

Maxent Taggers

One step up: also condition on previous tags

$$P(\mathbf{t}|\mathbf{w}) = \prod_{i} P_{\mathsf{ME}}(t_i|\mathbf{w}, t_{i-1}, t_{i-2}, i)$$

- Train up P(ti|w,ti-1,ti-2,i) as a normal maxent problem, then use to score sequences
- This is referred to as a *maxent tagger* [Ratnaparkhi 96]
- Beam search effective! (Why?)
- What's the advantage of beam size 1?

Feature Templates

- Important distinction:
 - Features: <w₀=future, t₀=JJ>
 - Feature templates: <w₀, t₀>
- In maxent taggers:
 - Can now add edge feature templates:
 - $< t_{-1}, t_0 >$
 - $\bullet \ < t_{-2}, \, t_{-1}, \, t_0 \! > \!$
 - Also, mixed feature templates:
 - < t₋₁, w₀, t₀ >

Decoding

- Decoding maxent taggers:
 - Just like decoding HMMs
 - Viterbi, beam search, posterior decoding
- Viterbi algorithm (HMMs):

$$\delta_i(s) = \arg\max_{s'} P(s|s') P(w_i|s) \delta_{i-1}(s')$$

$$\delta_i(s) = \arg \max P(s|s', \mathbf{w}, i) \delta_{i-1}(s')$$

CRF Taggers

- Newer, higher-powered discriminative sequence models
 CRFs (also voted perceptrons, M3Ns)
 - Do not decompose training into independent local regions
 - Can be deathly slow to train require repeated inference on training set
- Differences tend not to be too important for POS tagging
- Differences more substantial on other sequence tasks
- However: one issue worth knowing about in local models
- "Label bias" and other explaining away effects
 Maxent taggers' local scores can be near one without having both good "transitions" and "emissions"
- both good "transitions" and "emissions"
 This means that often evidence doesn't flow properly
- Why isn't this a big deal for POS tagging?

Domain Effects

- Accuracies degrade outside of domain
 - Up to triple error rate
 - Usually make the most errors on the things you care about in the domain (e.g. protein names)
- Open questions
 - How to effectively exploit unlabeled data from a new domain (what could we gain?)
 - How to best incorporate domain lexica in a principled way (e.g. UMLS specialist lexicon, ontologies)

- Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]
- Setup:
 - You know the set of allowable tags for each word
 - Fix k training examples to their true labels
 - Learn P(w|t) on these examples
 - Learn $P(t|t_{.1},t_{.2})$ on these examples
 - On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

Merialdo: Results

	0	100	2000	5000	10000	20000	all
Iter	Correct tags (% words) after ML on 1M words						
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8
2	81.8	93.0	95.7	96.1	96.3	96.4	96.4
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2
4	84.0	93.0	95.2	95.5	95.8	96.0	96.0
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2

