
1

Statistical NLP
Spring 2007

Lecture 15: Parsing II
Dan Klein – UC Berkeley

A Recursive Parser

Will this parser work?
Why or why not?
Memory requirements?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

An Example

0 1 2 3 4 5
critics write reviews with computers

NP
PP

VP NP

6 7
new art

NP

NP

VP

S

JJ NNS VBP

A Memoized Parser
One small change:

bestScore(X,i,j,s)
if (scores[X][i][j] == null)

if (j = i+1)
score = tagScore(X,s[i])

else
score = max score(X->YZ) *

bestScore(Y,i,k) *
bestScore(Z,k,j)

scores[X][i][j] = score
return scores[X][i][j]

Memory: Theory
How much memory does this require?

Have to store the score cache
Cache size: |symbols|*n2 doubles
For the plain treebank grammar:

X ~ 20K, n = 40, double ~ 8 bytes = ~ 256MB
Big, but workable.

What about sparsity?

Time: Theory
How much time will it take to parse?

Have to fill each cache element (at worst)
Each time the cache fails, we have to:

Iterate over each rule X → Y Z and split point k
Do constant work for the recursive calls

Total time: |rules|*n3

Cubic time
Something like 5 sec for an unoptimized
parse of a 20- word sentences

2

Unary Rules
Unary rules?

bestScore(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->YZ) *
bestScore(Y,i,k) *
bestScore(Z,k,j)

max score(X->Y) *
bestScore(Y,i,j)

Same-Span Reachability

ADJP ADVP
FRAG INTJ NP
PP PRN QP S
SBAR UCP VP

WHNP

TOP

LST

CONJP

WHADJP

WHADVP

WHPP

NX

NAC

SBARQ

SINV

RRCSQ X

PRT

CNF + Unary Closure

We need unaries to be non- cyclic
Can address by pre-calculating the unary closure
Rather than having zero or more unaries, always
have exactly one

Alternate unary and binary layers
Reconstruct unary chains afterwards

NP

DT NN

VP

VBD
NP

DT NN

VP

VBD NP

VP

S

SBAR

VP

SBAR

Alternating Layers

bestScoreU(X,i,j,s)
if (j = i+1)

return tagScore(X,s[i])
else

return max max score(X->Y) *
bestScoreB(Y,i,j)

bestScoreB(X,i,j,s)
return max max score(X->YZ) *

bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)

Can also organize things bottom-up

A Bottom-Up Parser (CKY)

bestScore(s)
for (i : [0,n-1])
for (X : tags[s[i]])
score[X][i][i+1] =

tagScore(X,s[i])
for (diff : [2,n])
for (i : [0,n-diff])
j = i + diff
for (X->YZ : rule)

for (k : [i+1, j-1])
score[X][i][j] = max score[X][i][j],

score(X->YZ) *
score[Y][i][k] *
score[Z][k][j]

Y Z

X

i k j

Efficient CKY
Lots of tricks to make CKY efficient

Most of them are little engineering details:
E.g., first choose k, then enumerate through the Y:[i,k] which
are non-zero, then loop through rules by left child.
Optimal layout of the dynamic program depends on
grammar, input, even system details.

Another kind is more critical:
Many X:[i,j] can be suppressed on the basis of the input
string
We’ll see this next class as figures-of-merit or A* heuristics

3

Memory: Practice
Memory:

Still requires memory to hold the score table

Pruning:
score[X][i][j] can get too large (when?)
can instead keep beams scores[i][j] which
only record scores for the top K symbols
found to date for the span [i,j]

Time: Theory
How much time will it take to parse?

For each diff (<= n)
For each i (<= n)

For each rule X → Y Z
For each split point k
Do constant work

Total time: |rules|*n3

Y Z

X

i k j

Runtime: Practice

Parsing with the vanilla treebank grammar:

Why’s it worse in practice?
Longer sentences “unlock” more of the grammar
All kinds of systems issues don’t scale

~ 20K Rules

(not an
optimized
parser!)

Observed
exponent:

3.6

Rule State Reachability

Many states are more likely to match larger spans!

Example: NP CC •

NP CC

0 nn-1

1 Alignment

Example: NP CC NP •

NP CC

0 nn-k-1
n AlignmentsNP

n-k

(Speech) Lattices
There was nothing magical about words spanning
exactly one position.
When working with speech, we generally don’t know
how many words there are, or where they break.
We can represent the possibilities as a lattice and
parse these just as easily.

I
awe

of

van

eyes

saw
a

‘ve

an

Ivan

A Simple Chart Parser
Chart parsers are sparse dynamic programs
Ingredients:

Nodes: positions between words
Edges: spans of words with labels, represent the set of trees
over those words rooted at x
A chart: records which edges we’ve built
An agenda: a holding pen for edges (a queue)

We’re going to figure out:
What edges can we build?
All the ways we built them.

0 1 2 3 4 5
critics write reviews with computers

PP

4

Word Edges
An edge found for the first time is called discovered.
Edges go into the agenda on discovery.
To initialize, we discover all word edges.

critics write reviews with computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]

Unary Projection
When we pop an word edge off the agenda, we check
the lexicon to see what tag edges we can build from it

critics write reviews with computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4]

The “Fundamental Rule”

When we pop edges off of the agenda:
Check for unary projections (NNS → critics, NP → NNS)

Combine with edges already in our chart (this is sometimes called the
fundamental rule)

Enqueue resulting edges (if newly discovered)
Record backtraces (called traversals)
Stick the popped edge in the chart

Queries a chart must support:
Is edge X:[i,j] in the chart?
What edges with label Y end at position j?
What edges with label Z start at position i?

Y[i,j] with X → Y forms X[i,j]

Y[i,j] and Z[j,k] with X → Y Z form X[i,k]

Y Z

X

An Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S
ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Exploiting Substructure
Each edge records all the ways it was built (locally)

Can recursively extract trees
A chart may represent too many parses to enumerate (how
many?)

0 1 2 3 4 5
critics write reviews with computers

NP PP

VP NP

6 7
new art

NP

NP

VP

S

JJ NNS VBP

Order Independence
A nice property:

It doesn’t matter what policy we use to order the
agenda (FIFO, LIFO, random).

Why? Invariant: before popping an edge:
Any edge X[i,j] that can be directly built from chart edges and
a single grammar rule is either in the chart or in the agenda.
Convince yourselves this invariant holds!

This will not be true once we get weighted parsers.

5

Empty Elements
Sometimes we want to posit nodes in a parse tree that
don’t contain any pronounced words:

These are easy to add to our chart parser!
For each position i, add the “word” edge ε:[i,i]
Add rules like NP → ε to the grammar
That’s it!

0 1 2 3 4 5
I like to parse empties

ε ε ε ε ε ε

NP VP

I want John to parse this sentence

I want [] to parse this sentence

