
1

Statistical NLP
Spring 2007

Lecture 5: WSD / Maxent
Dan Klein – UC Berkeley

Word Senses
Words have multiple distinct meanings, or senses:

Plant: living plant, manufacturing plant, …
Title: name of a work, ownership document, form of address,
material at the start of a film, …

Many levels of sense distinctions
Homonymy: totally unrelated meanings (river bank, money bank)
Polysemy: related meanings (star in sky, star on tv)
Systematic polysemy: productive meaning extensions
(organizations to their buildings) or metaphor
Sense distinctions can be extremely subtle (or not)

Granularity of senses needed depends a lot on the task

Why is it important to model word senses?
Translation, parsing, information retrieval?

2

Word Sense Disambiguation
Example: living plant vs. manufacturing plant

How do we tell these senses apart?
“context”

Maybe it’s just text categorization
Each word sense represents a topic
Run the naive-bayes classifier from last class?

Bag-of-words classification works ok for noun senses
90% on classic, shockingly easy examples (line, interest, star)
80% on senseval-1 nouns
70% on senseval-1 verbs

The manufacturing plant which had previously sustained the
town’s economy shut down after an extended labor strike.

Verb WSD

Why are verbs harder?
Verbal senses less topical
More sensitive to structure, argument choice

Verb Example: “Serve”
[function] The tree stump serves as a table
[enable] The scandal served to increase his popularity
[dish] We serve meals for the homeless
[enlist] He served his country
[jail] He served six years for embezzlement
[tennis] It was Agassi's turn to serve
[legal] He was served by the sheriff

3

Various Approaches to WSD
Unsupervised learning

Bootstrapping (Yarowsky 95)
Clustering

Indirect supervision
From thesauri
From WordNet
From parallel corpora

Supervised learning
Most systems do some kind of supervised learning
Many competing classification technologies perform about the
same (it’s all about the knowledge sources you tap)
Problem: training data available for only a few words

Resources
WordNet

Hand-build (but large) hierarchy of word senses
Basically a hierarchical thesaurus

SensEval
A WSD competition, of which there have been 3 iterations
Training / test sets for a wide range of words, difficulties, and
parts-of-speech
Bake-off where lots of labs tried lots of competing approaches

SemCor
A big chunk of the Brown corpus annotated with WordNet
senses

OtherResources
The Open Mind Word Expert
Parallel texts
Flat thesauri

4

Knowledge Sources
So what do we need to model to handle “serve”?

There are distant topical cues
…. point … court ………………… serve ……… game …

∏=
i

in cwPcPwwwcP)|()(),,,(21 …

c

w1 w2 wn. . .

Weighted Windows with NB
Distance conditioning

Some words are important only when they are nearby
…. as …. point … court ………………… serve ……… game …
…. ………………………………………… serve as……………..

Distance weighting
Nearby words should get a larger vote
… court …… serve as……… game …… point

'

1 0 1 '(, ,..., , , ,) () (| , ())
k

k k i
i k

P c w w w w w P c P w c bin i− − + +
=−

= ∏…

'
()

1 0 1 '(, ,..., , , ,) () (|)
k

boost i
k k i

i k

P c w w w w w P c P w c− − + +
=−

= ∏…

bo
os

t

relative position i

5

Better Features
There are smarter features:

Argument selectional preference:
serve NP[meals] vs. serve NP[papers] vs. serve NP[country]

Subcategorization:
[function] serve PP[as]
[enable] serve VP[to]
[tennis] serve <intransitive>
[food] serve NP {PP[to]}

Can capture poorly (but robustly) with local windows
… but we can also use a parser and get these features explicitly

Other constraints (Yarowsky 95)
One-sense-per-discourse (only true for broad topical distinctions)
One-sense-per-collocation (pretty reliable when it kicks in:
manufacturing plant, flowering plant)

Complex Features with NB?
Example:

So we have a decision to make based on a set of cues:
context:jail, context:county, context:feeding, …
local-context:jail, local-context:meals
subcat:NP, direct-object-head:meals

Not clear how build a generative derivation for these:
Choose topic, then decide on having a transitive usage, then
pick “meals” to be the object’s head, then generate other words?
How about the words that appear in multiple features?
Hard to make this work (though maybe possible)
No real reason to try

Washington County jail served 11,166 meals last
month - a figure that translates to feeding some
120 people three times daily for 31 days.

6

A Discriminative Approach
View WSD as a discrimination task (regression, really)

Have to estimate multinomial (over senses) where there
are a huge number of things to condition on

History is too complex to think about this as a smoothing / back-
off problem

Many feature-based classification techniques out there
We tend to need ones that output distributions over
classes (why?)

P(sense | context:jail, context:county,
context:feeding, …
local-context:jail, local-context:meals
subcat:NP, direct-object-head:meals, ….)

Feature Representations

Features are indicator functions fi
which count the occurrences of
certain patterns in the input

We map each input to a vector of
feature predicate counts

Washington County jail served
11,166 meals last month - a
figure that translates to feeding
some 120 people three times
daily for 31 days.

context:jail = 1
context:county = 1
context:feeding = 1
context:game = 0
…
local-context:jail = 1
local-context:meals = 1
…
subcat:NP = 1
subcat:PP = 0
…
object-head:meals = 1
object-head:ball = 0

{ ()}if dd

7

Linear Classifiers
For a pair (c,d), we take a weighted vote for each class:

There are many ways to set these weights
Perceptron: find a currently misclassified example, and nudge
weights in the direction of a correct classification
Other discriminative methods usually work in the same way: try
out various weights until you maximize some objective

(|) exp () ()i i
i

vote c d c f dλ= ∑

+0.7
+2.1 * 0
-1.5 * 1
+1.0 * 1
+1.2 * 1
Jail

-2.6+3.5TOTAL
-1.1 * 0-1.8 * 0object-head:years = 0
-1.5 * 1+2.0 * 1object-head:meals
-0.3 * 1+1.0 * 1subcat:NP
-0.8 * 1-0.5 * 1context:jail
TennisFoodFeature

Maximum-Entropy Classifiers

Exponential (log-linear, maxent, logistic, Gibbs) models:
Turn the votes into a probability distribution:

For any weight vector {λi}, we get a conditional probability
model P(c | d,λ).
We want to choose parameters that maximize the
conditional (log) likelihood of the data:

'
exp (') ()i i

c i
c f dλ∑ ∑

=),|(λdcP
exp () ()i i

i
c f dλ∑ Makes votes positive.

Normalizes votes.

∑∑
∈∈

==
),(),(),(),(
log),|(log),|(log

DCdcDCdc
dcPDCP λλ

'
exp () ()i i

c i
c f dλ∑ ∑

exp () ()i i
i

c f dλ∑

8

Building a Maxent Model

How to define features:
Features are patterns in the input which we think the weighted
vote should depend on
Usually features added incrementally to target errors
If we’re careful, adding some mediocre features into the mix
won’t hurt (but won’t help either)

How to learn model weights?
Maxent just one method
Use a numerical optimization package
Given a current weight vector, need to calculate (repeatedly):

Conditional likelihood of the data
Derivative of that likelihood wrt each feature weight

The Likelihood Value

The (log) conditional likelihood is a function of the iid data
(C,D) and the parameters λ:

If there aren’t many values of c, it’s easy to calculate:

We can separate this into two components:

∑∏
∈∈

==
),(),(),(),(

),|(log),|(log),|(log
DCdcDCdc

dcPdcPDCP λλλ

∑
∈

=
),(),(
log),|(log

DCdc
DCP λ

'
exp () ()i i

c i
c f dλ∑ ∑

exp () ()i i
i

c f dλ∑

(,) (,) '
log exp (') ()i i

c d C D c i
c f dλ

∈
∑ ∑ ∑

(,) (,)
log exp () ()i i

c d C D i
c f dλ

∈
∑ ∑ −=),|(log λDCP

)(λN)(λM=),|(log λDCP −

9

The Derivative I: Numerator

() ()

()

i k i k
k i

i

c f d

c

λ

λ

∂
=

∂

∑∑

:

() ()

()
k

i i k
i

k c c i

c f d

c

λ

λ=

∂
=

∂

∑
∑

:
()

k

i
k c c

f d
=

= ∑

log exp () ()
()
() ()

i k i k
k i

i i

c f d
N

c c

λ
λ

λ λ

∂
∂

=
∂ ∂

∑ ∑

Derivative of the numerator is the empirical count(fi, c)

E.g.: we actually saw the word “dish” with the “food” sense
3 times (maybe twice in one example and once in another).

The Derivative II: Denominator

'
log exp (') ()

()
() ()

i i k
k c i

i i

c f d
M

c c

λ
λ

λ λ

∂
∂

=
∂ ∂

∑ ∑ ∑

'

''

exp (') ()
1

exp ('') () ()

i i k
c i

k i i k i
c i

c f d

c f d c

λ

λ λ

∂
=

∂

∑ ∑
∑∑ ∑

'
''

exp (') () (') ()
1

exp ('') () 1 ()

i i k i i k
i i

k ci i k i
c i

c f d c f d

c f d c

λ λ

λ λ

∂
=

∂

∑ ∑
∑ ∑∑ ∑

'
''

exp (') () (') ()

exp ('') () ()

i i k i i k
i i

k c i i k i
c i

c f d c f d

c f d c

λ λ

λ λ

∂
=

∂

∑ ∑
∑∑∑ ∑

(| ,) ()k i k
k

P c d f dλ=∑ = predicted count(fi, λ)

10

The Derivative III

The optimum parameters are the ones for which each feature’s
predicted expectation equals its empirical expectation. The
optimum distribution is:

Always unique (but parameters may not be unique)
Always exists (if features counts are from actual data).

log (| ,)
()i

P C D
c

λ
λ

∂
=

∂
actual count(,)if c),(countpredicted λif−

d

c P(c | λ)
meal, jail, …

jail, term, …

food

prison .8

.4

The λ(prison) weight for the
“context-word:jail” feature: actual = 1 empirical = 1.2

Summary
We have a function to optimize:

We know the function’s derivatives:

Ready to feed it into a numerical optimization
package…
What did any of that have to do with entropy?

∑
∈

=
),(),(
log),|(log

DCdc
DCP λ

'
exp (') ()i i

c i
c f dλ∑ ∑

exp () ()i i
i

c f dλ∑

log (| ,) / ()iP C D cλ λ∂ ∂ = actual count(,)if c),(countpredicted λif−

11

Smoothing: Issues of Scale

Lots of features:
NLP maxent models can have over 1M features.
Even storing a single array of parameter values can have a
substantial memory cost.

Lots of sparsity:
Overfitting very easy – need smoothing!
Many features seen in training will never occur again at test time.

Optimization problems:
Feature weights can be infinite, and iterative solvers can take a
long time to get to those infinities.

Smoothing: Issues
Assume the following empirical distribution:

Features: {Heads}, {Tails}
We’ll have the following model distribution:

Really, only one degree of freedom (λ = λH-λT)

th
TailsHeads

TH

H

HEADS λλ

λ

ee
ep
+

=
TH

T

TAILS λλ

λ

ee
ep
+

=

0HEADS TTTH

TH

ee
e

eeee
eep

+
=

+
= −−

−

λ

λ

λλλλ

λλ

0

0

TAILS ee
ep
+

= λ

λ

12

Smoothing: Issues
The data likelihood in this model is:

TAILSHEADS loglog)|,(log ptphthP +=λ

)1(log)()|,(log λλλ ehththP ++−=

22
TailsHeads

13
TailsHeads

04
TailsHeads

λ λ λ

log P log P log P

Smoothing: Early Stopping

In the 4/0 case, there were two problems:
The optimal value of λ was ∞, which is a long
trip for an optimization procedure.
The learned distribution is just as spiked as the
empirical one – no smoothing.

One way to solve both issues is to just
stop the optimization early, after a few
iterations.

The value of λ will be finite (but presumably
big).
The optimization won’t take forever (clearly).
Commonly used in early maxent work.

04
TailsHeads

01
TailsHeads

Input

Output

λ

13

Smoothing: Priors (MAP)
What if we had a prior expectation that parameter values
wouldn’t be very large?
We could then balance evidence suggesting large parameters
(or infinite) against our prior.
The evidence would never totally defeat the prior, and
parameters would be smoothed (and kept finite!).
We can do this explicitly by changing the optimization
objective to maximum posterior likelihood:

),|(log)(log)|,(log λλλ DCPPDCP +=

Posterior Prior Evidence

Smoothing: Priors

Gaussian, or quadratic, priors:
Intuition: parameters shouldn’t be large.
Formalization: prior expectation that each
parameter will be distributed according to a
gaussian with mean µ and variance σ2.

Penalizes parameters for drifting to far from
their mean prior value (usually µ=0).
2σ2=1 works surprisingly well (better to set
using held-out data, though)

They don’t even
capitalize my

name anymore!

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2

2
)(exp

2
1)(

i

ii

i
iP

σ
µλ

πσ
λ

2σ2

=1

2σ2

= 10

2σ2 = ∞

14

Smoothing: Priors

If we use gaussian priors:
Trade off some expectation-matching for smaller parameters.
When multiple features can be recruited to explain a data point, the
more common ones generally receive more weight.
Accuracy generally goes up!

Change the objective:

Change the derivative:

)(log λP−),|(log)|,(log λλ DCPDCP =

∑
∈

=
),(),(

),|()|,(log
DCdc

dcPDCP λλ k
i i

ii +
−

−∑ 2

2

2
)(

σ
µλ

),(predicted),(actual/)|,(log λλλ iii fCfDCP −=∂∂ 2/)(σµλ ii −−

2σ2

=1

2σ2

= 10

2σ2 = ∞

Example: NER Smoothing

0.370.68O-XxPrev state, cur sig
0.37-0.69x-Xx-XxPrev-cur-next sig

2.68-0.58Total:
…

0.82-0.20O-x-XxP. state - p-cur sig

0.460.80XxCurrent signature
-0.92-0.70OtherPrevious state
0.14-0.10IN NNPPrev and cur tags
0.450.47NNPCurrent POS tag

-0.040.45<GBeginning bigram
0.000.03GraceCurrent word
0.94-0.73atPrevious word
LOCPERSFeatureFeature Type

XxXxxSig
NNPNNPINTag
RoadGraceatWord
??????OtherState
NextCurPrev

Local Context

Feature Weights
Because of smoothing,
the more common
prefixes have larger
weights even though
entire-word features are
more specific.

