Learning Continuous Time Markov Chains from Sample Executions

Koushik Sen

Mahesh Viswanathan

Gul Agha

University of Illinois at Urbana Champaign

Motivation

- Continuous-time Markov Chains (CTMC) are widely used
 - to model stochastic systems
 - to analyze performance and reliability
- Model → Analyze → Implement
- Implementation may not match the model
 - bugs introduced during coding
 - estimated values of parameters may differ from actual values
- Learn model (CTMC) from the sample execution of the implementation
 - learned model can be used for
 - performance evaluation
 - model-checking
 - generate smaller abstract model of the system

Overview of Our Approach

Samples

Overview of Our Approach

Overview of Our Approach

Edge Labeled Continuous-time Markov Chains (CTML_L)

- $\blacksquare M = (S, \Sigma, s_0, \delta, \rho, L)$
 - S: finite set of States
 - Σ: finite set of edge labels
 - \square $s_0 \in S$: initial state
 - - deterministic : $\delta(s,a)$ is unique
 - partial function

 - \Box L:S \rightarrow 2^{AP}: state to a set of atomic propositions

Semantics of CTMC_L

- $\blacksquare E(s) = \sum_{a \in \Sigma} \rho(s,a)$
- Probability of taking edge a from state s
 - $P(s,a) = \rho(s,a)/E(s)$
- Probability of leaving the state s within t units of time $(1 e^{-E(s)t})$
- Probability to move from s along edge a within t time units
 - $P(s,a)(1 e^{-E(s)t})$
- Path is an infinite sequence
 - $\Box \mid_0 \to_{(a_1,t_1)} \mid_1 \to_{(a_2,t_2)} \mid_2 \to_{(a_3,t_3)} \dots$

Generating Samples

- Executions of CTMC_L are typically infinite
 - We need executions of finite length
- Generate samples from Finitary Edge Labeled Continuous-time Markov Chains (CTMC^f_I)
 - $\neg F = (M,p)$
 - M: CTMC₁
 - p : stopping probability at any state s (say p = 0.1)
 - Technical tool
 - Paths are of finite length
 - Learn CTMC^f_L instead of CTMC_L

Equivalent States

- Given M = $(S,\Sigma,s_0,\delta,\rho,L)$
- \blacksquare R \subseteq S \times S is a stable relation
- (s,s') ∈ R if and only if
 - \Box L(s) = L(s')
 - \Box E(s) = E(s')
 - □ \forall a ∈ Σ , if \exists t ∈ S s.t. δ (s,a)=t then \exists t' ∈ S s.t. δ (s',a)=t', P(s,a)=P(s',a), and (t,t') ∈ R
 - vice-versa
- $s \equiv s'$ if and only if $\exists R s.t. (s,s') \in R$

Equivalent CTMC^f_L

- Given a CTMC^f_L F = (M,p), let F' = (M',p) be the CTMC^f_L obtained by merging equivalent states.
 - The probability space defined by M and M' are the same

Learning Algorithm

- Given I⁺: a multi-set of finite sample executions from a CTMC^f_L
- A = Prefix tree CTMC^f_L of I⁺
- Merge states in A according to lexicographic order
 - merge if two states are equivalent (how?)
 - determinize after each merge
 - continue till no more merge is possible

Statistical Equivalence of States

- A = PCTMC(I+) is built from experimental data
 - cannot test exact equivalence of two states in A
 - \blacksquare s \equiv s' is replaced by s \approx s' (compatible)
 - L(s) = L(s')
 - E(s) ~ E(s') [statistical test]
 - \forall a \in Σ ,
 - Arr P(s,a) \sim P(s',a) [statistical test]

$E(s) \sim E(s')$ with error α

- Check if means 1/E(s) and 1/E(s') of two exponential distributions are same
- Two exponential distributions with means θ_1 and θ_2

 - \Box $H_a: \theta_1 \neq \theta_2 \text{ (or } \theta_1/\theta_2 \neq 1)$
- Let $x_1, x_2, ..., x_n$ are n samples from exponential distribution with mean θ_1
 - $\Box \quad \underline{\theta}_1 = \sum_{i=1 \text{ to } n} x_i / n$
- Let $y_1, y_2, ..., y_m$ are m samples from exponential distribution with mean θ_2
- Accept H_a against H_0 if $\underline{\theta_1}/\underline{\theta_2}$ is not in $[r_{min}, r_{max}]$
 - $r_{min} = \mu \sigma/\alpha$ and $r_{max} = \mu + \sigma/\alpha$
 - μ and σ are mean and standard deviation of $Z \sim F(2n,2m)$
 - □ Prob[$r_{min} \le Z \le r_{max}$] < 1 α

$P(s,a) \sim P(s',a)$ within error α

- f₁ tries are 1 out of n₁ tries from a Bernoulli distribution with mean p₁
- f₂ tries are 1 out of n₂ tries from a Bernoulli distribution with mean p₂
- p₁ and p₂ are statistically same if

$$\left| \frac{f_1}{n_1} - \frac{f_2}{n_2} \right| < \sqrt{\frac{1}{2} \log \frac{2}{\alpha}} \left(\frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} \right)$$

(Hoeffding bound)

Learning in the Limit

- Non-zero probability of getting structurally complete sample I+

 - □ for every transition (s,a) there is a $\tau \in I^+$ such that τ traverses (s,a)
- Error goes to 0 as |I+| goes to ∞
 - Type I error : compatible returns false when two states are equivalent
 - Type II error : compatibility returns true when two states are not equivalent

Tool and Experiments

- Implemented as a sub-component of the tool VESTA (Verification based on Statistical Analysis)
 - http://osl.cs.uiuc.edu/~ksen/vesta/
- Symmetric CTMC
 - \Box 600 samples and α =0.0001

Koushik Sen, Manesh Viswanathan, Gui Agna: Learning CIMC

Conclusion and Related Work

- Similar learning algorithms
 - Regular languages RPNI (Oncina and Garcia'92)
 - Stochastic regular grammar- ALERGIA (Carrasco and Oncina'94)
 - Continuous-time Hidden Markov Model- Wei, Wang, Towsley'02
 - Fix the size of HMM that they want to learn
- Our approach may not scale for large systems
 - requires lot of samples
 - Can we combine this approach with statistical model-checking?

- I+ = multi-set of finite traces $\tau = I_0 \rightarrow {}_{(a_1,t_1)} I_1 \rightarrow {}_{(a_2,t_2)} I_2 \dots \rightarrow {}_{(a_n,t_n)} I_n$
- S = all prefixes of I+
 - \neg Pr(τ) = { λ , a_1 , a_1 , a_2 , ..., a_1 , a_2 , ..., a_n } (all prefixes)
 - I⁺: multi-set of samples

- $\blacksquare \quad I^+ = \text{multi-set of finite traces } \tau = I_0 \rightarrow_{(a_1,t_1)} I_1 \rightarrow_{(a_2,\ t_2)} I_2 \ldots \rightarrow_{(a_n,t_n)} I_n$
- S = all prefixes of I+
- $S_0 = \lambda$
- $\delta(x,a) = xa$ if $xa \in S$ = \bot otherwise
- $P(x,a) = \underline{p}(x,a,I^+)$
 - \neg $n(x,I^+)$ = number of τ in I^+ such that x is prefix of τ
 - $n'(x,I^+) = n(x,I^+) number x in I^+$
 - $\underline{p}(x,a,l^+) = n(xa,l^+)/n'(x,l^+) \text{ if } n'(x,l^+) > 0$ = 0 otherwise

- I^+ = multi-set of finite traces $\tau = I_0 \rightarrow {}_{(a_1,t_1)} I_1 \rightarrow {}_{(a_2,t_2)} I_2 \dots \rightarrow {}_{(a_n,t_n)} I_n$
- S = all prefixes of I+
- $s_0 = \lambda$
- $\delta(x,a) = xa$ if $xa \in S$ = \bot otherwise
- $P(x,a) = \underline{p}(x,a,I^+)$
- $E(x) = 1/\underline{\theta}(x, I^+)$
 - $\theta(x,a,\tau) = t_i$ where $x = a_1 a_2 \dots a_{i-1}$ and $a = a_i$
 - $\underline{\theta}(x, I^+) = \sum_{a \in \Sigma} \sum_{\tau \in I^+} \theta(x, a, \tau) / n'(x, I^+) \quad \text{if } n'(x, I^+) > 0$ $= 0 \quad \text{otherwise}$

- $\blacksquare \quad I^+ = \text{multi-set of finite traces } \tau = I_0 \rightarrow_{(a_1,t_1)} I_1 \rightarrow_{(a_2,\ t_2)} I_2 \ldots \rightarrow_{(a_n,t_n)} I_n$
- S = all prefixes of I+
- $S_0 = \lambda$
- $\delta(x,a) = xa$ if $xa \in S$ = \bot otherwise
- $P(x,a) = \underline{p}(x,a,I^+)$
- $\mathbf{E}(\mathbf{x}) = 1/\underline{\theta}(\mathbf{x}, \mathbf{I}^+)$
- $\rho(x,a) = P(x,a)E(x)$
- $L(x) = L(x, I^{+})$
- p is stopping probability with which I+ are generated