

A Recursive Parser

```
bestScore(X,i,j,s)
    if (j = i+1)
        return tagScore(X,s[i])
    else
        return max score(X->YZ) *
                bestScore(Y,i,k) *
                bestScore(Z,k,j)
```

- Will this parser work?
- Why or why not?
- Memory requirements?

An Example

A Memoized Parser

- One small change:

```
bestScore(X,i,j,s)
    if (scores[X][i][j] == null)
        if (j = i+1)
            score = tagScore(X,s[i])
            else
            score = max score(X->YZ) *
                                    bestScore(Y,i,k) *
                                    bestScore(Z,k,j)
            scores[X][i][j] = score
    return scores[X][i][j]
```


Time: Theory

- How much time will it take to parse?
- Have to fill each cache element (at worst)
- Each time the cache fails, we have to:
- Iterate over each rule $X \rightarrow Y Z$ and split point k
- Do constant work for the recursive calls
- Total time: |rules|*n ${ }^{3}$
- Cubic time
- Something like 5 sec for an unoptimized parse of a 20 ard sentences
- What about sparsity?

Unary Rules
- Unary rules? ```bestScore(X,i,j,s) if (j = i+1) else return tagScore(X,s[i]) return max max score(X->YZ) * bestScore(Y,i,k) * bestScore(Z,k,j) max score(X->Y) * bestScore(Y,i,j)```

CNF + Unary Closure

- We need unaries to be non gclic
- Can address by pre-calculating the unary closure
- Rather than having zero or more unaries, always have exactly one

$$
\left.\begin{array}{ccc}
\text { SBAR } \\
\vdots \\
\mathrm{s} \\
1 \\
\mathrm{VP}
\end{array}\right) \quad \square \quad \begin{gathered}
\text { SBAR } \\
\hline
\end{gathered}
$$

- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

bestScoreB(X,i,j,s)
return max max score(X->YZ) *
bestScoreU(Y,i,k) *
bestScoreU(Z,k,j)
bestScoreU(X,i,j,s)
if ($\mathrm{j}=\mathrm{i}+1$)
return tagScore(X, s[i])
else
return max max score (X->Y) * bestScoreB(Y,i,j)

A Bottom-Up Parser (CKY)

Efficient CKY

- Lots of tricks to make CKY efficient
- Most of them are little engineering details:
- E.g., first choose k, then enumerate through the $Y:[i, k]$ which are non-zero, then loop through rules by left child.
- Optimal layout of the dynamic program depends on grammar, input, even system details.
- Another kind is more critical:
- Many X:[i,j] can be suppressed on the basis of the input string
- We'll see this next class as figures-of-merit or A* heuristics

```
bestScore(s)
```

for (i : [0, $\mathrm{n}-1]$) for (X : tags[s[i]]) score[x][i][i+1] = tagScore(X, s[i])
for (diff : $[2, n]$) for (i : [0,n-diff])

$j=i+d i f f$ for (X->YZ : rule)
for (k : [i+1, j-1])
score[X][i][j] $=\max \operatorname{score[X][i][j],~}$ score(X->YZ) * score[Y][i][k] * score[z][k][j]

Memory: Practice

- Memory:
- Still requires memory to hold the score table
- Pruning:
- score[X][i][j] can get too large (when?)
- can instead keep beams scores[i][j] which only record scores for the top K symbols found to date for the span $[i, j]$

Time: Theory

- How much time will it take to parse?
- For each diff (<= n)
- For each i (<= n)
- For each rule $X \rightarrow Y Z$
- For each split point k Do constant work

- Total time: |rules|*n³

Runtime: Practice

- Parsing with the vanilla treebank grammar:

[^0]- Why's it worse in practice?
- Longer sentences "unlock" more of the grammar
- All kinds of systems issues don't scale

Rule State Reachability

Example: NP CC NP •

- Many states are more likely to match larger spans!

(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

A Simple Chart Parser

- Chart parsers are sparse dynamic programs
- Ingredients:
- Nodes: positions between words
- Edges: spans of words with labels, represent the set of trees over those words rooted at x
- A chart: records which edges we've built
- An agenda: a holding pen for edges (a queue)
- We're going to figure out:
- What edges can we build?
- All the ways we built them.

The "Fundamental Rule"

- When we pop edges off of the agenda:
- Check for unary projections (NNS \rightarrow critics, NP \rightarrow NNS)

$$
Y[i, j] \text { with } X \rightarrow Y \text { forms } X[i, j]
$$

- Combine with edges already in our chart (this is sometimes called the fundamental rule)
$Y[i, j]$ and $Z[j, k]$ with $X \rightarrow Y Z$ form $X[i, k]$
- Enqueue resulting edges (if newly discovered)
- Record backtraces (called traversals)
- Stick the popped edge in the chart
- Queries a chart must support
- Is edge $X:[i, j]$ in the chart?
- What edges with label Y end at position j ?

- What edges with label Z start at position i? \qquad

Exploiting Substructure

- Each edge records all the ways it was built (locally)
- Can recursively extract trees
- A chart may represent too many parses to enumerate (how many?)

Unary Projection

- When we pop an word edge off the agenda, we check the lexicon to see what tag edges we can build from it

Order Independence

- A nice property:
- It doesn't matter what policy we use to order the agenda (FIFO, LIFO, random).
- Why? Invariant: before popping an edge:
- Any edge $X[i, j]$ that can be directly built from chart edges and a single grammar rule is either in the chart or in the agenda.
- Convince yourselves this invariant holds!
- This will not be true once we get weighted parsers.

Empty Elements

- Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words:

I want John to parse this sentence

- These are easy to add to oprse this sentence
- For each position i, add the "word" edge ε :[i,i]
- Add rules like NP $\rightarrow \varepsilon$ to the grammar
- That's it!

[^0]: -20K Rules
 (not an optimized parser!)
 Observed exponent: 3.6

