

What's wrong Let's look at so	with unigram-prion ome real bigram c	r smoothing? ounts [Church	and Gale 91]:
Count in 22M Words	Actual c* (Next 22M)	Add-one's c*	Add-0.0000027's c*
1	0.448	2/7e-10	~1
2	1.25	3/7e-10	~2
3	2.24	4/7e-10	~3
4	3.23	5/7e-10	~4
5	4.21	6/7e-10	~5
Mass on New	9.2%	~100%	9.2%
Ratio of 2/1	2.8	1.5	~2

Good-Turing Reweighting III

• Hypothesis: counts of k should be $k^* = (k+1)N_{k+1}/N_k$

Count in 22M Words	Actual c* (Next 22M)	GT's c*
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24
Mass on New	9.2%	9.2%

Katz Smoothing

- Use GT discounted *bigram* counts (roughly Katz left large counts alone)
- Whatever mass is left goes to empirical unigram

$$P_{KATZ}(w | w_{-1}) = \frac{c^{*}(w, w_{-1})}{\sum_{w} c(w, w_{-1})} + \alpha(w_{-1})\hat{P}(w)$$

Kneser-Ney Smoothing II

- One more aspect to Kneser-Ney:
 - Look at the GT counts:

Count in 22M Words	Actual c* (Next 22M)	GT's c*
1	0.448	0.446
2	1.25	1.26
3	2.24	2.24
4	3.23	3.24

Absolute Discounting

- Save ourselves some time and just subtract 0.75 (or some d)
- Maybe have a separate value of d for very low counts

$$P_{KN}(w \mid w_{-1}) = \frac{c(w, w_{-1}) - D}{\sum_{w'} c(w', w_{-1})} + \alpha(w_{-1})P_{CONTINUATION}(w)$$

