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Statistical NLP
Spring 2007

Lecture 9: Acoustic Models
Dan Klein – UC Berkeley

She just had a baby

What can we learn from a wavefile?
Vowels are voiced, long, loud
Length in time = length in space in waveform picture
Voicing: regular peaks in amplitude
When stops closed: no peaks: silence.
Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel 
[ax]) and so on
Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for 
second [b])
Fricatives like [sh]  intense irregular pattern; see .33 to .46
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Examples from Ladefoged

bad

pad

spat

Part of [ae] waveform from “had”

Note complex wave repeating nine times in figure
Plus smaller waves which repeats 4 times for every large 
pattern
Large wave has frequency of 250 Hz (9 times in .036 
seconds)
Small wave roughly 4 times this, or roughly 1000 Hz
Two little tiny waves on top of peak of 1000 Hz waves
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Back to Spectra
Spectrum represents these freq components
Computed by Fourier transform, algorithm which 
separates out each frequency component of wave. 

x-axis shows frequency, y-axis shows magnitude (in 
decibels, a log measure of amplitude)
Peaks at 930 Hz, 1860 Hz, and 3020 Hz.

Why these Peaks? 

Articulatory facts:
The vocal cord 
vibrations create 
harmonics
The mouth is an 
amplifier
Depending on shape of 
mouth, some harmonics 
are amplified more than 
others
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Figures from Ratree Wayland slides from his website

Vowel [i] sung at successively higher pitch. 

1 2 3

4 5 6

7

Resonances of the vocal tract

The human vocal tract as an open 
tube

Air in a tube of a given length will 
tend to vibrate at resonance 
frequency of tube. 
Constraint: Pressure differential 
should be maximal at (closed) glottal 
end and minimal at (open) lip end.

Closed end Open end

Length 17.5 cm.

Figure from W. Barry Speech Science slides
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From Sundberg

Computing the 3 Formants of Schwa

Let the length of the tube be L
F1 = c/λ1 = c/(4L) = 35,000/4*17.5 = 500Hz
F2 = c/λ2 = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz
F3 = c/λ3 = c/(4/5L) = 5c/4L = 5*35,000/4*17.5 = 2500Hz

So we expect a neutral vowel to have 3 resonances at 
500, 1500, and 2500 Hz

These vowel resonances are called formants
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From
Mark
Liberman’s
Web site

Formants in Spectrograms
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American English Vowel Space

FRONT BACK

HIGH

LOW

ey ow

aw

oy

ay

iy

ih

eh

ae aa

ao

uw

uh

ah
ax

ix ux

Figure from Jennifer Venditti

Dialect Issues

Speech varies from dialect to 
dialect (examples are 
American vs. British English)

Syntactic (“I could” vs. “I could 
do”)
Lexical (“elevator” vs. “lift”)
Phonological (butter: [ ] 
vs. [ ])
Phonetic

Mismatch between training 
and testing dialects can 
cause a large increase in 
error rate

American British

al
l

ol
d
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Stops in Spectrograms

bab: closure of lips lowers all formants: so rapid  
increase in all formants at beginning of "bab”
dad: first formant increases, but F2 and F3 slight fall
gag: F2 and F3 come together: this is a characteristic  
of velars. Formant transitions take longer in velars 
than in alveolars or labials

From Ladefoged “A Course in Phonetics”

She came back and started again

1.  lots of high-freq energy
3.  closure for k
4.  burst of aspiration for k
5.  ey vowel;faint 1100 Hz formant is nasalization
6.  bilabial nasal
7. short b closure, voicing barely visible. 
8.  ae; note upward transitions after bilabial stop at beginning
9.  note F2 and F3 coming together for "k"

From Ladefoged “A Course in Phonetics”
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The Noisy Channel Model

Search through space of all possible sentences.
Pick the one that is most probable given the 
waveform.

Speech Recognition Architecture
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Digitizing Speech

Frame Extraction

A frame (25 ms wide) extracted every 10 ms

25 ms

10ms

. . .

a1      a2      a3
Figure from Simon Arnfield
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Mel Freq. Cepstral Coefficients

Do FFT to get spectral information
Like the spectrogram/spectrum we saw earlier

Apply Mel scaling
Linear below 1kHz, log above, equal samples above 
and below 1kHz
Models human ear; more sensitivity in lower freqs

Plus Discrete Cosine Transformation

Final Feature Vector
39 (real) features per 10 ms frame:

12 MFCC features
12 Delta MFCC features
12 Delta-Delta MFCC features
1 (log) frame energy
1 Delta (log) frame energy
1 Delta-Delta (log frame energy)

So each frame is represented by a 39D 
vector
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HMMs for Continuous Observations?
Before: discrete, finite set of observations
Now: spectral feature vectors are real-valued!
Solution 1: discretization
Solution 2: continuous emissions models

Gaussians
Multivariate Gaussians
Mixtures of Multivariate Gaussians

A state is progressively:
Context independent subphone (~3 per phone)
Context dependent phone (=triphones)
State-tying of CD phone

Vector Quantization
Idea: discretization

Map MFCC vectors 
onto discrete symbols 
Compute probabilities 
just by counting

This is called Vector 
Quantization or VQ

Not used for ASR any 
more; too simple

Useful to consider as a 
starting point
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Gaussian Emissions
VQ is insufficient for real ASR
Instead: Assume the possible values of the 
observation vectors are normally distributed.
Represent the observation likelihood function as 
a Gaussian with mean µj and variance σj

2

f (x | µ,σ ) =
1

σ 2π
exp(− (x − µ)2

2σ 2 )

Gaussians for Acoustic Modeling

P(o|q):

P(o|q)

o

P(o|q) is highest here at mean

P(o|q is low here, very far from mean)

A Gaussian is parameterized by a mean and 
a variance:

Different means
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Multivariate Gaussians

Instead of a single mean µ and variance σ:

Vector of means µ and covariance matrix Σ

Usually assume diagonal covariance
This isn’t very true for FFT features, but is fine for 
MFCC features

f (x | µ,σ ) =
1

σ 2π
exp(− (x − µ)2

2σ 2 )

f (x | µ,Σ) =
1

(2π )n / 2 | Σ |1/ 2 exp −
1
2

(x − µ)T Σ−1(x − µ)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

Gaussian Intuitions: Size of Σ

µ = [0 0]           µ = [0 0]          µ = [0 0] 
Σ = I Σ = 0.6I Σ = 2I
As Σ becomes larger, Gaussian becomes more 
spread out; as Σ becomes smaller, Gaussian 
more compressed

Text and figures from Andrew Ng’s lecture notes  for CS229
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Gaussians: Off-Diagonal 

As we increase the off-diagonal entries, more correlation 
between value of x and value of y

Text and figures from Andrew Ng’s lecture notes  for CS229

In two dimensions

From Chen, Picheny et al lecture slides
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In two dimensions

From Chen, Picheny et al lecture slides

But we’re not there yet
Single Gaussian may do a bad job of modeling 
distribution in any dimension:

Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides
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Mixtures of Gaussians
M mixtures of Gaussians:

For diagonal covariance:

bj (ot ) =
c jk

2π
D

2 σ jkd
2

d =1

D

∏
exp(− 1

2
(x jkd − µ jkd )2

σ jkd
2

d =1

D

∑ )
k=1

M

∑

f (x | µ jk,Σ jk ) = c jkN(x,µ jk,Σ jk )
k=1

M

∑

bj (ot ) = c jkN(ot ,µ jk,Σ jk )
k=1

M

∑

GMMs
Summary: each state has a likelihood function 
parameterized by:

M mixture weights
M mean vectors of dimensionality D
Either

M covariance matrices of DxD

Or often
M diagonal covariance matrices of DxD

which is equivalent to
M variance vectors of dimensionality D
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HMMs for Speech

Phones Aren’t Homogeneous

Time (s)
0.48152 0.937203
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Need to Use Subphones

A Word with Subphones
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ASR Lexicon: Markov Models

Training Mixture Models

Forced Alignment
Computing the “Viterbi path” over the training data is 
called “forced alignment”
We know which word string to assign to each 
observation sequence.
We just don’t know the state sequence.
So we constrain the path to go through the correct 
words
And otherwise do normal Viterbi

Result: state sequence!
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Modeling phonetic context

W iy r iy m iy n iy

“Need” with triphone models
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Implications of Cross-Word Triphones

Possible triphones: 50x50x50=125,000

How many triphone types actually occur?

20K word WSJ Task (from Bryan Pellom)
Word-internal models:  need 14,300 triphones
Cross-word models: need 54,400 triphones
But in training data only 22,800 triphones occur!

Need to generalize models.

State Tying / Clustering
[Young, Odell, 
Woodland 1994]
How do we decide 
which triphones to 
cluster together?
Use phonetic features
(or ‘broad phonetic 
classes’)

Stop
Nasal
Fricative
Sibilant
Vowel
lateral
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State Tying

Creating CD phones:
Start with monophone, 
do EM training
Clone Gaussians into 
triphones
Build decision tree and 
cluster Gaussians
Clone and train 
mixtures (GMMs


