Learning Continuous Time Markov Chains from Sample Executions #### Koushik Sen Mahesh Viswanathan Gul Agha University of Illinois at Urbana Champaign #### Motivation - Continuous-time Markov Chains (CTMC) are widely used - to model stochastic systems - to analyze performance and reliability - Model → Analyze → Implement - Implementation may not match the model - bugs introduced during coding - estimated values of parameters may differ from actual values - Learn model (CTMC) from the sample execution of the implementation - learned model can be used for - performance evaluation - model-checking - generate smaller abstract model of the system ### Overview of Our Approach Samples ### Overview of Our Approach ### Overview of Our Approach #### Edge Labeled Continuous-time Markov Chains (CTML_L) - $\blacksquare M = (S, \Sigma, s_0, \delta, \rho, L)$ - S: finite set of States - Σ: finite set of edge labels - \square $s_0 \in S$: initial state - - deterministic : $\delta(s,a)$ is unique - partial function - \Box L:S \rightarrow 2^{AP}: state to a set of atomic propositions ### Semantics of CTMC_L - $\blacksquare E(s) = \sum_{a \in \Sigma} \rho(s,a)$ - Probability of taking edge a from state s - $P(s,a) = \rho(s,a)/E(s)$ - Probability of leaving the state s within t units of time $(1 e^{-E(s)t})$ - Probability to move from s along edge a within t time units - $P(s,a)(1 e^{-E(s)t})$ - Path is an infinite sequence - $\Box \mid_0 \to_{(a_1,t_1)} \mid_1 \to_{(a_2,t_2)} \mid_2 \to_{(a_3,t_3)} \dots$ ### Generating Samples - Executions of CTMC_L are typically infinite - We need executions of finite length - Generate samples from Finitary Edge Labeled Continuous-time Markov Chains (CTMC^f_I) - $\neg F = (M,p)$ - M: CTMC₁ - p : stopping probability at any state s (say p = 0.1) - Technical tool - Paths are of finite length - Learn CTMC^f_L instead of CTMC_L ### Equivalent States - Given M = $(S,\Sigma,s_0,\delta,\rho,L)$ - \blacksquare R \subseteq S \times S is a stable relation - (s,s') ∈ R if and only if - \Box L(s) = L(s') - \Box E(s) = E(s') - □ \forall a ∈ Σ , if \exists t ∈ S s.t. δ (s,a)=t then \exists t' ∈ S s.t. δ (s',a)=t', P(s,a)=P(s',a), and (t,t') ∈ R - vice-versa - $s \equiv s'$ if and only if $\exists R s.t. (s,s') \in R$ ### Equivalent CTMC^f_L - Given a CTMC^f_L F = (M,p), let F' = (M',p) be the CTMC^f_L obtained by merging equivalent states. - The probability space defined by M and M' are the same #### Learning Algorithm - Given I⁺: a multi-set of finite sample executions from a CTMC^f_L - A = Prefix tree CTMC^f_L of I⁺ - Merge states in A according to lexicographic order - merge if two states are equivalent (how?) - determinize after each merge - continue till no more merge is possible #### Statistical Equivalence of States - A = PCTMC(I+) is built from experimental data - cannot test exact equivalence of two states in A - \blacksquare s \equiv s' is replaced by s \approx s' (compatible) - L(s) = L(s') - E(s) ~ E(s') [statistical test] - \forall a \in Σ , - Arr P(s,a) \sim P(s',a) [statistical test] #### $E(s) \sim E(s')$ with error α - Check if means 1/E(s) and 1/E(s') of two exponential distributions are same - Two exponential distributions with means θ_1 and θ_2 - \Box $H_a: \theta_1 \neq \theta_2 \text{ (or } \theta_1/\theta_2 \neq 1)$ - Let $x_1, x_2, ..., x_n$ are n samples from exponential distribution with mean θ_1 - $\Box \quad \underline{\theta}_1 = \sum_{i=1 \text{ to } n} x_i / n$ - Let $y_1, y_2, ..., y_m$ are m samples from exponential distribution with mean θ_2 - Accept H_a against H_0 if $\underline{\theta_1}/\underline{\theta_2}$ is not in $[r_{min}, r_{max}]$ - $r_{min} = \mu \sigma/\alpha$ and $r_{max} = \mu + \sigma/\alpha$ - μ and σ are mean and standard deviation of $Z \sim F(2n,2m)$ - □ Prob[$r_{min} \le Z \le r_{max}$] < 1 α ### $P(s,a) \sim P(s',a)$ within error α - f₁ tries are 1 out of n₁ tries from a Bernoulli distribution with mean p₁ - f₂ tries are 1 out of n₂ tries from a Bernoulli distribution with mean p₂ - p₁ and p₂ are statistically same if $$\left| \frac{f_1}{n_1} - \frac{f_2}{n_2} \right| < \sqrt{\frac{1}{2} \log \frac{2}{\alpha}} \left(\frac{1}{\sqrt{n_1}} + \frac{1}{\sqrt{n_2}} \right)$$ (Hoeffding bound) ### Learning in the Limit - Non-zero probability of getting structurally complete sample I+ - □ for every transition (s,a) there is a $\tau \in I^+$ such that τ traverses (s,a) - Error goes to 0 as |I+| goes to ∞ - Type I error : compatible returns false when two states are equivalent - Type II error : compatibility returns true when two states are not equivalent ### Tool and Experiments - Implemented as a sub-component of the tool VESTA (Verification based on Statistical Analysis) - http://osl.cs.uiuc.edu/~ksen/vesta/ - Symmetric CTMC - \Box 600 samples and α =0.0001 Koushik Sen, Manesh Viswanathan, Gui Agna: Learning CIMC #### Conclusion and Related Work - Similar learning algorithms - Regular languages RPNI (Oncina and Garcia'92) - Stochastic regular grammar- ALERGIA (Carrasco and Oncina'94) - Continuous-time Hidden Markov Model- Wei, Wang, Towsley'02 - Fix the size of HMM that they want to learn - Our approach may not scale for large systems - requires lot of samples - Can we combine this approach with statistical model-checking? - I+ = multi-set of finite traces $\tau = I_0 \rightarrow {}_{(a_1,t_1)} I_1 \rightarrow {}_{(a_2,t_2)} I_2 \dots \rightarrow {}_{(a_n,t_n)} I_n$ - S = all prefixes of I+ - \neg Pr(τ) = { λ , a_1 , a_1 , a_2 , ..., a_1 , a_2 , ..., a_n } (all prefixes) - I⁺: multi-set of samples - $\blacksquare \quad I^+ = \text{multi-set of finite traces } \tau = I_0 \rightarrow_{(a_1,t_1)} I_1 \rightarrow_{(a_2,\ t_2)} I_2 \ldots \rightarrow_{(a_n,t_n)} I_n$ - S = all prefixes of I+ - $S_0 = \lambda$ - $\delta(x,a) = xa$ if $xa \in S$ = \bot otherwise - $P(x,a) = \underline{p}(x,a,I^+)$ - \neg $n(x,I^+)$ = number of τ in I^+ such that x is prefix of τ - $n'(x,I^+) = n(x,I^+) number x in I^+$ - $\underline{p}(x,a,l^+) = n(xa,l^+)/n'(x,l^+) \text{ if } n'(x,l^+) > 0$ = 0 otherwise - I^+ = multi-set of finite traces $\tau = I_0 \rightarrow {}_{(a_1,t_1)} I_1 \rightarrow {}_{(a_2,t_2)} I_2 \dots \rightarrow {}_{(a_n,t_n)} I_n$ - S = all prefixes of I+ - $s_0 = \lambda$ - $\delta(x,a) = xa$ if $xa \in S$ = \bot otherwise - $P(x,a) = \underline{p}(x,a,I^+)$ - $E(x) = 1/\underline{\theta}(x, I^+)$ - $\theta(x,a,\tau) = t_i$ where $x = a_1 a_2 \dots a_{i-1}$ and $a = a_i$ - $\underline{\theta}(x, I^+) = \sum_{a \in \Sigma} \sum_{\tau \in I^+} \theta(x, a, \tau) / n'(x, I^+) \quad \text{if } n'(x, I^+) > 0$ $= 0 \quad \text{otherwise}$ - $\blacksquare \quad I^+ = \text{multi-set of finite traces } \tau = I_0 \rightarrow_{(a_1,t_1)} I_1 \rightarrow_{(a_2,\ t_2)} I_2 \ldots \rightarrow_{(a_n,t_n)} I_n$ - S = all prefixes of I+ - $S_0 = \lambda$ - $\delta(x,a) = xa$ if $xa \in S$ = \bot otherwise - $P(x,a) = \underline{p}(x,a,I^+)$ - $\mathbf{E}(\mathbf{x}) = 1/\underline{\theta}(\mathbf{x}, \mathbf{I}^+)$ - $\rho(x,a) = P(x,a)E(x)$ - $L(x) = L(x, I^{+})$ - p is stopping probability with which I+ are generated