

Total time: |rules|*n3
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Runtime: Practice

Parsing with the vanilla treebank grammar:

Why’s it worse in practice?
Longer sentences “unlock” more of the grammar
All kinds of systems issues don’t scale

~ 20K Rules

(not an 
optimized 
parser!)

Observed 
exponent: 

3.6

Rule State Reachability

Many states are more likely to match larger spans!

Example: NP CC •
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(Speech) Lattices
There was nothing magical about words spanning 
exactly one position.
When working with speech, we generally don’t know 
how many words there are, or where they break.
We can represent the possibilities as a lattice and 
parse these just as easily.
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A Simple Chart Parser
Chart parsers are sparse dynamic programs
Ingredients:

Nodes: positions between words
Edges: spans of words with labels, represent the set of trees 
over those words rooted at x
A chart: records which edges we’ve built
An agenda: a holding pen for edges (a queue)

We’re going to figure out:
What edges can we build?
All the ways we built them.

0 1 2 3 4 5
critics write reviews with computers

PP
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Word Edges
An edge found for the first time is called discovered.  
Edges go into the agenda on discovery.
To initialize, we discover all word edges.

critics         write         reviews         with         computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]

Unary Projection
When we pop an word edge off the agenda, we check 
the lexicon to see what tag edges we can build from it

critics         write         reviews         with         computers
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critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4]

The “Fundamental Rule”

When we pop edges off of the agenda:
Check for unary projections (NNS → critics, NP → NNS)

Combine with edges already in our chart (this is sometimes called the 
fundamental rule)

Enqueue resulting edges (if newly discovered)
Record backtraces (called traversals)
Stick the popped edge in the chart

Queries a chart must support:
Is edge X:[i,j] in the chart?
What edges with label Y end at position j?
What edges with label Z start at position i? 

Y[i,j] with X → Y forms  X[i,j]

Y[i,j] and Z[j,k] with X → Y Z form  X[i,k]

Y Z

X

An Example
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Exploiting Substructure
Each edge records all the ways it was built (locally)

Can recursively extract trees
A chart may represent too many parses to enumerate (how 
many?)
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Order Independence
A nice property:

It doesn’t matter what policy we use to order the 
agenda (FIFO, LIFO, random).

Why?  Invariant: before popping an edge:
Any edge X[i,j] that can be directly built from chart edges and 
a single grammar rule is either in the chart or in the agenda.
Convince yourselves this invariant holds!

This will not be true once we get weighted parsers.
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Empty Elements
Sometimes we want to posit nodes in a parse tree that 
don’t contain any pronounced words:

These are easy to add to our chart parser!
For each position i, add the “word” edge ε:[i,i]
Add rules like NP → ε to the grammar
That’s it!

0 1 2 3 4 5
I like to parse empties

ε ε ε ε ε ε

NP VP

I want John to parse this sentence

I want [      ] to parse this sentence


