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Abstract. We present a novel approach for verifying safety properties
of finite state machines communicating over unbounded FIFO channels
that is based on applying machine learning techniques. We assume that
we are given a model of the system and learn the set of reachable states
from a sample set of executions of the system, instead of attempting
to iteratively compute the reachable states. The learnt set of reachable
states is then used to either prove that the system is safe or to produce a
valid execution of the system leading to an unsafe state (i.e. a counterex-
ample). We have implemented this method for verifying FIFO automata
in a tool called Lever that uses a regular language learning algorithm
called RPNI. We apply our tool to a few case studies and report our ex-
perience with this method. We also demonstrate how this method can be
generalized and applied to the verification of other infinite state systems.

1 Introduction

Software systems are often abstracted as infinite state systems at the design and
modeling stage. A popular model for a variety of such systems comprises of finite
state machines communicating over unbounded FIFO (first in first out) channels
(FIFO automata). Examples of such abstraction include: networking protocols
where unbounded buffers are assumed, languages like Estelle and SDL (Speci-
fication and Description Language) in which processes have infinite queue size,
distributed systems and various actor systems. A generic task in the automated
verification of safety properties of any system is to compute a representation
for the set of reachable states. For finite state systems, this is typically accom-
plished by doing an exhaustive exploration of the state-space. However, for FIFO
automata (and most other infinite state systems) exhaustive exploration of the
state space is impossible; and in fact the verification problem in general can
shown to be undecidable.

We develop a novel machine learning based procedure for verifying safety
properties of FIFO automata. We assume that the reachable states of the system
is a regular set (or is contained in a regular set) which is a fixpoint with respect
to the transition relation of the system. Instead of trying to compute the set
of reachable states iteratively, we learn the set of reachable states from sample
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runs of the system being verified. If the set of reachable states turns out to be
closed (fixpoint) under the transition relation of the system and does not contain
any unsafe state, we deem the system to be correct. On the other hand, unsafe
states in the learned reachable set are used to obtain executions that might lead
to the unsafe state (i.e. a counterexample). The counterexample may or may not
represent valid executions of the system because we may over-generalize while
learning. If the counterexample turns out to be valid then we have discovered
a bug in our system. On the other hand, if the counterexample is invalid, then
we use it to refine the learnt set of reachable states. We repeat the process until
we have either proved the system to be correct or discovered a buggy execution.
Figure 1 shows the overall framework of the learning to verify procedure.
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Fig. 1. Learning to verify procedure

Similar to regular model checking [9], we represent states of the system by
strings and expect the set of reachable states of practical systems to be structured
and representable as regular languages. We then use a modified version of the
algorithm RPNI [22, 12], that learns regular languages, to identify the set of
reachable states. We show that the algorithm that we present is a complete

verification method for systems with regular reachable sets1; in other words, for
such systems we will eventually either find a buggy execution that violates the
safety property, or will successfully prove that no unsafe state is reachable. We
have implemented our algorithm in Java, and demonstrated the feasibility of
this method by running the implementation on simple examples and network
protocols such as the alternating-bit protocol and the sliding window protocol.

1 Actually, we require the reachable states along with witness executions to form a
regular language; for a precise condition see Section 4.



Our approach is complementary to previous methods for algorithmic verification
that have been proposed, and we present examples of FIFO automata that our
method successfully verifies but on which other approaches fail (see Section 7 on
related work). We also give the requirements under which classes of infinite state
systems other than FIFO automata can be verified using the learning approach.

The rest of the paper is organized as follows. We first (Section 2) introduce
the learning framework and recall the definition of FIFO automata. In Section 3,
we describe the verification procedure for FIFO automata. Then, (in Section 4)
we give the proof of soundness of the method and completeness under certain
conditions. In Section 5, we generalize from FIFO automata to give a learning
based paradigm for verification of infinite state systems. Finally, in Section 6,
we give details of our Java implementation with experimental results, and con-
clude with overall lessons learnt and directions for future research (Section 8).
Relationship of our work to previous research on the algorithmic verification of
infinite state systems in general, and FIFO automata in particular, is deferred to
Section 7. Proofs and detailed description of the examples analyzed are available
in the full version of the paper [26].

This paper assumes that the reader is familiar with finite automata theory,
in particular, regular languages, deterministic finite automata and rational sets.
Some textbooks covering these topics are [18, 6].

2 Preliminaries

In this section, we describe machine learning framework that we use and recall
the definition of FIFO automata.

2.1 Learning framework

A learning algorithm is usually set in a framework which describes the types of
input data and queries available to the learner. The framework sometimes in-
cludes a knowledgeable teacher (student-teacher framework [3]) which provides
answers to membership queries (whether a given example belongs to a given
concept) and equivalence queries (whether a given hypothesis matches the con-
cept). However, in practice, such a teacher may not be available. Therefore, a
more general framework for learning assumes that the learner is simply given
examples included in the target concept (positive examples) and examples not
included in the target concept (negative examples). One such framework called
language identification in the limit was introduced by Gold [16] for inference of
infinitary languages. In Gold’s framework, the learner is given successively larger
sequences of positive and negative examples. If the learner is able to converge on
the target language after being given a sufficiently large sample of positive and
negative examples, it is said to identify the language in the limit. The sample
that is needed to guarantee this identification is said to be characteristic.

In our setting, we do not have access to a teacher which can answer equiv-
alence queries. Therefore, we restrict ourselves to Gold’s framework of identifi-



cation in the limit. Moreover, in this paper we focus on learning of regular lan-
guages; based on the experience of regular model checking [9], regular languages
are often sufficient to capture the behavior of an interesting class of infinite state
systems. A well-known algorithm for the inference of regular languages in Gold’s
framework is RPNI (regular positive and negative inference) [22, 12]. In this algo-
rithm, the target concept to be learned is a deterministic finite automata (DFA)
which accepts a regular language. The input consists of a set of positive samples
S+ accepted by the target DFA and a set of negative samples S− rejected by the
target DFA. We use a modified version of the RPNI algorithm which is described
in more detail later.

2.2 FIFO Automata

A FIFO automaton [15] is a 6-tuple (Q, q0, C,M,Θ, δ) where Q is a finite set
of control states, q0 ∈ Q is the initial control state, C is a finite set of channel

names, M is a finite alphabet for contents of a channel, Θ is a finite set of
transitions names, and δ : Θ → Q × ((C × {?, !} × M) ∪ {τ}) × Q is a function
that assigns a control transition to each transition name. For a transition name θ,
if the associated control transition δ(θ) is of the form (q, c?m, q′) then it denotes
a receive action, if it is of the form (q, c!m, q′) it denotes a send action, and if
it is of the form (q, τ, q′) then it denotes an internal action. The channels are
considered to be perfect and messages sent by a sender are received in the order
in which they were sent. The formal operational semantics, given by a labelled
transition systems, is defined below.

A FIFO automaton F = (Q, q0, C,M,Θ, δ) defines a labelled transition sys-
tem L = (S,Θ,→) where

– The set of states S = Q × (M∗)C ; in other words, each state of the labelled
transition system consists of a control state q and a C-indexed vector of
words w denoting the channel contents.

– If δ(θ) = (q, c?m, q′) then (p,w)
θ
→ (p′, w′) iff p = q, p′ = q′ and w = w′[c 7→

m · w′[c]]

– If δ(θ) = (q, c!m, q′) then (p,w)
θ
→ (p′, w′) iff p = q, p′ = q′ and w′ = w[c 7→

m · w[c]]

– If δ(θ) = (q, τ, q′) then (p,w)
θ
→ (p′, w′) iff p = q, p′ = q′ and w′ = w.

Here w[i 7→ s] stand for the C-indexed vector which is identical to w for all
channels except i, where it is s; w[i] denotes the contents of the channel i. We say

(p,w) → (p′, w′) provided there is some θ such that (p,w)
θ
→ (p′, w′). As usual,

→∗ will denote the reflexive transitive closure of →. For σ = θ1θ2 · · · θn ∈ Θ∗,
we say (p,w)

σ
→ (p′, w′) when there exist states (p1, w1) . . . (pn−1, wn−1) such

that (p,w)
θ1→ (p1, w1)

θ2→ · · · (pn−1, wn−1)
θn→ (p′, w′). The trace language of the

FIFO automaton is

L(F ) = {σ ∈ Θ∗ | ∃s = (p,w). s0

σ
→ s}

where s0 = (q0, (ǫ, . . . , ǫ)), i.e., the initial control state with no messages in the
channels.



3 Verification procedure

We now describe the verification procedure in detail with reference to FIFO
automata.

The central idea in our approach is to learn the set of reachable states instead
of computing it by iteratively applying the transition relation. Once the set of
reachable states is learnt, we can verify if the safety property is violated by
checking if an unsafe state is among the set of reachable states. However, in
order to ensure the soundness of our results, we need a mechanism to check
if the output of the learning algorithm is indeed correct. Observe that if the
set of states learnt is closed under the transition relation then it means that
the learnt set of states contains all the reachable states, and if, in addition,
none of the states in the learnt set are unsafe then we can conclude that the
system satisfies the safety property. On the other hand, if one of the states in
the learnt set is unsafe, then we need a mechanism to check whether the learning
algorithm over-generalized, i.e., added states that are not reachable. One way to
accomplish this is by producing a candidate execution to the unsafe state, and
checking if that execution is indeed a valid execution of the system. Therefore,
instead of learning the set of reachable states directly, we learn a language which
allows us to identify both the reachable states and witnesses to these in terms
of transitions executed by the system.

Let us now consider the language which can allow us to find both reachable
states and their witnesses. The first choice that comes to mind is the language
of the traces, L(F ). Since each trace uniquely determines the final state in the
trace, L(F ) has the information about the states that can be reached. While it

is easy to compute the state s such that s0

σ
→ s for a single trace σ, it is not

clear how to obtain the set of states reached, given a set of traces. In fact, even
if L(F ) is regular, there is no known algorithm to compute the corresponding
set of reachable states of the labelled transition system.2 The main difficulty is
that determining if a receive action can be executed depends non-trivially on
the sequence of actions executed before the receive. We overcome this difficulty
by annotating the traces in a way that makes it possible to compute the set of
reachable states.

Trace Annotation for FIFO: Consider a set Θ of co-names defined as follows:

Θ = {θ | θ ∈ Θ and δ(θ) 6= τ}

In other words, for every send or receive action in our FIFO automaton, we

introduce a new transition name with a “bar”. We say s
θ
→ s′ if s

θ
→ s′; executions

over sequences in (Θ ∪ Θ)∗ are defined naturally. The intuition of putting the
annotation of a “bar” on some transitions of a trace is to indicate that the
message sent or received as a result of this transition does not play a role in the
channel contents of the final state. In other words, a “barred” transition θ in

2 This can sometimes be computed for simple loops using meta-transitions.



an annotated trace of the system denotes either a message sent that will later
be received, or the receipt of a message that was sent earlier in the trace. Thus,
annotated traces of the automaton will be obtained by marking send-receive
pairs in a trace exhibited by the machine. Let A be the function that correctly
annotates an execution to produce a string over Σ = Θ ∪Θ. Observe, that each
execution is annotated uniquely, or to put it formally, A is an injective function.
The annotated trace language of the automaton F is AL(F ) = {A(t) | t ∈ L(F )}
and consists of all strings in (Θ ∪ Θ)∗ that denote correctly annotated traces of
F . For example, consider the FIFO automaton shown in Figure 2(a). Some of
the words in AL(F ) are: θ1, θ1θ1, θ1θ1θ1, θ1θ2, θ1θ2θ1.

q0

θ1(c0!0)

θ2(c0?0)

(a)

q0

q1

q2

θ1(c0!0)

θ2(c0?0)

θ3(c0!0)

θ4

(b)

Fig. 2. Example FIFO automata. θ4 does not change channel contents.

Finding reachable states from annotated traces: Since our objective is
to identify the reachable region, we need a way to find the reachable states
corresponding to a set of annotated traces. For a channel c, consider a function
hc : (Θ ∪ Θ) → M∗ defined as follows:

hc(t) =

{

m if t ∈ Θ and δ(t) = c!m
ǫ otherwise

Let hc also denote the unique homomorphism from (Θ∪Θ)∗ to M∗ that extends
the above function. Given an annotated trace ρ, the contents of channel c in the
final state are clearly given by hc(ρ).

FIFO automata with one channel: Let F = (Q, q0, {c0},M,Θ, δ) be a single
channel FIFO automaton, with c0 being the only channel. As usual s0 = (q0, ǫ)
will denote the starting state of F . Given a set of annotated traces L, let Lq ⊆ L

be the set of annotated traces in L whose last transition ends in control state q.
Now the set of states reached (by traces in L) is given by

R(L) = {(q,m) | q ∈ Q and m ∈ hc0
(Lq)}

For a regular set L, then it can be seen that Lq is regular, and R(L) can be
computed by a simple homomorphism, and so R(L) is regular.

Multi-channel FIFO automata: Consider a FIFO automaton F = (Q, q0, C,M,Θ, δ)
communicating over channels C = {c0, c1, . . . ck}. Now the set of states reached



(by traces in L) is given by

Rm(L) = {(q, (hc0
(σ), hc1

(σ), . . . , hck
(σ))) |

q ∈ Q and σ ∈ Lq}

As we will see shortly, we need a test for inclusion for the reachable states
corresponding to a set of annotated traces. In this respect, we cannot hope to
work with Rm(L), since as soon as have even two channels, given a regular L,
Rm(L) can be seen to be a rational relation for which inclusion is undecidable [6].
However, if we compute the contents of each channel independently of others,
we can compute an upper approximation of Rm(L) as follows:

R(L) =
⋃

q∈Q

{q} × hc0(Lq)× hc1(Lq) · · ·hck
(Lq)

It can be easily seen that R(L) is a regular language if L is regular. In gen-
eral, Rm(L) ⊆ R(L), however for many FIFO systems encountered in prac-
tice (most network protocols like Alternating Bit Protocol, Sliding Window
Protocol), this gives the exact reachable region when applied to AL(F ), i.e.

Rm(AL(F )) = R(AL(F )). We show later that this is sufficient for the applica-
bility of our learning approach.

Recovering a witness from an unsafe state: If the reachable states corre-
sponding to a learned set of annotated traces have a nonempty intersection with
the set of “unsafe” states (which violate the safety property), we would like to
extract a sequence of transitions of the system which witnesses the reachabil-
ity of some unsafe state. The motivation is that such a sequence can then be
used as a counterexample demonstrating the violation of the safety property or
a negative example for the learning algorithm.

We assume that for each control state q, we are given the unsafe chan-
nel contents as a product of regular languages U(q, c0), U(q, c1), . . . , U(q, cn)
corresponding to channels 0 . . . n, i.e., the unsafe states are given by Su =
⋃

q∈Q{(q, u0, u1, . . . , un) | ui ∈ U(q, ci)}. Given a regular set of annotated traces,
L, recall that Lq ⊆ L represents the set of annotated traces in L whose last tran-
sition ends in control state q. For each control state q, for each channel i, we can
find the intersection of hci

(Lq) and U(q, ci) and calculate the traces Lqi
∈ Lq

such that hci
(Lqi

) = hci
(Lq)∩U(q, ci). Intuitively, this gives us annotated traces

which lead to a potential unsafe configuration for channel ci. Now, if the inter-
section

⋂

i∈0...n Lqi
is non empty, an annotated trace t in this intersection leads

to an unsafe configuration for each channel and hence an unsafe state in Su. Let
us call W the function which outputs t given L and Su.

From annotated trace to system execution: In order to convert W(L) ∈ Σ∗

into a sequence of transitions, we need a way to extract the presumed sys-
tem execution from a given annotated trace. Essentially, we want a substitution



RevA : Σ 7→ Θ∗ which “reverses” the annotation A. This can be done sim-
ply by removing the “bars” on the annotated trace. Formally, we can define
RevA(θ) = RevA(θ) = θ for all θ ∈ Θ. Extending RevA to strings in the usual
way, it can be seen that that RevA(A(t)) = t.

algorithm learnToVerify

Input:

F : model of system,
Su : regular set of “unsafe states”

Output: Property valid OR
path to an unsafe state

begin
S−

2b = ∅
(S+, S−

1 , S−

2a) =GetTraces()
while(true)do

L = modifiedRPNI (S+, S−

1 , S−

2a ∪ S−

2b)
if R(L) ∩ Su 6= ∅

lc =W(L, Su)
if RevA(lc) valid execution of F

Output RevA(lc); stop
else

S−

2b = S−

2b ∪ lc
else

if R(L) is a fixpoint
Output “Property holds”; stop

else
Tnew = GetTraces()
add Tnew to (S+, S−

1 , S−

2a)
end

algorithm modifiedRPNI

Input: S+ ∈ Σ∗, S−

1 ∈ Θ∗, S−

2 ∈ Σ∗

Output: a regular language L
begin

D ← PTA(S+)
for i = 2 to |D| do

for j = 1 to i− 1 do
if qi, qj not merged with smaller state then

D′ ← merge(D, qi, qj)
D′ ← determinize(D′, qj)
D′′ ← RevA(D′); all states in D′′ made final
if compatible(D′′, S−

1 ) && compatible(D′, S−

2 )
D = D’;exit j-loop

return language defined by D

end

algorithm determinize

Input: A, x; Output: A

begin

for any x
θ
→ x1, x

θ
→ x2 and x1 6= x2

A←merge(A, x1, x2)
A← determinize(A, smaller of x1, x2)

return A

end

Fig. 3. Learning to verify algorithm

Verification algorithm We are now ready to formally describe the learn-

ing to verify procedure as shown in Figure 3. We first collect positive and
negative examples of labels in Σ∗ as follows. A set T of sequences of transi-
tions that can be exhibited by the system is obtained by invoking a function
GetTraces. Positive examples, S+ are simply the correct “annotations” which
put bars on the send-receive pairs in the strings in T , i.e. S+ = {A(t) | t ∈ T}.
There are three sets of negative examples. The first set S−

1 = {tθd | t ∈
T and θd is a disabled transition} consists of sequences of transitions extended
by a disabled transition (a transition that cannot be taken at a certain state).
The second set S−

2a = {σ ∈ Σ∗ | ∃t ∈ T such that RevA(σ) = t and σ 6= A(t)}
corresponds to “incorrect” annotations. Notice that since A is injective, all an-
notations of a trace t ∈ T other than A(t) cannot be exhibited by the system.
The third set, S−

2b, is a collection of spurious counterexamples; initially this is
empty.

The positive and negative examples are given to a learning algorithm based
on RPNI. Similar to RPNI, this algorithm first constructs a prefix tree automata



(PTA) from S+. The PTA is simply a collection of the strings in S+ as paths
with common prefixes merged together. Each state in the PTA is associated with
the string generated by following the path to that state from the initial state.
The states are assigned numbers according to the standard ordering3 imposed by
the associated strings. The learning algorithm attempts to generalize from the
positive examples by merging states in the PTA in a specific order: for i going
from 1 to the largest state in the PTA, it attempts to merge qi with all states
less than qi in ascending order. A merge may cause non-determinism which is re-
moved by further merges using the operation determinize which results in a finite
automaton D′. Another finite automaton D′′ is obtained from D′ by applying
the substitution RevA and making all states final. If D′′ is compatible with the
negative set S−

1 (all strings in S−

1 are rejected by D′′) and D′ is compatible with
the negative set S−

2 = S−

2a ∪ S−

2b, the merge is accepted. The learning algorithm
is essentially the same as the traditional RPNI algorithm except for the the use
of the additional kind of negative examples corresponding to S−

1 . For a detailed
explanation of the RPNI algorithm itself, the reader is referred to [22, 12].

Let the output of the modified RPNI algorithm be the regular language
L. If R(L) intersects with the unsafe states Su, then a counterexample lc (=
W(AL(F ), Su)) is obtained. By attempting to simulate the counterexample on
the system, we can check if RevA(l) is executable. If yes, then we have found a
real counterexample and are done, otherwise lc is added to S−

2b. If R(L) does not
intersect with the unsafe states Su, then it is tested for being a fixpoint under
the reachability relation by checking the following condition:

{s0} ∪ {s | ∃s′ ∈ R(L). s′ → s} = R(L)

If it is a fixpoint, we declare that the safety property holds. Otherwise, we get
more traces by invoking the function GetTraces (successive calls to this function
generate new traces) and continue the learning procedure.

4 Correctness of the verification procedure

The soundness of the procedure is straightforward. For a learned set of traces L, if
R(L) has an empty intersection with the set of unsafe states, Su, and is a fixpoint
under the transition relation, the safety property holds. Any counterexample is
finite and gives a supposed execution of the system leading to an unsafe state
which can then be automatically checked for validity by simulation of the system.

We can also show completeness (i.e. the procedure terminates with the cor-
rect answer) under the condition that AL(F ) is regular. Then, given a “fair”
method of generating the system traces, in the limit, the learning paradigm will
either prove that the system satisfies the property or find a valid counterexam-
ple. By a fair method, we mean one which will eventually generate any given
finite trace. There can be many different ways of generating fair traces, one of
the simplest being a breadth first traversal of all traces.

3 For Σ = {a, b}, the ordering is ǫ, a, b, aa, ab, ba, bb, aaa, . . .



Lemma 1. If AL(F ) is regular, then using any fair strategy for generating

traces, in the limit, given a sufficiently large sample, the learning procedure out-

puts a DFA which generates AL(F ).

Theorem 1. If AL(F ) is regular and R(AL(F )) is the set of all reachable

states, then the learning to verify procedure will eventually either prove that the

system satisfies the property or find a valid counterexample.

The proofs of the lemma and the theorem are available in the full version of
this paper [26]. The running time of the algorithm is dependent on the strategy
for getting the traces. For a simple breadth-first strategy, in the worst case,
the algorithm might need to explore all traces up to a depth D. Here, D is
the length of the longest path starting from the initial state in the minimal
DFA representing AL(F ) (assuming AL(F ) is regular). Thus, the running time
can be exponential in the size of the DFA for AL(F ). However, as discussed
in Section 6, we can use some heuristics to prune down the number of traces
needed. In practice, for a number of FIFO systems, the learning procedure is
able to converge to the correct answer in a fairly small time period which is
comparable to other tools.

Note that the conditions required by Theorem 1 are merely sufficient for
termination of the learning procedure and the verification procedure can be
successfully used for many systems even if AL(F ) is not regular. In fact, an
important observation is that for a number of systems with nonregular AL(F ),
there exists a regular subset L′ ⊆ AL(F ) such that the traces in L′ “cover” all
the reachable states, i.e. R(L′) = R(AL(F )). In other words, every reachable
state in F is witnessed by some trace in L′. For example, the set of annotated
traces corresponding to the automaton in Figure 2(a) is not regular but the
regular language L′ = θ∗1 covers all the reachable states. Note that R(L′) is
not an approximation; we are simply content with finding any regular set of
annotated traces that can cover the reachable states. In Section 6, we analyze
FIFO systems which have a regular AL(F ) as well as systems for which AL(F )
is not regular but a “covering” L′ ⊆ AL(F ) is regular. In all cases, the algorithm
terminates with the correct reachable set.

5 Generalization to other infinite state systems

The verification procedure described for FIFO automata can be easily general-
ized to other infinite state systems. The challenge is to identify the alphabet Σ

which provides the “annotation” and the functions A, RevA, R and W which
are used by the verification procedure. Notice that the procedure does not as-
sume anything else about FIFO automata other than the above functions. The
key properties of Σ needed to make the procedure work are summarized below.

– There exists an injective function A : L(F ) 7→ Σ∗ which maps a system
execution to a sequence of labels in Σ. Recall that L(F ) is the language
of traces that can be executed by the system F . Let AL(F ) ∈ Σ∗ be the
language {A(t) | t ∈ L(F )}.



– There exists a substitution RevA : Σ 7→ Θ∗ which “reverses” the opera-
tion A. Extending RevA to strings in the usual way, it must be true that
RevA(A(t)) = t. In FIFOs, RevA simply removes the “bars”.

– There exists a (computable) function R such that for a set L ∈ Σ∗, R(L)
gives a set of states (supposedly) reached during the execution of the traces
in L. It is required that R(AL(F )) must be the exact reachable region of F .

– There exists a (computable) function W such that for L ∈ Σ∗, and a set
of “unsafe” states Su, if R(L) ∩ Su 6= ∅ then W(L, Su) gives a finite trace
lc ∈ L which witnesses the reachability of some state in Su.

It can be easily seen that the proof of correctness of the learning algorithm in
Section 4 generalizes to other systems if Σ satisfies the above properties. Thus,
we can think of this approach as a “paradigm” for the verification of safety
properties of infinite systems.

6 Implementation

We have implemented the verification framework for FIFO automata as part
of the Lever (LEarning to VERify) tool suite available from [19]. The tool is
written in Java and implements the learning to verify procedure shown in Fig-
ure 3. For general automata related decision procedures, we use the Java package
dk.brics.automata available from [20]. Currently, the incremental learning ap-
proach is not implemented in Lever, so if an answer to the verification problem
is not solved in a particular run, we restart the procedure with more positive
samples.

For generating the annotated traces that are used for the positive and neg-
ative examples, we use the following strategy. Starting from the initial state,
we explore the system states (cross product of the control state and channel
contents) in a breadth-first manner. To limit the number of traces generated,
we do not distinguish between FIFO states if they have the same control state
and same channel contents up to a position d from the start of the channel. We
start with d = 1 and keep increasing d if more traces are needed. We have seen
that this heuristic works quite well in practice to generate sufficient traces for
the learning procedure.

We have used Lever to analyze some canonical FIFO automata verification
problems described below.

[Producer Consumer] A simple producer consumer problem with one
FIFO channel. The producer can either be in an “idle” or in a “send” state
in which it transmits either 0 or 1 to the FIFO channel.
[Data with parity] A simple data communication protocol in which the
sender sends data and a parity bit for the number of 1’s sent. The receiver
uses the parity bit as a simple check for data integrity.
[Resource arbitrator] In this example, two senders wish to broadcast over
a shared channel and use a resource manager to arbitrate which one is allowed
to use it at any time.



[Alternating bit protocol (ABP)] This consists of a sender and receiver
communicating over a data and an acknowledgment channel. We consider a
non-lossy version of ABP.
[Sliding window protocol] This is similar to ABP except that the sender
can keep multiple data messages in flight. We use a window size of 2 and
maximum sequence number also of 2.

“Producer Consumer”, “Alternating bit protocol” and “Sliding window proto-
col” are fairly well-known in the FIFO research community, see for example [24].
For the other two systems, a detailed description is available in the full version
of this paper [26].

Table 1 shows the results obtained. Here “Samples” is the number of positive
samples generated, T is the running time on a 1594 MHz notebook computer
with 512 MB of RAM using Java virtual machine version 1.4.1 from Sun Mi-
crosystems. In all cases, Lever terminates with the correct reachable region.
We also report the time taken (Trmc) by the regular model checking tool [21] on
the same examples. Although a complete comparative analysis with all available
tools remains to be done, it can be seen the running time of Lever is compara-
ble to the regular model checking tool and in fact better for all examples except
“Sliding window protocol”.4

Samples T Trmc

Producer Consumer 42 0.4s 3.3s

Data with parity 42 0.5s 12.7s

Resource arbitrator 146 0.7s 33.2

Alternating Bit 1122 4.1s 24.7

Sliding Window 2535 81.2s 78.4

Table 1. Samples and running time

Lever is still in the prototype stage and we see the current version as a
proof of concept of the learning to verify approach. We plan to introduce various
optimizations and features which should enable Lever to handle larger and
more complex examples.

7 Related Work

Verification of infinite state systems: For automatic verification of infinite state
FIFO systems, the state space has to be represented by symbolic means. Some
common representations are: regular sets [9, 1], Queue Decision Diagrams [7],
semi-linear regular expressions [15] and constrained QDDs [8]. Since an iterative
approach of computing the fixpoint for reachability does not terminate for most
cases, various mechanisms are used for finding the reachable set. We now discuss
some of these techniques and show their relation to our learning approach.

4 The encoding of sliding window protocol in the regular model checking tool is slightly
different; instead of limiting the window size, the size of the queue is bounded.



In the approach using meta-transitions and acceleration [7, 8, 15], a sequence
of transitions, referred to as a meta-transition, is selected and the effect of its
infinite iteration calculated. This is complementary to our learning approach,
since meta-transitions can be also be incorporated into our learning algorithm.
Another popular approach for FIFO, parametric, integer and stack systems is
regular model checking [9, 1]. A regular set is used to represent the states and a
transducer is used to represent the transition relation. The problem is reduced to
finding a finite transducer representing the infinite composition of this relation.
However, there are some examples in which even if such a finite transducer exists,
the procedure may not be able to converge to it. One such example of a FIFO
automaton is shown in Figure 2(b) in Section 3. We used the regular model
checking tool from [21] to analyze this example, but the tool failed to terminate
even after two hours. On the other hand, our learning-based tool is able to
automatically find the reachable set in about fifty milliseconds. It is certainly
possible that in other examples, transducer construction may be able to find the
reachable region faster. Thus, our approach can be seen as complementary and
seen to extend the range of systems that can be automatically analyzed.

An approach for computing the reachable region that is closely related to
ours is widening. In this approach, the transition relation is applied to the ini-
tial configuration some number of times and then by comparing the sets thus
obtained, the limit of the iteration is guessed. A simple widening principle in
the context of regular model checking is given in [9] which is extended in [25]
for parametric systems. Bultan [10] uses a widening technique for Presburger
formulas to enable faster convergence for fixpoint. Bartzis et al. [5] present a
widening technique for arithmetic automata. At a very high level, both widening

and our approach use similar ideas. In both methods, based on certain sample
points obtained using the transitions, a guess is made for the fixpoint being
searched for. One important difference between widening and our approach is
that widening (except for certain special contexts where it can be shown to be
exact) is a mechanism to prove the correctness of a system and cannot be used
to prove a system to be incorrect. On the other hand, the approach presented
here allows one to both prove a system to be correct and to detect bugs.

Use of machine learning for verification: The application of techniques from
machine learning for verification is relatively new. Peled et al. [23] give a method
called “Black Box Checking” which is extended by Groce et al. [17] as Adaptive

Model Checking. Briefly, in this method, one starts with a possibly inaccurate
model and incrementally updates it using Angluin’s [3] query based learning of
regular sets. Cobleigh et al. [11] also use a variant of Angluin’s algorithm to
learn the assumptions about the environment to aid compositional verification.
Boigelot et al. [4] present a technique for constructing a finite state machine
that simulates all observable operations of a given reactive program. Ammons
et al. [2] use machine learning to discover formal specifications of the protocols
that a client of an application program interface must observe. Edelkamp et

al. [13] consider the problem of finding “bad” states in a model as a directed
search problem and use AI heuristic search methods to attempt to find these



states. Ernst et al. [14] have developed a system called Daikon which attempts
to discover likely invariants in a program by analyzing the values taken by its
variables while the program is exercised in a test suite.

Our approach in using the machine learning techniques for verification is
unique in that we are not trying to learn an unknown system model but rather
the behavior of a system which is already fully described. This is closest in
spirit to Ernst et al. [14], although the domain of application and objective are
completely different. Another difference with other learning methods is that we
do not use Angluin’s algorithm. Angluin’s algorithm needs a teacher which can
answer equivalence queries; answering such queries is typically hard to achieve.
Instead, we use an algorithm called RPNI [22, 12] which simply needs positive
and negative samples of the concept to be learned.

8 Conclusion and future work

We have presented a novel approach based on machine learning to verify finite
state machines communicating over unbounded FIFO channels. A prototype
implementation, called Lever, has been developed and the approach has been
shown to be feasible in analyzing practical networks protocols like alternating bit
and sliding window. We have also shown how this approach can be generalized
to analyze infinite state systems other than FIFO automata.

The learning to verify procedure can be applied to other systems such as:
automata with unbounded integers; real-time and hybrid systems; parameter-
ized systems; counter automata; and push-down automata with multiple stacks.
The approach could be extended to handle not only safety properties but also
liveness and more general temporal properties. Other avenues for future work
include research for getting better execution traces and practical optimizations
and engineering for the Lever tool.
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