Statistical NLP Spring 2007

Lecture 16: PCFGs

Dan Klein – UC Berkeley

(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

A Simple Chart Parser

- Chart parsers are sparse dynamic programs
- Ingredients:
 - Nodes: positions between words
 - Edges: spans of words with labels, represent the set of trees over those words rooted at x
 - A chart: records which edges we've built
 - An agenda: a holding pen for edges (a queue)
- We're going to figure out:
 - What edges can we build?
 - All the ways we built them.

Word Edges

- An edge found for the first time is called discovered. Edges go into the agenda on discovery.
- To initialize, we discover all word edges.

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]

Unary Projection

• When we pop an word edge off the agenda, we check the lexicon to see what tag edges we can build from it

> write[1,2] reviews[2,3] with[3.4] computers[4.5] critics[0,1] NNS[0,1] VBP[1,2] NNS[2,3] NNS[3,4] IN[3,4]

critics write reviews with computers

The "Fundamental Rule"

- When we pop edges off of the agenda:
 Check for unary projections (NNS → critics, NP → NNS)

Y[i,j] with $X \rightarrow Y$ forms X[i,j]

Combine with edges already in our chart (this is sometimes called the fundamental rule)

Y[i,j] and Z[j,k] with $X \rightarrow Y Z$ form X[i,k]

- Enqueue resulting edges (if newly discovered)
- Record backtraces (called traversals)
- Stick the popped edge in the chart
- Queries a chart must support:

 - Is edge X:[i,j] in the chart?
 What edges with label Y end at position j?
 - What edges with label Z start at position i?

Order Independence

- A nice property:
 - It doesn't matter what policy we use to order the agenda (FIFO, LIFO, random).
 - Why? Invariant: before popping an edge:
 - Any edge X[i,j] that can be directly built from chart edges and a single grammar rule is either in the chart or in the agenda.
 - Convince yourselves this invariant holds!
 - This will not be true once we get weighted parsers.

Empty Elements • Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words: I want John to parse this sentence • These are easy to add to our chart parser! • For each position i, add the "word" edge ɛ:[i,i] • Add rules like NP → ɛ to the grammar • That's it!

Treebank Sentences

N-Ary Rules, Grammar States

Often we want to write grammar rules like

$$VP \rightarrow VBD NP PP PP$$

which are not binary.

 We can work with these rules by introducing new intermediate symbols (states) into our grammar:

$$\begin{array}{c|c} & & & & \\ \hline [VP \rightarrow VBD \ NP \ PP \ \bullet] \\ \hline [VP \rightarrow VBD \ NP \ \bullet] \\ \hline VBD \ NP \ PP \ PP \ PP \end{array}$$

PCFGs and Independence

• Symbols in a PCFG define independence assumptions:

$$S \rightarrow NP VP$$
 $NP \rightarrow DT NN$

- At any node, the material inside that node is independent of the material outside that node, given the label of that node.
- Any information that statistically connects behavior inside and outside a node must flow through that node.

Non-Independence I Independence assumptions are often too strong. All NPs NPs under S NPs under VP 23% 11% 9% 9% 9% 9% 11% NP PP DT NN PRP NP PP DT NN PRP Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects). Also: the subject and object expansions are correlated!

Non-Independence II

- Who cares?
 - NB, HMMs, all make false assumptions!
 - For generation, consequences would be obvious.
 - For parsing, does it impact accuracy?
- Symptoms of overly strong assumptions:
 - Rewrites get used where they don't belong.
 - Rewrites get used too often or too rarely.

Breaking Up the Symbols

 We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation

What are the most useful "features" to encode?

Annotations

- Annotations split the grammar categories into subcategories (in the original sense).
- Conditioning on history vs. annotating
 - $P(NP^S \rightarrow PRP)$ is a lot like $P(NP \rightarrow PRP \mid S)$
 - P(NP-POS → NNP POS) isn't history conditioning.
- Feature / unification grammars vs. annotation
 - Can think of a symbol like NP^NP-POS as NP [parent:NP, +POS]
- After parsing with an annotated grammar, the annotations are then stripped for evaluation.

Lexicalization

- Lexical heads important for certain classes of ambiguities (e.g., PP attachment):
- Lexicalizing grammar creates a much larger grammar. (cf. next week)
 - Sophisticated smoothing needed
 - Smarter parsing algorithms
 - More data needed
- How necessary is lexicalization?
 - · Bilexical vs. monolexical selection
 - Closed vs. open class lexicalization

Unlexicalized PCFGs

- What is meant by an "unlexicalized" PCFG?
 - Grammar not systematically specified to the level of lexical items
 - NP [stocks] is not allowed
 - NP^S-CC is fine
 - Closed vs. open class words (NP^S [the])
 - Long tradition in linguistics of using function words as features or markers for selection
 - Contrary to the bilexical idea of semantic heads
 - Open-class selection really a proxy for semantics
- It's kind of a gradual transition from unlexicalized to lexicalized (but heavily smoothed) grammars.

Typical Experimental Setup

• Corpus: Penn Treebank, WSJ

- Accuracy F1: harmonic mean of per-node labeled precision and recall.
- Here: also size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - ${\color{red}\bullet}$ Active / incomplete symbols: NP \rightarrow NP CC ${\color{red}\bullet}$

Multiple Annotations

- Each annotation done in succession
 - Order does matter
 - Too much annotation and we'll have sparsity issues

- Problem: sometimes the behavior of a category depends on something inside its future yield.
- Examples:
 - Possessive NPs
 - Finite vs. infinite VPs
 - Lexical heads!
- Solution: annotate future elements into nodes.
 - Lexicalized grammars do this (in very careful ways – why?).

Annotation	F1	Size
Previous	82.3	9.7K
POSS-NP	83.1	9.8K
SPLIT-VP	85.7	10.5K

Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

Annotation	F1	Size
Previous	85.7	10.5K
BASE-NP	86.0	11.7K
DOMINATES-V	86.9	14.1K
RIGHT-REC-NP	87.0	15.2K

A Fully Annotated (Unlex) Tree

Some Test Set Results

Parser	ΙP	LR	F1	СВ	0 CB
raisei	LF	LIX		CD	0 CD
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Unlexicalized	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Lots of room to improve more complex models next.

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]

The Game of Designing a Grammar

- Annotation refines base treebank symbols to improve statistical fit of the grammar
 - Parent annotation [Johnson '98]
 - Head lexicalization [Collins '99, Charniak '00]
 - Automatic clustering?

Manual Annotation

- Manually split categories
 - NP: subject vs object
 - DT: determiners vs demonstratives
 - IN: sentential vs prepositional
- PRP VBD ADJP

 He was right

S

VΡ

- Advantages:
 - Fairly compact grammar
 - Linguistic motivations
- Disadvantages:
 - Performance leveled out
 - Manually annotated

Model	F1
Naïve Treebank Grammar	72.6
Klein & Manning '03	86.3

Automatic Annotation Induction

- Advantages:
 - Automatically learned:
 Label all nodes with latent variables.
 Same number k of subcategories for all categories.
- NP VP ...
 PRP VBD ADJP ...
 He was right
- Disadvantages:
 - Grammar gets too large
 - Most categories are oversplit while others are undersplit.

Model	F1
Klein & Manning '03	86.3
Matsuzaki et al. '05	86.7

Learning Latent Annotations EM algorithm: Brackets are known Base categories are known Only induce subcategories S[X_1] NP[X_2] VP[X_4] [X_7] PRP[X_3] VBD[X_5] ADJP[X_6] He was right Just like Forward-Backward for HMMs. Backward

Refinement of the DT tag DT the (0.50) a (0.24) the (0.80) this (0.39) some (0.20) a (0.61) the (0.19) that (0.28) all (0.19) The (0.15) an (0.11) a (0.01) those (0.12) DT 2 DT 1 DT 3 DT 4

Adaptive Splitting - Want to split complex categories more - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split everything, roll back splits which were least useful - Idea: split

Final Results		
Parser	F1 ≤ 40 words	F1 all words
Klein & Manning '03	86.3	85.7
Matsuzaki et al. '05	86.7	86.1
Collins '99	88.6	88.2
Charniak & Johnson '05	90.1	89.6
Petrov et. al. 06	90.2	89.7

Learned Splits • Proper Nouns (NNP): NNP-14 Nov. Sept. NNP-12 John Robert James NNP-2 E. L. J. NNP-1 Bush Peters Noriega NNP-15 New San Wall NNP-3 York Francisco Street Personal pronouns (PRP): PRP-0 lt 1 PRP-1 it they he him PRP-2 it them

