
1

Statistical NLP
Spring 2007

Lecture 16: PCFGs
Dan Klein – UC Berkeley

(Speech) Lattices
There was nothing magical about words spanning
exactly one position.
When working with speech, we generally don’t know
how many words there are, or where they break.
We can represent the possibilities as a lattice and
parse these just as easily.

I
awe

of

van

eyes

saw
a

‘ve

an

Ivan

2

A Simple Chart Parser
Chart parsers are sparse dynamic programs
Ingredients:

Nodes: positions between words
Edges: spans of words with labels, represent the set of trees
over those words rooted at x
A chart: records which edges we’ve built
An agenda: a holding pen for edges (a queue)

We’re going to figure out:
What edges can we build?
All the ways we built them.

0 1 2 3 4 5
critics write reviews with computers

PP

Word Edges
An edge found for the first time is called discovered.
Edges go into the agenda on discovery.
To initialize, we discover all word edges.

critics write reviews with computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]

3

Unary Projection
When we pop an word edge off the agenda, we check
the lexicon to see what tag edges we can build from it

critics write reviews with computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4]

The “Fundamental Rule”

When we pop edges off of the agenda:
Check for unary projections (NNS → critics, NP → NNS)

Combine with edges already in our chart (this is sometimes called the
fundamental rule)

Enqueue resulting edges (if newly discovered)
Record backtraces (called traversals)
Stick the popped edge in the chart

Queries a chart must support:
Is edge X:[i,j] in the chart?
What edges with label Y end at position j?
What edges with label Z start at position i?

Y[i,j] with X → Y forms X[i,j]

Y[i,j] and Z[j,k] with X → Y Z form X[i,k]

Y Z

X

4

An Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S
ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Exploiting Substructure
Each edge records all the ways it was built (locally)

Can recursively extract trees
A chart may represent too many parses to enumerate (how
many?)

0 1 2 3 4 5
critics write reviews with computers

NP
PP

VP NP

6 7
new art

NP

NP

VP

S

JJ NNS VBP

5

Order Independence
A nice property:

It doesn’t matter what policy we use to order the
agenda (FIFO, LIFO, random).

Why? Invariant: before popping an edge:
Any edge X[i,j] that can be directly built from chart edges and
a single grammar rule is either in the chart or in the agenda.
Convince yourselves this invariant holds!

This will not be true once we get weighted parsers.

Empty Elements
Sometimes we want to posit nodes in a parse tree that
don’t contain any pronounced words:

These are easy to add to our chart parser!
For each position i, add the “word” edge ε:[i,i]
Add rules like NP → ε to the grammar
That’s it!

0 1 2 3 4 5
I like to parse empties

ε ε ε ε ε ε

NP VP

I want John to parse this sentence

I want [] to parse this sentence

6

Treebank Sentences

Treebank Parsing in 20 sec

Need a PCFG for broad coverage parsing.
Can take a grammar right off the trees (doesn’t work well):

Better results by enriching the grammar (e.g., lexicalization).
Can also get reasonable parsers without lexicalization.

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

7

N-Ary Rules, Grammar States

Often we want to write grammar rules like

which are not binary.

We can work with these rules by introducing new intermediate
symbols (states) into our grammar:

VP → VBD NP PP PP

VP

[VP → VBD NP •]

VBD NP PP PP

[VP → VBD NP PP •]

PLURAL NOUN

NOUNDET
DET

ADJ

NOUN

NP NP

CONJ

NP PP

Treebank Grammar Scale

Treebank grammars can be enormous!
As a set of FSTs, the raw grammar has ~10K states (why?).
Better parsers usually make the grammars larger, not smaller.

8

PCFGs and Independence

Symbols in a PCFG define independence assumptions:

At any node, the material inside that node is independent of the
material outside that node, given the label of that node.
Any information that statistically connects behavior inside and
outside a node must flow through that node.

NP

S

VP
S → NP VP

NP → DT NN

NP

Non-Independence I

Independence assumptions are often too strong.

Example: the expansion of an NP is highly dependent
on the parent of the NP (i.e., subjects vs. objects).
Also: the subject and object expansions are correlated!

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

9

Non-Independence II
Who cares?

NB, HMMs, all make false assumptions!
For generation, consequences would be obvious.
For parsing, does it impact accuracy?

Symptoms of overly strong assumptions:
Rewrites get used where they don’t belong.
Rewrites get used too often or too rarely.

In the PTB, this
construction is
for possessives

Breaking Up the Symbols

We can relax independence assumptions by
encoding dependencies into the PCFG symbols:

What are the most useful “features” to encode?

Parent annotation
[Johnson 98]

Marking
possessive NPs

10

Annotations

Annotations split the grammar categories into sub-
categories (in the original sense).

Conditioning on history vs. annotating
P(NP^S → PRP) is a lot like P(NP → PRP | S)
P(NP-POS → NNP POS) isn’t history conditioning.

Feature / unification grammars vs. annotation
Can think of a symbol like NP^NP-POS as
NP [parent:NP, +POS]

After parsing with an annotated grammar, the
annotations are then stripped for evaluation.

Lexicalization

Lexical heads important for certain classes
of ambiguities (e.g., PP attachment):

Lexicalizing grammar creates a much
larger grammar. (cf. next week)

Sophisticated smoothing needed
Smarter parsing algorithms
More data needed

How necessary is lexicalization?
Bilexical vs. monolexical selection
Closed vs. open class lexicalization

11

Unlexicalized PCFGs

What is meant by an “unlexicalized” PCFG?
Grammar not systematically specified to the level of lexical items

NP [stocks] is not allowed
NP^S-CC is fine

Closed vs. open class words (NP^S [the])
Long tradition in linguistics of using function words as features or
markers for selection
Contrary to the bilexical idea of semantic heads
Open-class selection really a proxy for semantics

It’s kind of a gradual transition from unlexicalized to
lexicalized (but heavily smoothed) grammars.

Typical Experimental Setup

Corpus: Penn Treebank, WSJ

Accuracy – F1: harmonic mean of per-node labeled
precision and recall.
Here: also size – number of symbols in grammar.

Passive / complete symbols: NP, NP^S
Active / incomplete symbols: NP → NP CC •

23sectionTest:
22 (here, first 20 files)sectionDevelopment:
02-21sectionsTraining:

12

Multiple Annotations
Each annotation done in succession

Order does matter
Too much annotation and we’ll have sparsity issues

Horizontal Markovization

70%

71%

72%

73%

74%

0 1 2v 2 inf

Horizontal Markov Order

0

3000

6000

9000

12000

0 1 2v 2 inf

Horizontal Markov Order

Sy
m

bo
ls

Order 1 Order ∞

13

Vertical Markovization

Vertical Markov
order: rewrites
depend on past k
ancestor nodes.
(cf. parent
annotation)

Order 1 Order 2

72%
73%
74%
75%
76%
77%
78%
79%

1 2v 2 3v 3

Vertical Markov Order

0
5000

10000

15000
20000
25000

1 2v 2 3v 3

Vertical Markov Order

Sy
m

bo
ls

Vertical and Horizontal

Examples:
Raw treebank: v=1, h=∞
Johnson 98: v=2, h=∞
Collins 99: v=2, h=2
Best F1: v=3, h=2v

0 1 2v 2 inf
1

2

3

66%
68%
70%
72%
74%
76%
78%
80%

Horizontal Order

Vertical
Order 0 1 2v 2 inf

1

2

3

0
5000

10000
15000
20000
25000

Sy
m

bo
ls

Horizontal Order

Vertical
Order

7.5K77.8Base: v=h=2v
SizeF1Model

14

Unary Splits

Problem: unary
rewrites used to
transmute
categories so a
high-probability
rule can be
used.

7.5K77.8Base
8.0K78.3UNARY

SizeF1Annotation

Solution: Mark
unary rewrite
sites with -U

Tag Splits

Problem: Treebank
tags are too coarse.

Example: Sentential,
PP, and other
prepositions are all
marked IN.

Partial Solution:
Subdivide the IN tag. 8.0K78.3Previous

8.1K80.3SPLIT-IN

SizeF1Annotation

15

Other Tag Splits

UNARY-DT: mark demonstratives as DT^U
(“the X” vs. “those”)
UNARY-RB: mark phrasal adverbs as RB^U
(“quickly” vs. “very”)
TAG-PA: mark tags with non-canonical
parents (“not” is an RB^VP)
SPLIT-AUX: mark auxiliary verbs with –AUX
[cf. Charniak 97]
SPLIT-CC: separate “but” and “&” from other
conjunctions
SPLIT-%: “%” gets its own tag.

9.0K81.6

9.1K81.7

8.1K80.4

8.1K80.5

8.5K81.2

9.3K81.8

SizeF1

Treebank Splits

The treebank comes
with some
annotations (e.g.,
-LOC, -SUBJ, etc).

Whole set together
hurt the baseline.
One in particular is
very useful (NP-
TMP) when
pushed down to
the head tag
(why?).
Can mark gapped
S nodes as well.

9.3K81.8Previous
9.6K82.2NP-TMP
9.7K82.3GAPPED-S

SizeF1Annotation

16

Yield Splits

Problem: sometimes the
behavior of a category
depends on something inside
its future yield.

Examples:
Possessive NPs
Finite vs. infinite VPs
Lexical heads!

Solution: annotate future
elements into nodes.

Lexicalized grammars do this (in
very careful ways – why?).

9.7K82.3Previous
9.8K83.1POSS-NP
10.5K85.7SPLIT-VP

SizeF1Annotation

Distance / Recursion Splits

Problem: vanilla PCFGs
cannot distinguish
attachment heights.

Solution: mark a property of
higher or lower sites:

Contains a verb.
Is (non)-recursive.

Base NPs [cf. Collins 99]
Right-recursive NPs 10.5K85.7Previous

11.7K86.0BASE-NP
14.1K86.9DOMINATES-V
15.2K87.0RIGHT-REC-NP

SizeF1Annotation

NP

VP

PP

NP

v

-v

17

A Fully Annotated (Unlex) Tree

Some Test Set Results

Beats “first generation” lexicalized parsers.
Lots of room to improve – more complex models next.

67.10.9088.688.688.7Collins 99

62.11.0087.487.587.4Charniak 97

60.31.1086.385.786.9Unlexicalized

59.91.1486.085.886.3Collins 96

56.61.2684.784.684.9Magerman 95

0 CBCBF1LRLPParser

18

The Game of Designing a Grammar

Annotation refines base treebank symbols to
improve statistical fit of the grammar

Parent annotation [Johnson ’98]

Annotation refines base treebank symbols to
improve statistical fit of the grammar

Parent annotation [Johnson ’98]
Head lexicalization [Collins ’99, Charniak ’00]

The Game of Designing a Grammar

19

Annotation refines base treebank symbols to
improve statistical fit of the grammar

Parent annotation [Johnson ’98]
Head lexicalization [Collins ’99, Charniak ’00]
Automatic clustering?

The Game of Designing a Grammar

Manual Annotation

Manually split categories
NP: subject vs object
DT: determiners vs demonstratives
IN: sentential vs prepositional

Advantages:
Fairly compact grammar
Linguistic motivations

Disadvantages:
Performance leveled out
Manually annotated

86.3Klein & Manning ’03
72.6Naïve Treebank Grammar
F1Model

20

Automatic Annotation Induction

Advantages:
Automatically learned:
Label all nodes with latent variables.
Same number k of subcategories
for all categories.

Disadvantages:
Grammar gets too large
Most categories are
oversplit while others
are undersplit.

86.7Matsuzaki et al. ’05
86.3Klein & Manning ’03
F1Model

Forward

Learning Latent Annotations

EM algorithm:

X1

X2
X7X4

X5 X6X3

He was right

.

Brackets are known
Base categories are known
Only induce subcategories

Just like Forward-Backward
for HMMs. Backward

21

Refinement of the DT tag

DT

DT-1 DT-2 DT-3 DT-4

Hierarchical refinement

22

Adaptive Splitting

Want to split complex categories more
Idea: split everything, roll back splits which
were least useful

Adaptive Splitting

Evaluate loss in likelihood from removing each
split =

Data likelihood with split reversed
Data likelihood with split

No loss in accuracy when 50% of the splits are
reversed.

23

Adaptive Splitting Results

74
76

78
80
82

84
86
88

90

100 300 500 700 900 1100 1300 1500 1700
Total Number of grammar symbols

P
ar

si
ng

 a
cc

ur
ac

y
(F

1)

50% Merging
Hierarchical Training
Flat Training

89.5With 50% Merging
88.4Previous
F1Model

0

5

10

15

20

25

30

35

40

N
P

VP PP

AD
VP S

AD
JP

SB
AR Q

P

W
H

N
P

PR
N

N
X

SI
N

V

PR
T

W
H

PP SQ

C
O

N
JP

FR
AG

N
AC U
C

P

W
H

AD
VP IN
TJ

SB
AR

Q

R
R

C

W
H

AD
JP X

R
O

O
T

LS
T

Number of Phrasal Subcategories

24

Number of Lexical Subcategories

0

10

20

30

40

50

60

70
N

N
P JJ

N
N

S
N

N
V

B
N

R
B

V
B

G V
B

V
B

D
C

D IN
V

B
Z

V
B

P D
T

N
N

P
S

C
C

JJ
R

JJ
S :

P
R

P
P

R
P

$
M

D
R

B
R

W
P

P
O

S
P

D
T

W
R

B
-L

R
B

- .
E

X
W

P
$

W
D

T
-R

R
B

- ''
FW R
B

S TO
$

U
H , `̀

S
Y

M R
P LS
#

Final Results

F1
all words

F1
≤ 40 words

89.790.2Petrov et. al. 06

89.690.1Charniak & Johnson ’05

88.288.6Collins ’99

86.186.7Matsuzaki et al. ’05

85.786.3Klein & Manning ’03

Parser

25

Learned Splits

Proper Nouns (NNP):

Personal pronouns (PRP):

WallSanNewNNP-15
PetersNoriegaBushNNP-1

StreetFranciscoYorkNNP-3

L.E.J.NNP-2
NNP-12
NNP-14

JamesRobertJohn
Sept.Nov.Oct.

himthemitPRP-2
PRP-1
PRP-0

theyheit
IHeIt

Relative adverbs (RBR):

Cardinal Numbers (CD):

RBR-2
RBR-1
RBR-0

laterEarlierearlier
Morelessmore
higherlowerfurther

trillionbillionmillionCD-11
100501CD-0
31301CD-3
345878CD-9

CD-4
CD-7

198819901989
Threetwoone

Learned Splits

