
Evolutionary Compilation to Long Instruction Superscalar Microarchitectures
for Exploiting Parallelism At All Levels

Thomas M. Conte
Department of Electrical and Computer Engineering

North Carolina State University
conte@ncsu.edu,    http://www.ece.ncsu.edu/tinker

The problem

Independence between tasks occurs at a wide range of distances.  Exploiting it is relatively easy when all run-time
behavior is entirely predictable.  The run time behavior includes (1) branch direction and target location, (2) load
latencies (cache hit/miss), and (3) memory dependencies. Consider the canonical solutions today, shown in Table 1.

Table 1: Exploiting parallelism today
Time Distance Predictability solutions
At compile time One source file Profiling, static estimates,

static memory disambiguation
At instruction
fetch time

Size of hardware window Branch prediction hardware,
dependence prediction

VLIW seeks to perform all prediction before run-time, if possible.  Superscalar hopes it can get reasonable performance
even if the compiler disappears.  Let's assume the solution includes dynamic scheduling hardware (superscalar), but
with explicit parallelism expressed in the ISA (i.e., an EPIC ISA).  The compiler's predictions via profiling are input
dependent, and are assumed to hold true for the entire life of the program.  Common sense tells us that programs are
used differently even by the same user (say as the user transitions to a "power user").  The hardware predictions are
very accurate, but the potential parallelism exploited by them is limited to a small distance (the size of the hardware
window).  So the compiler has the right scope (large), but poor prediction.  The hardware has great prediction, but
terrible scope.  There has been a war raging between the two approaches.  Instead of warring, it is tempting to try to
combine the two.  I propose that we add some levels to the current, rather stunted hierarchy of parallelism exploitation.

Our suggestion

Consider Table 1 again.  What other times does the machine handle code?  The answers and their associated levels are
shown in Table 2.

Table 2: Some new times to exploit parallelism.
Time Distance Predictability solutions
At compile time One source file Profiling, static estimates,

static memory disambiguation
At program exit Entire executable Recent profile data from

current run
At page faults Size of a page Recent profile data from last

run
At Icache misses Size of a miss repair fetch unit Recent profile data from last

replacement
At instruction
fetch

Size of hardware window Branch prediction hardware,
dependence prediction

A program can now evolve its code over time based on the most recent past behavior of branches, loads and memory
dependencies.   (There is actually another level, rescheduling code while it remains dormant between executions—
‘flossing’ the executable, if you will.)   A key challenge is the collection of profiles all the time.  That implies it
shouldn’t impact performance at all.  This rules out software profiling.  We introduced techniques to allow branch
predictors [1] or performance monitors [2],[3] to collect profile data in real time in hardware, without significant
overhead.  These hardware buffers are actually performing prediction of events, just like branch and memory
dependence predictors.  But they are predicting events for future runs of the code, rather than current runs.  This
addresses the problem of the user becoming a "power user".  The system can now react to changes in the compiler's
assumptions and re-compile the affected code.

How can parallelism be extracted at page fault time?  Techniques such as DAISY [4] have demonstrated it is possible to
convert from Java to scheduled VLIW code at page fault time.  Sumedh Sathaye looked at techniques to reschedule
VLIW instructions at page fault time for code compatibility [5],[6] and for performance [6].



How can parallelism be extracted at Icache miss time?  Nair and Hopkins [7] suggested a technique they called DIF.
We proposed a hardware technique that is similar in spirit but different in implementation called miss path scheduling
[8].  These are just early studies, and more work needs to be done here.

The architecture of an evolutionary processor

What does this mean for architecture?  One view is that the compiler will dissolve into the operating system (i.e., page-
fault-time or program-exit-time scheduling) and the memory hierarchy (i.e., page-fault-time or miss-path scheduling).
The microarchitecture needs new profiling hardware to record events for the future.  It may need new structures to
allow the compilation to proceed with minimal overhead.  Furthermore, the ISA should contain as many hints to the
microarchitecture as possible, whereas the microarchitecture should exploit dynamic parallelism as much as possible.
To introduce a new buzzword, let’s call this a Long Instruction Super-Scalar architecture (LISS).  Open questions
include: (1) If code is being rescheduled, does the instruction set format have to remain rigid (what is an ISA for)? (2)
What does this mean for code compatibility? (3) Can the OS or hardware do more than just reschedule code (i.e., code
transformations as in [9])?  (4) Can users ever trust such a system to not introduce new bugs into their code?  (As for the
last question-- we wisely didn't tell users about the complexity of speculative superscalar microarchitectures.)

References

[1] T. M. Conte, B. A. Patel, and J. S. Cox, "Using branch handling hardware to support profile-driven optimization,''
in Proc. 27th Annual International Symposium on Microarchitecture, (San Jose, CA), Dec. 1994.

[2] T. M. Conte, K. N. Menezes and M. A. Hirsch, "Accurate and practical profile-driven compilation using the profile
buffer," in Proc. the 29th Annual International Symposium on Microarchitecture, (Paris, France), Nov. 1996.

[3] K. N. P. Menezes, "Hardware-based profiling for program optimization," Ph.D. thesis, Department of Electrical
and Computer Engineering, North Carolina State University, Raleigh, North Carolina, 1997.

[4] Eric Altman and Kemal Ebcioglu, "DAISY: Dynamic compilation for 100 architectural compatibility," Proc. 24th
International Symposium on Computer Architecture, (Denver, CO), June, 1997.

[5] T. M. Conte and S. W. Sathaye, "Dynamic rescheduling: A technique for object code compatibility in VLIW
architectures," in Proc. 28th Annual International Symposium on Microarchitecture, (Ann Arbor, MI), Nov. 1995.

[6] S. W. Sathaye, "Evolutionary compilation for code compatibility and performance," Ph.D. thesis, Department of
Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, 1998.

[7] R. Nair and M. E. Hopkins, "Exploting instruction level parallelism in processors by caching scheduled groups,"
Proc. 24th International Symposium on Computer Architecture, (Denver, CO), June, 1997.

[8] S. Banerjia, S. W. Sathaye, K. N. Menezes and T. M. Conte, "MPS: Miss path scheduling for multiple-issue
processors," IEEE Transactions on Computers (to appear), 1998.

[9] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad "Fast, Effective Dynamic Compilation",
Proc. SIGPLAN Conf. On Programming Languages Design and Implementation, June 1996.


