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She just had a baby

= Vowels are voiced, long, loud

= Length in time = length in space in waveform picture
= Voicing: regular peaks in amplitude

= When stops closed: no peaks: silence.

Peaks = voicing: .46 to .58 (vowel [iy], from second .65 to .74 (vowel
[ax]) and so on

= Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for
second [b])

= Fricatives like [sh] intense irregular pattern; see .33 to .46




Examples from Ladefoged
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= Note complex wave repeating nine times in figure

= Plus smaller waves which repeats 4 times for every large
pattern

= Large wave has frequency of 250 Hz (9 times in .036
seconds)

= Small wave roughly 4 times this, or roughly 1000 Hz
= Two little tiny waves on top of peak of 1000 Hz waves




Back to Spectra

= Spectrum represents these freq components

= Computed by Fourier transform, algorithm which
separates out each frequency component of wave.
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= Xx-axis shows frequgncy,'g/'-axié"shows magnitude (in
decibels, a log measure of amplitude)
Peaks at 930 Hz, 1860 Hz, and 3020 Hz.
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Vowel [i] sung at successively higher pitch.
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Figures from Ratree Wayland slides from his website

Resonances of the vocal tract

The human vocal tract as an open
tube

Closed end Open end
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Length 17.5 cm.

Air in a tube of a given length will
tend to vibrate at resonance
frequency of tube.

Constraint: Pressure differential
should be maximal at (closed) glottal
end and minimal at (open) lip end.

Figure from W. Barry Speech Science slides




From Sundberg

Computing the 3 Formants of Schwa

= Let the length of the tube be L
= F, =c/A, = c/(4L) = 35,000/4*17.5 = 500Hz
= F, =c/A, = c/(4/3L) = 3c/4L = 3*35,000/4*17.5 = 1500Hz
= F, =c/A; = c/(4/5L) = 5¢/4L = 5*35,000/4*17.5 = 2500Hz

= SO0 we expect a neutral vowel to have 3 resonances at
500, 1500, and 2500 Hz

= These vowel resonances are called formants




Cross section of vocal tract Model of vocal tract Acoustic spectrum
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Formants in Spectrograms
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American English Vowel Space
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Figure from Jennifer Venditti

Dialect Issues

American

= Speech varies from dialect to
dialect (examples are
American vs. British English)
= Syntactic (“l could” vs. “I could
do”)
= Lexical (“elevator” vs. “lift")

= Phonological (butter: [§ &x3]
vs. [§l P ¢=))

= Phonetic

= Mismatch between training
and testing dialects can
cause a large increase in
error rate

British




Stops in Spectrograms
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= bab: closure of lips lowers all formants: so rapid
increase in all formants at beginning of "bab”

= dad: first formant increases, but F2 and F3 slight fall

» gag: F2 and F3 come together: this is a characteristic
of velars. Formant transitions take longer in velars
than in alveolars or labials

From Ladefoged “A Course in Phonetics”

She came back and started again
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From Ladefoged “A Course in Phonetics”




The Noisy Channel Model

source noisy guess at
o tence sentence DECODER original
sentence ?PAlice was beginning to get sentence

If music be the

7Every happy lamily...
food of love... —

7In a hole in the ground...
7If music be the food of love...
i music be the foat of dove..

If music be the
food of love...

» Search through space of all possible sentences.

» Pick the one that is most probable given the
waveform.

Speech Recognition Architecture
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Digitizing Speech

Continuous Microphone
Sound Discrete
pressure Digital
wave Samples
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Frame Extraction

» A frame (25 ms wide) extracted every 10 ms
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Figure from Simon Arnfield
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Mel Freq. Cepstral Coefficients

» Do FFT to get spectral information
» Like the spectrogram/spectrum we saw earlier

= Apply Mel scaling

= Linear below 1kHz, log above, equal samples above
and below 1kHz

= Models human ear; more sensitivity in lower freqs

= Plus Discrete Cosine Transformation

Final Feature Vector

= 39 (real) features per 10 ms frame:
» 12 MFCC features
» 12 Delta MFCC features
» 12 Delta-Delta MFCC features
» 1 (log) frame energy
» 1 Delta (log) frame energy
» 1 Delta-Delta (log frame energy)

» So each frame is represented by a 39D
vector
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HMMs for Continuous Observations?

Before: discrete, finite set of observations
= Now: spectral feature vectors are real-valued!
Solution 1: discretization

Solution 2: continuous emissions models

= Gaussians
= Multivariate Gaussians
= Mixtures of Multivariate Gaussians

A state is progressively:
= Context independent subphone (~3 per phone)
= Context dependent phone (=triphones)
= State-tying of CD phone

Vector Quantization

» |dea: discretization
= Map MFCC vectors
onto discrete symbols
= Compute probabilities

Codebook of 256
just by counting ——

N -

|
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= This IS Cal_led Vector Inpun Feature Vector
Quantization or VQ

= Not used for ASR any

more; too simple R | ;i | 43
Compare to Codebook Output index
= Useful to consider as a r of best vector

starting point
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Gaussian Emissions

= VQ is insufficient for real ASR

» |nstead: Assume the possible values of the
observation vectors are normally distributed.

» Represent the observation likelihood function as
a Gaussian with mean ; and variance ;2

f (| 10) = Glﬁexp(—‘ —4)"

Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and

avariance:
/[ Different means

" P(0]a):

P(o|q) is highest here at mean

- / P(olq is low here, very far from mean)
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Multivariate Gaussians

» Instead of a single mean p and variance c:
(X _;u)z)
2 2

f(x|u,a)=o_jgexp(—

= Vector of means p and covariance matrix X

(X2 = o exp(—%(x 1) (X —u)]

» Usually assume diagonal covariance

= This isn’'t very true for FFT features, but is fine for
MFCC features

Gaussian Intuitions: Size of X

" n=[00] n=[00] n=1[00]
= 2= z =0.6l ¥ =2l

» As ¥ becomes larger, Gaussian becomes more
spread out; as £ becomes smaller, Gaussian
more compressed

Text and figures from Andrew Ng’s lecture notes for CS229
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Gaussians
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= As we increase the off-diagonal entries, more correlation

between value of x and v

Text

alue of y

and figures from Andrew Ng’s lecture notes for CS229

In two dimensions

p

L

O, and O, are uncorrelated — knowing O, tells vou nothing about O,

0,

O
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0, and O, can be uncorrel

ated without having equal varances

From Chen, Picheny et al lecture slides
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In two dimensions

\

O, and O, are correlated — knowing O, tells you something about O,

From Chen, Picheny et al lecture slides

But we’re not there yet

» Single Gaussian may do a bad job of modeling
distribution in any dimension:

Bad News!!!

/
LN

= Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides
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Mixtures of Gaussians

= M mixtures of Gaussians:

M
f(x |:ujk’zjk) :chkN(qujk’zjk)

k=1

M
bj (Ot) = ZCjKN (Othujk’zjk)
k=1
» For diagonal covariance:

O 12 (X ~ )’
b;(0) =2, & exp(—= ) 4k
D/ 2 2 O
k=1 21_[ i d=1 jkd
d=1

GMMs

= Summary: each state has a likelihood function
parameterized by:
= M mixture weights
= M mean vectors of dimensionality D

= Either
= M covariance matrices of DxD
= Or often
= M diagonal covariance matrices of DxD
which is equivalent to
= M variance vectors of dimensionality D
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HMMs for Speech

Word Model

vectors)

Y y
Observation ) -
Sequence
(spectral feature
(1]

Phones Aren’t Homogeneous
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Need to Use Subphones

3 sub-phones
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Phone Model
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Fod
Observation | 1 7
Sequence
(spectral feature
vectors)

A Word with Subphones
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ASR Lexicon: Markov Models

Word model for "on"

Word model for "the"

.
Oo-araT T B

Word model for "need" Word model for "I"

Training Mixture Models

» Forced Alignment

= Computing the “Viterbi path” over the training data is
called “forced alignment”

= We know which word string to assign to each
observation sequence.

= We just don’t know the state sequence.

= So we constrain the path to go through the correct
words

= And otherwise do normal Viterbi
» Result: state sequence!

20



Modeling phonetic context
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“Need” with triphone models
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Implications of Cross-Word Triphones

Possible triphones: 50x50x50=125,000

= How many triphone types actually occur?

20K word WSJ Task (from Bryan Pellom)

= Word-internal models: need 14,300 triphones
= Cross-word models: need 54,400 triphones

= But in training data only 22,800 triphones occur!

Need to generalize models.

State Tying / Clustering

= [Young, Odell,
Woodland 1994]

= How do we decide
which triphones to
cluster together?

= Use phonetic features
(or ‘broad phonetic
classes’)

= Stop

Nasal

Fricative

Sibilant

Vowel

lateral

Initial set of untied states

Tie states in each leaf node




State Tying

= Creating CD phones:

= Start with monophone,
do EM training

= Clone Gaussians into
triphones

= Build decision tree and
cluster Gaussians

= Clone and train
mixtures (GMMs

@
2202020 2¢

0 o/

t-1y+n t1y+ng fay+1 s-1y+

(AIAJA] - [AASA] - [Afaa] - [adad

23



