

Why is it important to model word senses? Translation, parsing, information retrieval?

Word Sense Disambiguation

- · Example: living plant vs. manufacturing plant
- How do we tell these senses apart? "context"

The manufacturing plant which had previously sustained the town's economy shut down after an extended labor strike.

- Maybe it's just text categorization
- Each word sense represents a topic
- Run the naive-bayes classifier from last class?
- Bag-of-words classification works ok for noun senses
 - 90% on classic, shockingly easy examples (line, interest, star)
 - 80% on senseval-1 nouns 70% on senseval-1 verbs

Verb WSD

- Why are verbs harder?
 - Verbal senses less topical
 - More sensitive to structure, argument choice

Verb Example: "Serve"

- [function] The tree stump serves as a table
- [enable] The scandal served to increase his popularity
- [dish] We serve meals for the homeless
- [enlist] He served his country
- [jail] He served six years for embezzlement
- [tennis] It was Agassi's turn to serve
- [legal] He was served by the sheriff

Various Approaches to WSD

- Unsupervised learning
 - Bootstrapping (Yarowsky 95)
 - Clustering

Indirect supervision

- From thesauri
- From WordNet .
- From parallel corpora

Supervised learning

- Most systems do some kind of supervised learning
- Many competing classification technologies perform about the same (it's all about the knowledge sources you tap)
- Problem: training data available for only a few words

Resources

WordNet

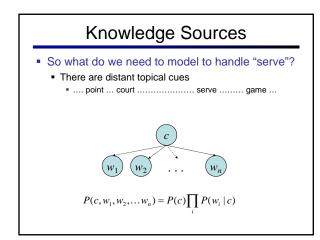
- Hand-build (but large) hierarchy of word senses
 Basically a hierarchical thesaurus

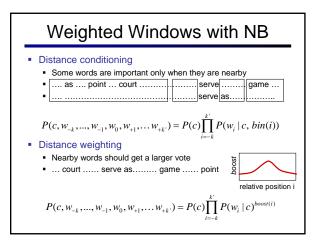
SensEval

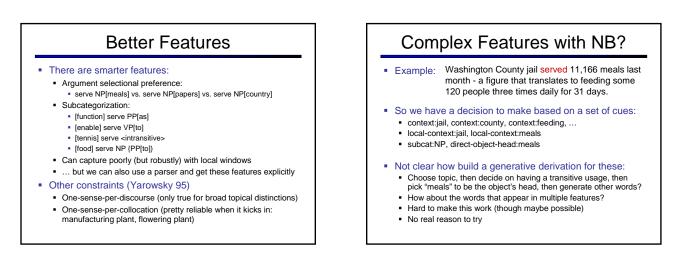
- A WSD competition, of which there have been 3 iterations
- Training / test sets for a wide range of words, difficulties, and parts-of-speech
 Bake-off where lots of labs tried lots of competing approaches
- SemCor
 - A big chunk of the Brown corpus annotated with WordNet senses

OtherResources

- The Open Mind Word Expert
- Parallel texts
- Flat thesauri





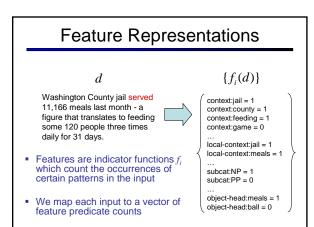


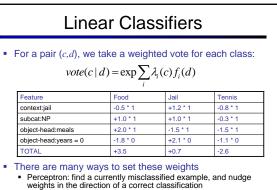
A Discriminative Approach

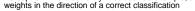
View WSD as a discrimination task (regression, really)

P(sense | context:jail, context:county, context:feeding, ... local-context:jail, local-context:meals subcat:NP, direct-object-head:meals,)

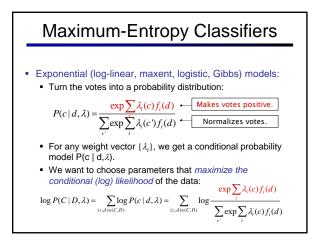
- Have to estimate multinomial (over senses) where there are a huge number of things to condition on
 - History is too complex to think about this as a smoothing / backoff problem
- Many feature-based classification techniques out there
- We tend to need ones that output distributions over classes (why?)







Other discriminative methods usually work in the same way: try out various weights until you maximize some objective

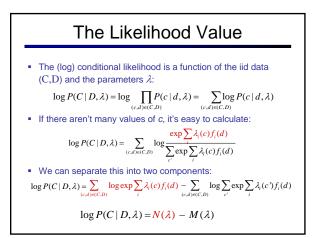


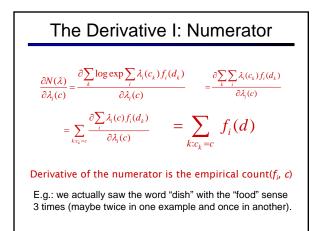
Building a Maxent Model

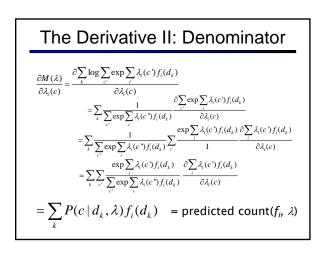
- How to define features:
 - · Features are patterns in the input which we think the weighted vote should depend on
 - Usually features added incrementally to target errors
 - If we're careful, adding some mediocre features into the mix won't hurt (but won't help either)

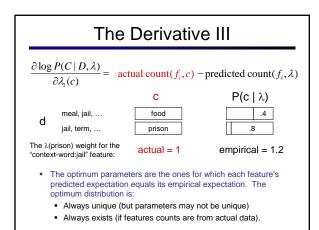
How to learn model weights?

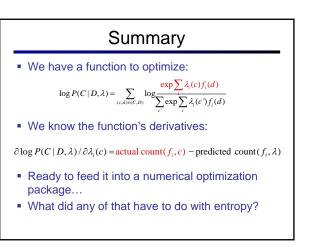
- Maxent just one method
- Use a numerical optimization package
- Given a current weight vector, need to calculate (repeatedly): Conditional likelihood of the data
- Derivative of that likelihood wrt each feature weight

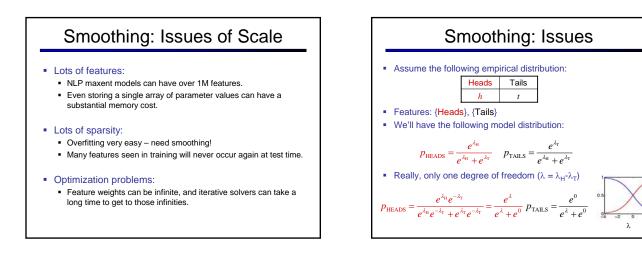


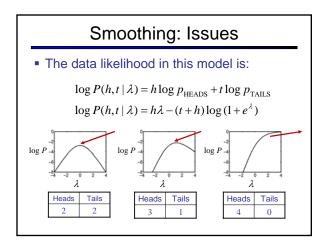




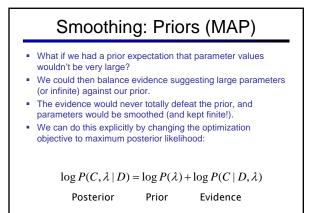


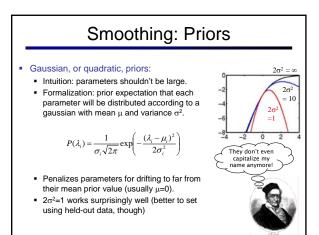


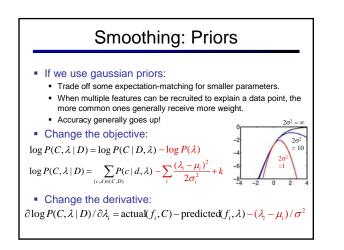












	E	xam	ple:	NER Sm	oothi	ng	
				Feature Weights			
Because of smoothing, the more common				Feature Type	Feature	PERS	LOC
prefixes have larger				Previous word	at	-0.73	0.94
weights even though				Current word	Grace	0.03	0.00
entire-word features are more specific. Local Context				Beginning bigram	🔸 <g< td=""><td>0.45</td><td>-0.04</td></g<>	0.45	-0.04
				Current POS tag	NNP	0.47	0.45
				Prev and cur tags	IN NNP	-0.10	0.14
				Previous state	Other	-0.70	-0.92
	Prev	Cur	Next	Current signature	Xx	0.80	0.46
State	Other	222	222	Prev state, cur sig	O-Xx	0.68	0.37
Word	at	Grace	Road	Prev-cur-next sig	x-Xx-Xx	-0.69	0.37
Tag	IN	NNP	NNP	P. state - p-cur sig	O-x-Xx	-0.20	0.82
Sig	x	Xx	Xx				
Sig	^	~~	~~	Total:		-0.58	2.68