
1

Statistical NLP
Spring 2007

Lecture 2: Language Models
Dan Klein – UC Berkeley

Speech in a Slide (or Three)
Speech input is an acoustic wave form

s p ee ch l a b

Graphs from Simon Arnfield’s web tutorial on speech, Sheffield:
http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

Some later bits from Joshua Goodman’s LM tutorial

“l” to “a”
transition:

Frequency gives pitch; amplitude gives volume
sampling at ~8 kHz phone, ~16 kHz mic (kHz=1000 cycles/sec)

Fourier transform of wave displayed as a spectrogram
darkness indicates energy at each frequency

s p ee ch l a b

fre
qu

en
cy

am
pl

it u
de

Spectral Analysis Acoustic Feature Sequence

Time slices are translated into acoustic feature vectors
(~15 real numbers per slice, details later in the term)

Now we have to figure out a mapping from sequences of
acoustic observations to words.

fre
qu

en
cy

……………………………………………..a12a13a12a14a14………..

The Speech Recognition Problem
We want to predict a sentence given an acoustic sequence:

The noisy channel approach:
Build a generative model of production (encoding)

To decode, we use Bayes’ rule to write

Now, we have to find a sentence maximizing this product

Why is this progress?

)|(maxarg* asPs
s

=

)|()(),(saPsPsaP =

)|(maxarg* asPs
s

=

)(/)|()(maxarg aPsaPsP
s

=

)|()(maxarg saPsP
s

=

Just a Code?

“Also knowing nothing official about, but having
guessed and inferred considerable about, the
powerful new mechanized methods in
cryptography—methods which I believe succeed
even when one does not know what language has
been coded—one naturally wonders if the problem
of translation could conceivably be treated as a
problem in cryptography. When I look at an article
in Russian, I say: ‘This is really written in English,
but it has been coded in some strange symbols. I
will now proceed to decode.’ ”

Warren Weaver (1955:18, quoting a letter he wrote in 1947)

2

MT System Components

source
P(e)

e f

decoder
observed

argmax P(e|f) = argmax P(f|e)P(e)
e e

e f
best

channel
P(f|e)

Language Model Translation Model

Other Noisy-Channel Processes
Handwriting recognition

OCR

Spelling Correction

Translation

)|()()|(textstrokesPtextPstrokestextP ∝

)|()()|(textpixelsPtextPpixelstextP ∝

)|()()|(texttyposPtextPtypostextP ∝

)|()()|(englishfrenchPenglishPfrenchenglishP ∝

Probabilistic Language Models
Want to build models which assign scores to sentences.

P(I saw a van) >> P(eyes awe of an)
Not really grammaticality: P(artichokes intimidate zippers) ≈ 0

One option: empirical distribution over sentences?
Problem: doesn’t generalize (at all)

Two ways of generalizing
Decomposition: sentences generated in small steps which can
be recombined in other ways
Smoothing: allow for the possibility of unseen events

N-Gram Language Models
No loss of generality to break sentence probability down
with the chain rule

Too many histories!
P(??? | No loss of generality to break sentence) ?
P(??? | the water is so transparent that) ?

N-gram solution: assume each word depends only on a
short linear history

∏ −=
i

iin wwwwPwwwP)|()(12121 ……

∏ −−=
i

ikiin wwwPwwwP)|()(121 ……

Unigram Models
Simplest case: unigrams

Generative process: pick a word, pick a word, …
As a graphical model:

To make this a proper distribution over sentences, we have to generate a
special STOP symbol last. (Why?)
Examples:

[fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass.]
[thrift, did, eighty, said, hard, 'm, july, bullish]
[that, or, limited, the]
[]
[after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed,
mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further,
board, a, details, machinists, the, companies, which, rivals, an, because, longer, oakes, percent, a,
they, three, edward, it, currier, an, within, in, three, wrote, is, you, s., longer, institute, dentistry, pay,
however, said, possible, to, rooms, hiding, eggs, approximate, financial, canada, the, so, workers,
advancers, half, between, nasdaq]

∏=
i

in wPwwwP)()(21 …

w1 w2 wn-1 STOP………….

Bigram Models
Big problem with unigrams: P(the the the the) >> P(I like ice cream)!
Condition on previous word:

Any better?
[texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house,
said, mr., gurria, mexico, 's, motion, control, proposal, without, permission,
from, five, hundred, fifty, five, yen]
[outside, new, car, parking, lot, of, the, agreement, reached]
[although, common, shares, rose, forty, six, point, four, hundred, dollars,
from, thirty, seconds, at, the, greatest, play, disingenuous, to, be, reset,
annually, the, buy, out, of, american, brands, vying, for, mr., womack,
currently, sharedata, incorporated, believe, chemical, prices, undoubtedly,
will, be, as, much, is, scheduled, to, conscientious, teaching]
[this, would, be, a, record, november]

∏ −=
i

iin wwPwwwP)|()(121 …

w1 w2 wn-1 STOPSTART

3

More N-Gram Examples Regular Languages?

N-gram models are (weighted) regular processes
Why can’t we model language like this?

Linguists have many arguments why language can’t be merely
regular.
Long-distance effects:
“The computer which I had just put into the machine room on the
fifth floor crashed.”

Why CAN we often get away with n-gram models?

PCFG LM (later):
[This, quarter, ‘s, surprisingly, independent, attack, paid, off, the,
risk, involving, IRS, leaders, and, transportation, prices, .]
[It, could, be, announced, sometime, .]
[Mr., Toseland, believes, the, average, defense, economy, is,
drafted, from, slightly, more, than, 12, stocks, .]

Is This Working?

The game isn’t to pound out fake sentences!

What we really want to know is:
Will our model prefer good sentences to bad ones?
Bad ≠ ungrammatical!
Bad ≈ unlikely
Bad = sentences that our acoustic model really likes
but aren’t the correct answer

Measuring Model Quality

Word Error Rate (WER)

The “right” measure:
Task error driven
For speech recognition
For a specific recognizer!

For general evaluation, we want a measure which
references only good text, not mistake text

Correct answer: Andy saw a part of the movie

Recognizer output: And he saw apart of the movie

insertions + deletions + substitutions
true sentence size

WER: 4/7
= 57%

Measuring Model Quality

The Shannon Game:
How well can we predict the next word?

Unigrams are terrible at this game. (Why?)

The “Entropy” Measure
Really: average cross-entropy of a text according to a model

When I order pizza, I wipe off the ____

Many children are allergic to ____

I saw a ____

∑
∑

==

i
i

i
iM

M

s

sP

S
SPMSH

||

)(log

||
)(log)|(

2
2

grease 0.5

sauce 0.4

dust 0.05

….

mice 0.0001

….

the 1e-100

∑ −
j

jjM wwP)|(log 12

Measuring Model Quality
Problem with entropy:

0.1 bits of improvement doesn’t sound so good
Solution: perplexity

Note that even though our models require a stop step,
people typically don’t count it as a symbol when
taking these averages.

n
n

i
iM

MSH

hwP
MSP

∏
=

==

1

)|(

)|(

12)|(

4

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1000000

Number of Words

Fr
ac

tio
n

Se
en

Unigrams

Bigrams

Rules

Sparsity

Problems with n-gram models:
New words appear all the time:

Synaptitute
132,701.03
fuzzificational

New bigrams: even more often
Trigrams or more – still worse!

Zipf’s Law
Types (words) vs. tokens (word occurences)
Broadly: most word types are rare ones
Specifically:

Rank word types by token frequency
Frequency inversely proportional to rank

Not special to language: randomly generated character strings
have this property (try it!)

Smoothing

We often want to make estimates from sparse statistics:

Smoothing flattens spiky distributions so they generalize better

Very important all over NLP, but easy to do badly!
We’ll illustrate with bigrams today (h = previous word, could be anything).

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

al
le

ga
tio

ns

at
ta

ck

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

at
ta

ck

re
qu

es
t

m
an

ou
tc

om
e

…

al
le

ga
tio

ns

re
po

rts

cl
ai

m
s

re
qu

es
t

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

Smoothing: Add-One, Etc.

One class of smoothing functions:
Add-one / delta: assumes a uniform prior

Better to assume a unigram prior
δ

δ
δ +

+
=

−

−
−−)(

)/1(),()|(
1

1
1 wc

VwwcwwPADD

δ
δ
+
+

=
−

−
−−)(

)(ˆ),()|(
1

1
1 wc

wPwwcwwP PRIORUNI

number of word tokens in training datac

number of word types with count kNk

total vocabulary size (assumed known)V
count of word w following word w-1c(w,w-1)
count of word w in training datac(w)

Linear Interpolation

One way to ease the sparsity problem for n-
grams is to use less- sparse n- 1- gram estimates
General linear interpolation:

Having a single global mixing constant is generally
not ideal:

Solution: have different constant buckets
Buckets by count
Buckets by average count (better)

1 1 1 1
ˆ(|) [1 (,)] (|) [(,)] ()P w w w w P w w w w P wλ λ− − − −= − +

1 1
ˆ(|) [1] (|) [] ()P w w P w w P wλ λ− −= − +

Held-Out Data

Important tool for getting models to generalize:

When we have a small number of parameters that control the degree of
smoothing, we set them to maximize the (log-)likelihood of held-out data

Can use any optimization technique (line search or EM usually easiest)

Examples:

Training Data Held-Out
Data

Test
Data

∑ −=
i

iiMkn wwPMwwLL
k

)|(log))...(|...(1)...(11 1 λλλλ

)(ˆ)|(ˆ)|(2111),(21
wPwwPwwPLIN λλλλ += −−

δ
δ

δ +
+

=
−

−
−−)(

)(ˆ),()|(
1

1
1)(wc

wPwwcwwP PRIORUNI
δ

LL

Held-Out Reweighting

What’s wrong with unigram-prior smoothing?
Let’s look at some real bigram counts [Church and Gale 91]:

Big things to notice:
Add-one vastly overestimates the fraction of new bigrams
Add-0.0000027 still underestimates the ratio 2*/1*

One solution: use held-out data to predict the map of c to c*

6/7e- 10

5/7e- 10

4/7e- 10

3/7e- 10

2/7e- 10

Add- one’s c*

4.21

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

~55

~44

~33

~22

~11

Add- 0.0000027’s c*Count in 22M Words

1.5

~100%

2.8

9.2%

~2Ratio of 2/1

9.2%Mass on New

5

Good-Turing Reweighting I

We’d like to not need held-out data (why?)
Idea: leave-one-out validation

Take each of the c training words out in turn
c training sets of size c-1, held-out of size 1
What fraction of held-out words are unseen in
training?

N1/c
What fraction of held-out words are seen k
times in training?

(k+1)Nk+1/c
So in the future we expect (k+1)Nk+1/c of the
words to be those with training count k
There are Nk words with training count k
Each should occur with probability:

(k+1)Nk+1/c/Nk

…or expected count (k+1)Nk+1/Nk

N1

N2

N3

N4417

N3511
. .

 .
.

N0

N1

N2

N4416

N3510

. .
 .

.

Good-Turing Reweighting II
Problem: what about “the”? (say c=4417)

For small k, Nk > Nk+1

For large k, too jumpy, zeros wreck estimates

Simple Good-Turing [Gale and Sampson]:
replace empirical Nk with a best-fit power law
once count counts get unreliable

N1

N2

N3

N4417

N3511

. .
 .

.

N0

N1

N2

N4416

N3510

. .
 .

.

N1
N2 N3

N1
N2

Good-Turing Reweighting III

Hypothesis: counts of k should be k* = (k+1)Nk+1/Nk

Katz Smoothing
Use GT discounted bigram counts (roughly – Katz left large counts alone)
Whatever mass is left goes to empirical unigram

)(ˆ)(
),(
),(*)|(1
1

1
1 wPw

wwc
wwcwwP

w

KATZ −
−

−
− +=

∑
α

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

3.244

2.243

1.262

0.4461

GT’s c*Count in 22M Words

9.2% 9.2%Mass on New

Kneser-Ney Smoothing I
Something’s been very broken all this time

Shannon game: There was an unexpected ____?
delay?
Francisco?

“Francisco” is more common than “delay”
… but “Francisco” always follows “San”

Solution: Kneser-Ney smoothing
In the back-off model, we don’t want the unigram probability of w
Instead, probability given that we are observing a novel continuation
Every bigram type was a novel continuation the first time it was seen

|0),(:),(|
|}0),(:{|)(

11

11

>
>

=
−−

−−

wwcww
wwcwwP ONCONTINUATI

Kneser-Ney Smoothing II
One more aspect to Kneser-Ney:

Look at the GT counts:

Absolute Discounting
Save ourselves some time and just subtract 0.75 (or some d)
Maybe have a separate value of d for very low counts

3.23

2.24

1.25

0.448

Actual c* (Next 22M)

3.244

2.243

1.262

0.4461

GT’s c*Count in 22M Words

)()(
),'(

),()|(1

'
1

1
1 wPw

wwc
DwwcwwP ONCONTINUATI

w

KN −
−

−
− +

−
=
∑

α

What Actually Works?
Trigrams:

Unigrams, bigrams too little
context
Trigrams much better (when
there’s enough data)
4-, 5-grams usually not
worth the cost (which is
more than it seems, due to
how speech recognizers are
constructed)

Good-Turing-like methods for
count adjustment

Absolute discounting, Good-
Turing, held-out estimation,
Witten-Bell

Kneser-Ney equalization for
lower-order models
See [Chen+Goodman]
reading for tons of graphs!

[Graphs from
Joshua Goodman]

6

Data >> Method?

Having more data is always good…

… but so is picking a better smoothing mechanism!
N > 3 often not worth the cost (greater than you’d think)

5.5
6

6.5
7

7.5

8
8.5

9

9.5
10

1 2 3 4 5 6 7 8 9 10 20

n-gram order

En
tr

op
y

100,000 Katz

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

Beyond N-Gram LMs
Caching Models

Recent words more likely to appear again

Can be disastrous in practice for speech (why?)

Skipping Models

Clustering Models: condition on word classes when words are too
sparse
Trigger Models: condition on bag of history words (e.g., maxent)
Structured Models: use parse structure (we’ll see these later)

||
)()1()|()|(21 history

historywcwwwPhistorywPCACHE
∈

−+= −− λλ

)__|(__)|()|(ˆ)|(231221121 −−−−−− ++= wwPwwPwwwPwwwPSKIP λλλ

For Next Time

Readings: J+M 2nd Ed Ch 4, Chen &
Goodman (on web page)

Assignment 1 out soon

