Statistical NLP
Spring 2007

University of
California

Lecture 5: WSD / Maxent

Dan Klein — UC Berkeley

Word Senses

Words have multiple distinct meanings, or senses:

= Plant: living plant, manufacturing plant, ...

= Title: name of a work, ownership document, form of address,
material at the start of a film, ...

Many levels of sense distinctions

Granularity of senses needed depends a lot on the task

Homonymy: totally unrelated meanings (river bank, money bank)
Polysemy: related meanings (star in sky, star on tv)

Systematic polysemy: productive meaning extensions
(organizations to their buildings) or metaphor

Sense distinctions can be extremely subtle (or not)

Why is it important to model word senses?
= Translation, parsing, information retrieval?

Word Sense Disambiguation

Example: living plant vs. manufacturing plant

How do we tell these senses apart?
= “context”

The manufacturing plant which had previously sustained the
town’s economy shut down after an extended labor strike.

= Maybe it’s just text categorization
= Each word sense represents a topic
= Run the naive-bayes classifier from last class?

Bag-of-words classification works ok for noun senses
= 90% on classic, shockingly easy examples (line, interest, star)
= 80% on senseval-1 nouns
= 70% on senseval-1 verbs

Verb WSD

Why are verbs harder?
= Verbal senses less topical
= More sensitive to structure, argument choice

Verb Example: “Serve”
= [function] The tree stump serves as a table
= [enable] The scandal served to increase his popularity
[dish] We serve meals for the homeless
= [enlist] He served his country
= [jail] He served six years for embezzlement
[tennis] It was Agassi's turn to serve
[legal] He was served by the sheriff

Various Approaches to WSD

= Unsupervised learning
= Bootstrapping (Yarowsky 95)
= Clustering

= |ndirect supervision
= From thesauri
= From WordNet
= From parallel corpora

= Supervised learning
= Most systems do some kind of supervised learning

= Many competing classification technologies perform about the
same (it's all about the knowledge sources you tap)

= Problem: training data available for only a few words

Resources

WordNet
= Hand-build (but large) hierarchy of word senses
= Basically a hierarchical thesaurus
SensEval
= A WSD competition, of which there have been 3 iterations

= Training / test sets for a wide range of words, difficulties, and
parts-of-speech

= Bake-off where lots of labs tried lots of competing approaches
SemCor

= A big chunk of the Brown corpus annotated with WordNet
senses

OtherResources
= The Open Mind Word Expert
= Parallel texts
= Flat thesauri

Knowledge Sources

= So what do we need to model to handle “serve”?
= There are distant topical cues
=point ... court

P(c,w,,W,,...w,) =P(C)][[P(w |c)

Weighted Windows with NB

= Distance conditioning

= Some words are important only when they are nearby

- ..as.... point ...court.......... B serve
-

B P serve|as

"
P(C, W Wy, Wy, Wy, W,) = PE)] [P(W |, bin(i))
i=—k
= Distance weighting

= Nearby words should get a larger vote

@
. o
= ...court...... serve as......... game point 8§ _/\

relative position i

kl .
P(C,W 0,y Wy, Wy, Wy, W) = P(C)] [P(w; | €)™
i=—k

Better Features

= There are smarter features:
= Argument selectional preference:
= serve NP[meals] vs. serve NP[papers] vs. serve NP[country]
= Subcategorization:
= [function] serve PP[as]
= [enable] serve VP[to]
= [tennis] serve <intransitive>
= [food] serve NP {PP[to]}
= Can capture poorly (but robustly) with local windows
= ... but we can also use a parser and get these features explicitly
= Other constraints (Yarowsky 95)

= One-sense-per-discourse (only true for broad topical distinctions)

= One-sense-per-collocation (pretty reliable when it kicks in:
manufacturing plant, flowering plant)

Complex Features with NB?

= Example: Washington County jail served 11,166 meals last
month - a figure that translates to feeding some
120 people three times daily for 31 days.

= So we have a decision to make based on a set of cues:
= context:jail, context:county, context:feeding, ...
= |ocal-context:jail, local-context:meals
= subcat:NP, direct-object-head:meals

= Not clear how build a generative derivation for these:

= Choose topic, then decide on having a transitive usage, then
pick “meals” to be the object’s head, then generate other words?

= How about the words that appear in multiple features?
= Hard to make this work (though maybe possible)
= No real reason to try

A Discriminative Approach

P(sense | context:jail, context:county,

context:feeding, ...

View WSD as a discrimination task (regression, really)

local-context:jail, local-context:meals
subcat:NP, direct-object-head:meals,)

Have to estimate multinomial (over senses) where there

are a huge number of things to condition on
= History is too complex to think about this as a smoothing / back-

off problem

classes (why?)

Many feature-based classification techniques out there
We tend to need ones that output distributions over

Feature Representations

d

Washington County jail served

11,166 meals last month - a
figure that translates to feeding

some 120 people three times
daily for 31 days.

= Features are indicator functions f;

which count the occurrences of
certain patterns in the input

= We map each input to a vector of

feature predicate counts

1 (d)}

context:jail = 1
context:county = 1
context:feeding = 1
context:game = 0

local-context:jail = 1
local-context:meals = 1

subcat:NP =1
subcat:PP =0

object-head:meals = 1
object-head:ball = 0

Linear Classifiers

= For a pair (c,d), we take a weighted vote for each class:

vote(c| d) =exp Zﬂi (c) f.(d)

Feature Food Jail Tennis
context:jail -05*1 +1.2*1 -0.8*1
subcat:NP +1.0*1 +1.0*1 -0.3*1
object-head:meals +2.0*1 -15*1 -15*1
object-head:years = 0 -1.8*0 +2.1*0 -1.1*0
TOTAL +3.5 +0.7 -2.6

= There are many ways to set these weights

= Perceptron: find a currently misclassified example, and nudge
weights in the direction of a correct classification

= Other discriminative methods usually work in the same way: try
out various weights until you maximize some objective

Maximum-Entropy Classifiers

= Exponential (log-linear, maxent, logistic, Gibbs) models:
= Turn the votes into a probability distribution:

expz,ii (c)f,(d) <—4 Makes votes positive. ‘
Zexpz/ii(c') f,(d) ‘—ﬂ Normalizes votes. ‘

P(c|d,4)=

= For any weight vector {4}, we get a conditional probability
model P(c | d,).
»= We want to choose parameters that maximize the
conditional (log) likelihood of the data:
exp . 4(c)fi(d)

logP(C|D,2)= >’logP(c|d,2)= > log
(c.d)e(C,D) (c.d)<(C,D) Zexp Zﬂ“l (c) f,(d)

Building a Maxent Model

= How to define features:

= Features are patterns in the input which we think the weighted
vote should depend on

= Usually features added incrementally to target errors

= |f we're careful, adding some mediocre features into the mix
won't hurt (but won't help either)

= How to learn model weights?
= Maxent just one method
= Use a humerical optimization package

= Given a current weight vector, need to calculate (repeatedly):
= Conditional likelihood of the data
= Derivative of that likelihood wrt each feature weight

The Likelihood Value

= The (log) conditional likelihood is a function of the iid data
(C,D) and the parameters A:

logP(C|D,4)=log []P(cld,A)= D logP(c|d,2)

(c,d)=(C,D) (c,d)e(C,D)
= |f there aren’t many values of ¢, it's easy to calculate:
exp 4 (c)fi(d)

logP(C|D, 1) = log i
(c.d)e(C,D) Zexp z/ll (c) f.(d)

= We can separate this into two components:

logP(C|D,4)= >, logexp) 4(©)fi(d) ~ >, logexpd 4 (c)f(d)

(c,d)e(C,D) (c,d)e(C,D) c'

log P(C | D, A) =N () — M ()

The Derivative |I: Numerator

NGy 0209802 ACIRE) YN AE)LE)

k

o2.(c) 8.(c) T 40
WAL R
P 04,(c) B z f,(d)
foe ! ke, =c

Derivative of the numerator is the empirical count(f;, c)

E.g.: we actually saw the word “dish” with the “food” sense
3 times (maybe twice in one example and once in another).

The Derivative Il: Denominator

Mz 02100 T e AE)f(E)

k
oA () 04,(c)
1 aZepoﬂ,(c)f(d)
‘gzexpm(c") fi(d,) oA
exp Y A (c) fi(d) 8> A (c)f(d,)

ZZepoﬂ,(c " f,(d,)Z 1 04(c)
epoﬁ,(c)f(d) GZi(c)f(d)
ZZZepoi(c Nt(d,) 04

— Z P(c|d,,A)f.(d,) = predicted count(f, 4
k

The Derivative Il

ologP(C|D,A) :
= I f.,c) - ,
27.0) actual count(f.,c) —predicted count(f., 1)
P(c|2)
meal, jail, ... food

IIO

L[4
jail, term, ... prison

The A(prison) weight for the

“context-word:jail” feature: actual =1 empirical = 1.2

= The optimum parameters are the ones for which each feature’s
predicted expectation equals its empirical expectation. The
optimum distribution is:

= Always unique (but parameters may not be unique)
= Always exists (if features counts are from actual data).

Summary

= We have a function to optimize:
exp >4 (c) f,(d)

logP(C|D,A)= log i
(c.d)e(C.D) Zexp z&l (c)f (d)

= We know the function’s derivatives:
0log P(C | D, A)/04,(c) =actual count(f,,c) —predicted count(f,, 1)

» Ready to feed it into a numerical optimization
package...

» What did any of that have to do with entropy?

10

Smoothing: Issues of Scale

= | ots of features:
= NLP maxent models can have over 1M features.

= Even storing a single array of parameter values can have a
substantial memory cost.

= Lots of sparsity:
= Qverfitting very easy — need smoothing!

= Many features seen in training will never occur again at test time.

= Optimization problems:

= Feature weights can be infinite, and iterative solvers can take a
long time to get to those infinities.

Smoothing: Issues

= Assume the following empirical distribution:

Heads Tails
h t

= Features: {Heads}, {Tails}

= We’'ll have the following model distribution:
e eir

Pheaps = 1 Prais =
e et e e

= Really, only one degree of freedom (A = A-Aq) 1

el o’ e? 0.5

Pheaps = Prais =

e refrem et 4ef

et +e’ =

11

Smoothing: Issues

= The data likelihood in this model is:

Iog P(h’t | 1) =h Iog Pheaps +1 Iog Prais
logP(h,t| A) =hA—(t+h)log(l+e*)

0 L~ 0 L~ 0 T g

-9 / " — » -
log P -4 log P - log P -4

-§ -§ -§

= 0 2z 4 = 0 2z = 0 2z s

A A A
Heads | Tails Heads | Tails Heads | Tails
2 2 3 1 4 0

Smoothing: Early Stopping

» In the 4/0 case, there were two problems: 9

» The optimal value of A was o, which is a long
trip for an optimization procedure.

= The learned distribution is just as spiked as the

empirical one — no smoothing. 4 -2 0 2 4
A
= One way to solve both issues is to just -
stop the optimization early, after a few Heads | Tails
iterations. 4 0
* The value of A will be finite (but presumably Input
big). _
= The optimization won't take forever (clearly). Heads | Tails
= Commonly used in early maxent work. 1 0

Output

12

Smoothing: Priors (MAP)

= What if we had a prior expectation that parameter values

wouldn’t be very large?

= We could then balance evidence suggesting large parameters

(or infinite) against our prior.

= The evidence would never totally defeat the prior, and
parameters would be smoothed (and kept finite!).

= We can do this explicitly by changing the optimization

objective to maximum posterior likelihood:

logP(C,2|D)=IlogP(1)+logP(C|D,A1)

Posterior Prior

Evidence

Smoothing: Priors

= Gaussian, or quadratic, priors:
= Intuition: parameters shouldn’t be large.

= Formalization: prior expectation that each
parameter will be distributed according to a
gaussian with mean p and variance c2.

1 _(&_,Ui)z
P)= mexp[o]

= Penalizes parameters for drifting to far from
their mean prior value (usually p=0).

= 202=1 works surprisingly well (better to set
using held-out data, though)

262 =
0
-2 262
=10
-4
262
-6 =1

They don’t even
capitalize my
name anymore!

13

Smoothing: Priors

= |f we use gaussian priors:
= Trade off some expectation-matching for smaller parameters.

= When multiple features can be recruited to explain a data point, the
more common ones generally receive more weight.

= Accuracy generally goes up!
= Change the objective:
logP(C,2|D)=logP(C|D,A)—logP(4)

logP(C,4|D)= Y P(cld,2) -

(c,d)e(C,D)

» Change the derivative:

ologP(C, 4| D)/o4 =actual(f,,C)—predicted(f,, 2) — (1 — 1)/ &°

(ﬂ’l2 /’le) + k 6
fo

0
-2

-4

262 =
262
=10

262

Example: NER Smoothing

Because of smoothing,

Feature Weights

Feature Type Feature | PERS LOC
the more common — :
prefixes have larger [Frevaus word at 0.73| 094
weights even though Currentword %+ Grace 0.03| 0.00
entlre-worq _features are BGW’ <G 045| -0.04
more specific.
Current POS tag NNP 0.47 0.45
Prev and cur tags IN NNP -0.10 0.14
Local Context Previous state Other -0.70| -0.92
Prev | Cur Next Current signature XX 0.80 0.46
Word | at Grace | Road Prev-cur-next S|g X-XX-XX -0.69 0.37
Tag IN NNP | NNP P. state - p-cur sig O-x-Xx -0.20 0.82
Sig X XX XX
Total: -0.58 2.68

14

