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Statistical NLP
Spring 2007

Lecture 17: Lexicalized Parsing
Dan Klein – UC Berkeley

(Speech) Lattices
There was nothing magical about words spanning 
exactly one position.
When working with speech, we generally don’t know 
how many words there are, or where they break.
We can represent the possibilities as a lattice and 
parse these just as easily.
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A Simple Chart Parser
Chart parsers are sparse dynamic programs
Ingredients:

Nodes: positions between words
Edges: spans of words with labels, represent the set of trees 
over those words rooted at x
A chart: records which edges we’ve built
An agenda: a holding pen for edges (a queue)

We’re going to figure out:
What edges can we build?
All the ways we built them.

0 1 2 3 4 5
critics write reviews with computers

PP

Word Edges
An edge found for the first time is called discovered.  
Edges go into the agenda on discovery.
To initialize, we discover all word edges.

critics         write         reviews         with         computers

critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

0 1 2 3 4 5

AGENDA

CHART [EMPTY]
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Unary Projection
When we pop an word edge off the agenda, we check 
the lexicon to see what tag edges we can build from it

critics         write         reviews         with         computers

0 1 2 3 4 5
critics write reviews with computers

critics[0,1] write[1,2]
NNS[0,1]

reviews[2,3] with[3,4] computers[4,5]
VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4]

The “Fundamental Rule”

When we pop edges off of the agenda:
Check for unary projections (NNS → critics, NP → NNS)

Combine with edges already in our chart (this is sometimes called the 
fundamental rule)

Enqueue resulting edges (if newly discovered)
Record backtraces (called traversals)
Stick the popped edge in the chart

Queries a chart must support:
Is edge X:[i,j] in the chart?
What edges with label Y end at position j?
What edges with label Z start at position i? 

Y[i,j] with X → Y forms  X[i,j]

Y[i,j] and Z[j,k] with X → Y Z form  X[i,k]

Y Z

X
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An Example

0 1 2 3 4 5
critics write reviews with computers

NNS VBP NNS IN NNS

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] NP[2,3] NP[4,5]

NP NP NP

VP[1,2] S[0,2]

VP

PP[3,5]

PP

VP[1,3]

VP

ROOT[0,2]

S
ROOT

S
ROOT

S[0,3] VP[1,5]

VP

NP[2,5]

NP

ROOT[0,3] S[0,5] ROOT[0,5]

S

ROOT

Exploiting Substructure
Each edge records all the ways it was built (locally)

Can recursively extract trees
A chart may represent too many parses to enumerate (how 
many?)

0 1 2 3 4 5
critics write reviews with computers

NP
PP

VP NP
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Order Independence
A nice property:

It doesn’t matter what policy we use to order the 
agenda (FIFO, LIFO, random).

Why?  Invariant: before popping an edge:
Any edge X[i,j] that can be directly built from chart edges and 
a single grammar rule is either in the chart or in the agenda.
Convince yourselves this invariant holds!

This will not be true weighted parsers:
Instead must also insure that an edge has best score when 
added to the chart
Sufficient (but not necessary) to order agenda items by 
current best score

Problems with PCFGs?

If we do no annotation, these trees differ only in one rule:
VP → VP PP
NP → NP PP

Parse will go one way or the other, regardless of words
We addressed this in one way with unlexicalized grammars (how?)
Lexicalization allows us to be sensitive to specific words
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Problems with PCFGs

What’s different between basic PCFG scores here?
What (lexical) correlations need to be scored?

Problems with PCFGs

Another example of PCFG indifference
Left structure far more common
How to model this?
Really structural: “chicken with potatoes with gravy”
Lexical parsers model this effect, but not by virtue of being lexical
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Lexicalized Trees

Add “headwords” to 
each phrasal node

Syntactic vs. semantic 
heads
Headship not in (most) 
treebanks
Usually use head rules, 
e.g.:

NP:
Take leftmost NP
Take rightmost N*
Take rightmost JJ
Take right child

VP:
Take leftmost VB*
Take leftmost VP
Take left child

Lexicalized PCFGs?
Problem: we now have to estimate probabilities like

Never going to get these atomically off of a treebank

Solution: break up derivation into smaller steps
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Lexical Derivation Steps
Simple derivation of a local tree [simplified Charniak 97]

VP[saw]

VBD[saw] NP[her] NP[today] PP[on]

VBD[saw]

(VP->VBD •)[saw]

NP[today]

(VP->VBD...NP •)[saw]

NP[her]

(VP->VBD...NP •)[saw]

(VP->VBD...PP •)[saw]

PP[on]

VP[saw]

Still have to smooth 
with mono- and non-

lexical backoffs

Lexical Derivation Steps
Another derivation of a local tree [Collins 99]

Choose a head tag and word

Choose a complement bag

Generate children (incl. adjuncts)

Recursively derive children
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Naïve Lexicalized Parsing
Can, in principle, use CKY on lexicalized PCFGs

O(Rn3) time and O(Sn2) memory
But R = rV2 and S = sV
Result is completely impractical (why?)
Memory: 10K rules * 50K words * (40 words)2 * 8 bytes ≈ 6TB

Can modify CKY to exploit lexical sparsity
Lexicalized symbols are a base grammar symbol and a pointer 
into the input sentence, not any arbitrary word
Result: O(rn5) time, O(sn3) 
Memory: 10K rules * (40 words)3 * 8 bytes ≈ 5GB

Lexicalized CKY

bestScore(X,i,j,h)
if (j = i+1)
return tagScore(X,s[i])

else
return 
max max score(X[h]->Y[h] Z[h’]) *

bestScore(Y,i,k,h) *
bestScore(Z,k,j,h’)

max score(X[h]->Y[h’] Z[h]) *
bestScore(Y,i,k,h’) *
bestScore(Z,k,j,h)

Y[h] Z[h’]

X[h]

i           h          k         h’          j

k,X->YZ

k,X->YZ

(VP->VBD •)[saw] NP[her]

(VP->VBD...NP •)[saw]
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Quartic Parsing
Turns out, you can do better [Eisner 99]

Gives an O(n4) algorithm
Still prohibitive in practice if not pruned

Y[h] Z[h’]

X[h]

i           h          k         h’          j

Y[h] Z

X[h]

i           h          k                     j

Dependency Parsing

Lexicalized parsers can be seen as producing dependency trees

Each local binary tree corresponds to an attachment in the 
dependency graph

questioned

lawyer witness

the the
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Dependency Parsing

Pure dependency parsing is only cubic [Eisner 99]

Some work on non-projective dependencies
Common in, e.g. Czech parsing
Can do with MST algorithms [McDonald and Pereira 05]

Y[h] Z[h’]

X[h]

i           h          k         h’          j

h h’

h

h          k         h’           

Pruning with Beams
The Collins parser prunes with 
per-cell beams [Collins 99]

Essentially, run the O(n5) CKY
Remember only a few hypotheses for 
each span <i,j>.
If we keep K hypotheses at each 
span, then we do at most O(nK2) 
work per span (why?)
Keeps things more or less cubic

Also: certain spans are forbidden 
entirely on the basis of 
punctuation (crucial for speed)

Y[h] Z[h’]

X[h]

i           h          k         h’          j
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Pruning with a PCFG
The Charniak parser prunes using a two-pass 
approach [Charniak 97+]

First, parse with the base grammar
For each X:[i,j] calculate P(X|i,j,s)

This isn’t trivial, and there are clever speed ups
Second, do the full O(n5) CKY

Skip any X :[i,j] which had low (say, < 0.0001) posterior
Avoids almost all work in the second phase!
Currently the fastest lexicalized parser

Charniak et al 06: can use more passes
Petrov et al 07: can use many more passes

Pruning with A*
You can also speed up 
the search without 
sacrificing optimality
For agenda-based 
parsers:

Can select which items to 
process first
Can do with any “figure of 
merit” [Charniak 98]
If your figure-of-merit is a 
valid A* heuristic, no loss 
of optimiality [Klein and 
Manning 03]

X

n0 i j
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Projection-Based A*

Factory  payrolls   fell    in    Sept.

NP PP

VP

S

Factory  payrolls   fell    in    Sept.

payrolls in

fell

fellFactory  payrolls   fell    in    Sept.

NP:payrolls PP:in

VP:fell

S:fellSYNTACTICπ SEMANTICπ

A* Speedup

Total time dominated by calculation of A* tables in each 
projection… O(n3)

0
10
20
30
40
50
60

0 5 10 15 20 25 30 35 40
Length

Ti
m

e 
(s

ec
) Combined Phase

Dependency Phase
PCFG Phase



14

Results
Some results

Collins 99 – 88.6 F1 (generative lexical)
Charniak and Johnson 05 – 89.7 / 91.3 F1 
(generative lexical / reranked)
Petrov et al 06 – 90.7 F1 (generative unlexical)
McClosky et al 06 – 92.1 F1 (gen + rerank + self-train)

However
Bilexical counts rarely make a difference (why?)
Gildea 01 – Removing bilexical counts costs < 0.5 F1

Bilexical vs. monolexical vs. smart smoothing

Parse Reranking

Assume the number of parses is very small
We can represent each parse T as an arbitrary feature vector ϕ(T)

Typically, all local rules are features
Also non-local features, like how right-branching the overall tree is
[Charniak and Johnson 05] gives a rich set of features
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Parse Reranking

Since the number of parses is no longer huge
Can enumerate all parses efficiently
Can use simple machine learning methods to score trees
E.g. maxent reranking: learn a binary classifier over trees where:

The top candidates are positive
All others are negative
Rank trees by P(+|T)

The best parsing numbers are from reranking systems

Shift-Reduce Parsers

Another way to derive a tree:

Parsing
No useful dynamic programming search
Can still use beam search [Ratnaparkhi 97]
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Data-oriented parsing:

Rewrite large (possibly lexicalized) subtrees in a single step

Formally, a tree-insertion grammar
Derivational ambiguity whether subtrees were generated 
atomically or compositionally
Most probable parse is NP-complete

TIG: Insertion
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Derivational Representations

Generative derivational models:

How is a PCFG a generative derivational model?

Distinction between parses and parse derivations.

How could there be multiple derivations?

Tree-adjoining grammars

Start with local trees
Can insert structure 
with adjunction 
operators
Mildly context-
sensitive
Models long-
distance 
dependencies 
naturally
… as well as other 
weird stuff that 
CFGs don’t capture 
well (e.g. cross-
serial dependencies)
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TAG: Adjunction

TAG: Long Distance
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CCG Parsing

Combinatory 
Categorial
Grammar

Fully (mono-) 
lexicalized 
grammar
Categories encode 
argument 
sequences
Very closely 
related to the 
lambda calculus 
(more later)
Can have spurious 
ambiguities (why?)

Digression: Is NL a CFG?
Cross-serial dependencies in Dutch


