

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
- Raw sentences in
- Tagged sentences out
- Obvious thing to do:
- Start with a (mostly) uniform HMM
- Run EM
- Inspect results

EM for HMMs: Quantities

- Cache total path values:

$$
\begin{aligned}
\alpha_{i}(s) & =P\left(w_{0} \ldots w_{i}, s_{i}\right) \\
& =\sum_{s_{i-1}} P\left(s_{i} \mid s_{i-1}\right) P\left(w_{i} \mid s_{i}\right) \alpha_{i-1}\left(s_{i-1}\right) \\
\beta_{i}(s) & =P\left(w_{i}+1 \ldots w_{n} \mid s_{i}\right) \\
& =\sum_{s_{i+1}} P\left(s_{i+1} \mid s_{i}\right) P\left(w_{i+1} \mid s_{i+1}\right) \beta_{i+1}\left(s_{i+1}\right)
\end{aligned}
$$

- Can calculate in $\mathrm{O}\left(\mathrm{s}^{2} \mathrm{n}\right)$ time (why?)

EM for HMMs: Process

- From these quantities, we can re-estimate transitions:

$$
\operatorname{count}\left(s \rightarrow s^{\prime}\right)=\frac{\sum_{i} \alpha_{i}(s) P\left(s^{\prime} \mid s\right) P\left(w_{i} \mid s\right) \beta_{i+1}\left(s^{\prime}\right)}{P(\mathbf{w})}
$$

- And emissions:

$$
\operatorname{count}(w, s)=\frac{\sum_{i: w_{i}=w} \alpha_{i}(s) \beta_{i+1}(s)}{P(\mathbf{w})}
$$

- If you don't get these formulas immediately, just think about hard EM instead, where were re-estimate from the Viterbi sequences

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]
- Setup:
- You know the set of allowable tags for each word
- Fix k training examples to their true labels - Learn $\mathrm{P}(\mathrm{w} \mid \mathrm{t})$ on these examples
- Learn $\mathrm{P}\left(\mathrm{t} \mid \mathrm{t}_{-1}, \mathrm{t}_{-2}\right)$ on these examples
- On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

Merialdo: Results							
Number of tagged sentences used for the initial model							
	0	100	2000	5000	10000	20000	all
Iter	Cor	rect ta	(\% w	ords) a	er ML	1M w	
0	77.0	90.0	95.4	96.2	96.6	96.9	97.0
1	80.5	92.6	95.8	96.3	96.6	96.7	96.8
2	81.8	93.0	95.7	96.1	96.3	96.4	96.4
3	83.0	93.1	95.4	95.8	96.1	96.2	96.2
4	84.0	93.0	95.2	95.5	95.8	960	96.0
5	84.8	92.9	95.1	95.4	95.6	95.8	95.8
6	85.3	92.8	94.9	95.2	95.5	95.6	95.7
7	85.8	92.8	94.7	95.1	95.3	95.5	95.5
8	86.1	92.7	94.6	95.0	95.2	95.4	95.4
9	86.3	92.6	94.5	94.9	95.1	95.3	95.3
10	86.6	92.6	94.4	94.8	95.0	95.2	95.2

Distributional Clustering

Distributional Clustering

- Three main variants on the same idea:
- Pairwise similarities and heuristic clustering
- E.g. [Finch and Chater 92]
- Produces dendrograms
- Vector space methods
- E.g. [Shuetze 93]
- Models of ambiguity
- Probabilistic methods
- Various formulations, e.g. [Lee and Pereira 99]

What Else?

- Various newer ideas:
- Context distributional clustering [Clark 00]
- Morphology-driven models [Clark 03]
- Contrastive estimation [Smith and Eisner 05]
- Also:
- What about ambiguous words?
- Using wider context signatures has been used for learning synonyms (what's wrong with this approach?)
- Can extend these ideas for grammar induction (later)

Simple Periodic Waves

- Characterized by:
- period: T - amplitude A
- phase ϕ
- Fundamental frequency in cycles per second, or Hz
- $\mathrm{F}_{0}=1 / \mathrm{T}$

Simple periodic waves of sound
Complex waves: $100 \mathrm{~Hz}+1000 \mathrm{~Hz}$

Spectrum of an actual soundwave

- Y axis: Amplitude = amount of air pressure at that point in time - Zero is normal air pressure, negative is rarefaction
X axis: time. Frequency $=$ number of cycles per second.
Frequency $=1 /$ Period
20 cycles in .02 seconds $=1000$ cycles $/$ second $=1000 \mathrm{~Hz}$

Waveforms for speech

- Waveform of the vowel [iy]

- Frequency: repetitions/second of a wave
- Above vowel has 28 reps in .11 secs
- So freq is $28 / .11=255 \mathrm{~Hz}$
- This is speed that vocal folds move, hence voicing
- Amplitude: y axis: amount of air pressure at that point in time
- Zero is normal air pressure, negative is rarefaction

She just had a baby

-

- Vowels are voiced, long, loud

Length in time = length in space in waveform picture
Voicing: regular peaks in amplitude
When stops closed: no peaks: silence.
. Peaks = voicing: . 46 to .58 (vowel [iy], from second .65 to .74 (vowel
[ax]) and so on
Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for
second [b]
Fricatives like [sh] intense irregular pattern; see . 33 to .46

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Part of [ae] waveform from "had"

- ivote compiex wave repeatıng nıne tımes in tigure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in . 036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Computing the 3 Formants of Schwa

- Let the length of the tube be L
- $F_{1}=c / \lambda_{1}=c /(4 L)=35,000 / 4 * 17.5=500 \mathrm{~Hz}$
- $\mathrm{F}_{2}=\mathrm{c} / \lambda_{2}=\mathrm{c} /(4 / 3 \mathrm{~L})=3 \mathrm{c} / 4 \mathrm{~L}=3 * 35,000 / 4 * 17.5=1500 \mathrm{~Hz}$
- $\mathrm{F}_{3}=\mathrm{c} / \lambda_{3}=\mathrm{c} /(4 / 5 \mathrm{~L})=5 \mathrm{c} / 4 \mathrm{~L}=5 * 35,000 / 4 \star 17.5=2500 \mathrm{~Hz}$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

