
Space-Time Memory

U. Ramachandran� R. S. Nikhil J. M. Rehg R. H. Halstead Jr.y C. F. Joerg
L. Kontothanassis K. Knobe

Compaq Computer Corporation
Cambridge Research Lab

One Kendall Square, Bldg 700
Cambridge, Ma 02139

e-mail: fkishore, nikhil, rehg, halstead, cfj, kthanasi, knobeg@crl.dec.com

The Problem

Emerging application domains such as interactive vision, animation, and multimedia collaboration display

dynamic scalable parallelism. Due to their high computational requirements, they are ideal candidates for

executing on parallel architectures. Being interactive in nature, “time" is an important attribute in such

applications. In particular, they require the efficient management of “temporally evolving" data. For example,

a stereo module in an interactive vision application may need the correspondingly timestamped camera images

from multiple cameras to compute its output. Further, both the data structures as well as the producer-consumer

relationships in such applications are dynamic and unpredictable at compile time. Runtime systems (to date)

for parallel computing do not offer any significant support for the application programmer to express such

temporal requirements.

The Solution

To address these problems, we have developed a parallel programming abstraction called space-time memory

(STM) – a dynamic concurrent distributed data structure for holding time sequence data. This abstraction is

well-suited to providing the common parallel programming requirements found in most interactive applications,

namely, buffer management, inter-task synchronization, and meeting soft real-time constraints. The key

construct in STM is the channel, which is a location-transparent collection of items indexed by time. STM

has operations to dynamically create a channel, and for a thread to attach to and detach from a channel. Each

�Current Affiliation: College of Computing, Georgia Institute of Technology, e-mail: rama@cc.gatech.edu
yCurrent Affiliation: Curl Co., e-mail: rhh@curl.com

1



attachment is known as a connection, and a thread may have multiple connections to the same channel. The

put and get operations allow a thread to transact with a channel to which it is connected to store and retrieve

data items (which are uninterpreted sequences of bytes for STM, or linked data structures with a user-specified

interpretation). STM imposes rules on thread virtual times and generation of timestamps for items on the

channels. These times are then used by STM to do automatic garbage collection of channel items. The API

provided by STM allows the application programmer to write applications as he/she would on an SMP. The

runtime system takes care of making operations on the STM valid even if the underlying architecture does

not provide hardware shared memory. Currently, STM runs on a cluster of Alpha SMPs (on Digital Unix)

interconnected by Memory Channel, and an interactive multimedia application called Smart Kiosk has been

implemented on top of it.

Justifications

There can be no question that interactive multimedia applications will impact the kinds of systems to be built

in the future. The space of parallel programming support for interactive applications is sparse. The key

contribution of this work is to relieve the application programmer from the burden of low-level synchronization

and buffer management by providing a higher level programming abstraction, and letting the runtime system

worry about an efficient implementation of this abstraction. DSM systems are too low level for programming

such dynamic applications, and existing parallel programming languages do not offer the right kind of abstraction

for applications to express their temporal requirements.

2


