Statistical NLP Spring 2007

Lecture 8: Speech Signal

Dan Klein – UC Berkeley

Unsupervised Tagging?

- AKA part-of-speech induction
- Task:
 - Raw sentences in
 - Tagged sentences out
- Obvious thing to do:
 - Start with a (mostly) uniform HMM
 - Run EM
 - Inspect results

Fractional Transitions one of the state of

EM for HMMs: Quantities

Cache total path values:

$$\alpha_{i}(s) = P(w_{0} \dots w_{i}, s_{i})$$

=
$$\sum_{s_{i-1}} P(s_{i}|s_{i-1}) P(w_{i}|s_{i}) \alpha_{i-1}(s_{i-1})$$

$$\beta_i(s) = P(w_i + 1 \dots w_n | s_i)$$

=
$$\sum_{s_{i+1}} P(s_{i+1} | s_i) P(w_{i+1} | s_{i+1}) \beta_{i+1}(s_{i+1})$$

Can calculate in O(s²n) time (why?)

EM for HMMs: Process

• From these quantities, we can re-estimate transitions:

$$\mathsf{count}(s \to s') = \frac{\sum_i \alpha_i(s) P(s'|s) P(w_i|s) \beta_{i+1}(s')}{P(\mathbf{w})}$$

And emissions:

$$\operatorname{count}(w,s) = \frac{\sum_{i:w_i = w} \alpha_i(s)\beta_{i+1}(s)}{P(\mathbf{w})}$$

 If you don't get these formulas immediately, just think about hard EM instead, where were re-estimate from the Viterbi sequences

Merialdo: Setup

- Some (discouraging) experiments [Merialdo 94]
- Setup:
 - You know the set of allowable tags for each word
 - Fix k training examples to their true labels
 - Learn P(w|t) on these examples
 - Learn P(t|t₋₁,t₋₂) on these examples
 - On n examples, re-estimate with EM
- Note: we know allowed tags but not frequencies

Distributional Clustering

◆ (the president) said that the downturn was over ◆

[Finch and Chater 92, Shuetze 93, many others]

Distributional Clustering

- Three main variants on the same idea:
 - Pairwise similarities and heuristic clustering
 - E.g. [Finch and Chater 92]
 - Produces dendrograms
 - Vector space methods
 - E.g. [Shuetze 93]
 - Models of ambiguity
 - Probabilistic methods
 - Various formulations, e.g. [Lee and Pereira 99]

Nearest Neighbors

word	nearest neighbors
accompanied	submitted banned financed developed authorized headed canceled awarded barred
almost	virtually merely formally fully quite officially just nearly only less
causing	reflecting forcing providing creating producing becoming carrying particularly
classes	elections courses payments losses computers performances violations levels pictures
directors	professionals investigations materials competitors agreements papers transactions
goal	mood roof eye image tool song pool scene gap voice
japanese	chinese iraqi american western arab foreign european federal soviet indian
represent	reveal attend deliver reflect choose contain impose manage establish retain
think	believe wish know realize wonder assume feel say mean bet
york	angeles francisco sox rouge kong diego zone vegas inning layer
on	through in at over into with from for by across
must	might would could cannot will should can may does helps
they	we you i he she nobody who it everybody there

Manner of Articulation

- Stop: complete closure of articulators, so no air escapes through mouth
- Oral stop: palate is raised, no air escapes through nose. Air pressure builds up behind closure, explodes when released
 - p, t, k, b, d, g
- Nasal stop: oral closure, but palate is lowered, air escapes through nose.
 - m, n, ng

Waveforms for speech

Waveform of the vowel [iy]

- Frequency: repetitions/second of a wave
- Above vowel has 28 reps in .11 secs
- So freq is 28/.11 = 255 Hz
- This is speed that vocal folds move, hence voicing
- Amplitude: y axis: amount of air pressure at that point in
- Zero is normal air pressure, negative is rarefaction

She just had a baby

- Vowels are voiced, long, loud
- Length in time = length in space in waveform picture
- Voicing: regular peaks in amplitude
- When stops closed: no peaks: silence.
 Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel [ax]) and so on
- Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for second [b])

 Fricatives like [sh] intense irregular pattern; see .33 to .46

Examples from Ladefoged

Part of [ae] waveform from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large
- Large wave has frequency of 250 Hz (9 times in .036
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Why these Peaks?

- Articulatory facts:
 - The vocal cord vibrations create harmonics
 - The mouth is an amplifier
 - Depending on shape of mouth, some harmonics are amplified more than

Computing the 3 Formants of Schwa

- Let the length of the tube be L
 F₁ = c/λ₁ = c/(4L) = 35,000/4*17.5 = 500Hz

 - $F_2 = c/\lambda_2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz$ $F_3 = c/\lambda_3 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

Dialect Issues - Speech varies from dialect to dialect (examples are American vs. British English) - Syntactic ("I could" vs. "I could do") - Lexical ("elevator" vs. "lift") - Phonological (butter: [δ, ở □] vs. [δ, ∂ ♥ ●]) - Phonetic - Mismatch between training and testing dialects can cause a large increase in error rate

