

She just had a baby

\cdot

- Vowels are voiced, long, loud
- Length in time = length in space in waveform picture

Voicing: regular peaks in amplitude
When stops closed: no peaks: silence.

- Peaks = voicing: . 46 to .58 (vowel [iy], from second .65 to .74 (vowel
[ax]) and so on
Silence of stop closure (1.06 to 1.08 for first [b], or 1.26 to 1.28 for
second [b]
- Fricatives like [sh] intense irregular pattern; see . 33 to 46

Back to Spectra

- Spectrum represents these freq components
- Computed by Fourier transform, algorithm which separates out each frequency component of wave.

- x-axis shows frequency, y-axis shows magnitude (in decibels, a log measure of amplitude)
- Peaks at $930 \mathrm{~Hz}, 1860 \mathrm{~Hz}$, and 3020 Hz .

| Back to Spectra |
| :--- | :--- |
| - Spectrum represents these freq components |
| -Computed by Fourier transform, algorithm which
 separates out each frequency component of wave. |
| - x-axis shows frequency, y-axis shows magnitude (in |
| decibels, a log measure of amplitude) |
| - Peaks at $930 \mathrm{~Hz}, 1860 \mathrm{~Hz}$, and 3020 Hz . |

Part of [ae] waveform from "had"

- Note complex wave repeating nine times in figure
- Plus smaller waves which repeats 4 times for every large pattern
- Large wave has frequency of 250 Hz (9 times in . 036 seconds)
- Small wave roughly 4 times this, or roughly 1000 Hz
- Two little tiny waves on top of peak of 1000 Hz waves

Computing the 3 Formants of Schwa

- Let the length of the tube be L
- $\mathrm{F}_{1}=\mathrm{c} / \lambda_{1}=\mathrm{c} /(4 \mathrm{~L})=35,000 / 4 * 17.5=500 \mathrm{~Hz}$
- $\mathrm{F}_{2}=\mathrm{c} / \lambda_{2}=\mathrm{c} /(4 / 3 \mathrm{~L})=3 \mathrm{c} / 4 \mathrm{~L}=3 * 35,000 / 4 * 17.5=1500 \mathrm{~Hz}$
- $\mathrm{F}_{3}=\mathrm{c} / \lambda_{3}=\mathrm{c} /(4 / 5 \mathrm{~L})=5 \mathrm{c} / 4 \mathrm{~L}=5^{*} 35,000 / 4 \star 17.5=2500 \mathrm{~Hz}$
- So we expect a neutral vowel to have 3 resonances at 500, 1500, and 2500 Hz
- These vowel resonances are called formants

She came back and started again

The Noisy Channel Model

- Search through space of all possible sentences.
- Pick the one that is most probable given the waveform.

Mel Freq. Cepstral Coefficients

- Do FFT to get spectral information
- Like the spectrogram/spectrum we saw earlier
- Apply Mel scaling
- Linear below 1kHz, log above, equal samples above and below 1 kHz
- Models human ear; more sensitivity in lower freqs
- Plus Discrete Cosine Transformation

Frame Extraction

- A frame (25 ms wide) extracted every 10 ms

$\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}$
Figure from Simon Arnfield

Final Feature Vector

- 39 (real) features per 10 ms frame:
- 12 MFCC features
- 12 Delta MFCC features
- 12 Delta Dota MFCC features
- 1 (log) frame energy
- 1 Delta (log) frame energy
- 1 Delta rata (log frame energy)
- So each frame is represented by a 39D vector

HMMs for Continuous Observations?

- Before: discrete, finite set of observations
- Now: spectral feature vectors are reat valued!
- Solution 1: discretization
- Solution 2: continuous emissions models
- Gaussians
- Multivariate Gaussians
- Mixtures of Multivariate Gaussians
- A state is progressively:
- Context independent subphone (~ 3 per phone)
- Context dependent phone (=triphones)
- State-tying of CD phone

Vector Quantization

- Idea: discretization
- Map MFCC vectors
onto discrete symbols
- Compute probabilities just by counting
- This is called Vector Quantization or VQ
- Not used for ASR any more; too simple
- Useful to consider as a starting poin

Gaussian Emissions

- VQ is insufficient for real ASR
- Instead: Assume the possible values of the observation vectors are normally distributed.
- Represent the observation likelihood function as a Gaussian with mean μ_{j} and variance σ_{j}^{2}

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

Multivariate Gaussians

- Instead of a single mean μ and variance σ :

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- Vector of means μ and covariance matrix Σ

$$
f(x \mid \mu, \Sigma)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

- Usually assume diagonal covariance
- This isn't very true for FFT features, but is fine for MFCC features

Gaussians for Acoustic Modeling

A Gaussian is parameterized by a mean and

- $P(o \mid q)$:

Gaussian Intuitions: Size of Σ

- $\mu=\left[\begin{array}{ll}0 & 0\end{array}\right]$
$\mu=\left[\begin{array}{ll}0 & 0\end{array}\right]$
- $\Sigma=1 \quad \Sigma=0.6 \mathrm{I} \quad \Sigma=2 \mathrm{l}$
$\mu=\left[\begin{array}{ll}0 & 0\end{array}\right]$
- As Σ becomes larger, Gaussian becomes more spread out; as Σ becomes smaller, Gaussian more compressed

Text and figures from Andrew Ng's lecture notes for CS229

In two dimensions
O_{1} and O_{2} are correlated - knowing O_{1} tells you something about O_{2}

But we're not there yet

- Single Gaussian may do a bad job of modeling distribution in any dimension:

- Solution: Mixtures of Gaussians Figure from Chen, Picheney et al slides

Mixtures of Gaussians

- M mixtures of Gaussians:

$$
\begin{gathered}
f\left(x \mid \mu_{j k}, \Sigma_{j k}\right)=\sum_{k=1}^{M} c_{j k} N\left(x, \mu_{j k}, \Sigma_{j k}\right) \\
b_{j}\left(o_{t}\right)=\sum_{k=1}^{M} c_{j k} N\left(o_{t}, \mu_{j k}, \Sigma_{j k}\right)
\end{gathered}
$$

- For diagonal covariance:

$$
b_{j}\left(o_{t}\right)=\sum_{k=1}^{M} \frac{c_{j k}}{2 \pi^{D / 2} \prod_{d=1}^{D} \sigma_{j k d}^{2}} \exp \left(-\frac{1}{2} \sum_{d=1}^{D} \frac{\left(x_{j k d}-\mu_{j k d}\right)^{2}}{\sigma_{j k d}^{2}}\right)
$$

Phones Aren't Homogeneous

Training Mixture Models

- Forced Alignment
- Computing the "Viterbi path" over the training data is called "forced alignment"
- We know which word string to assign to each observation sequence.
- We just don't know the state sequence.
- So we constrain the path to go through the correct words
- And otherwise do normal Viterbi
- Result: state sequence!

Implications of Cross-Word Triphones

- Possible triphones: 50×50x50=125,000
- How many triphone types actually occur?
- 20K word WSJ Task (from Bryan Pellom)
- Word-internal models: need 14,300 triphones
- Cross-word models: need 54,400 triphones
- But in training data only 22,800 triphones occur!
- Need to generalize models.

State Tying / Clustering

- [Young, Odell, Woodland 1994]
- How do we decide which triphones to cluster together?
- Use phonetic features (or 'broad phonetic
classes')
- Stop

Nasal

- Sibilant
- Vowel
- lateral

