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a concurrent dynamic data structure for flexible
manipulation of time-sequenced data, with automatic GC

Interactive Stream-Oriented Apps

• vision, animation, multimedia collaboration

Why parallel computing for such apps?

• computationally intensive

• inherently parallel (pipelined, data, and
task)

Platforms?

• SMPs, and clusters

Problems

• dynamic data sharing

• real-time properties

CRL’s Smart Kiosk Application
• public access to info and entertainment

• multiple users interact with multiple Kiosks

• input: implicit (camera, gaze, infrared,...)
and explicit (voice, gesture, touch-screen,...)

• output: emotive face, synthesized speech, ...
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heterogeneous pieces of software: GUIs, trackers, etc.

What new issues?

• temporally evolving dynamic data
structures

• dynamic producer-consumer relationships

• not everything consumed

• inter-stream synchronization
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Concurrent dynamic data structure
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An Example
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Using the STM

consumer:
   get-item(in-connection, ts)
      code to use item
   consume-item(in-connection, ts)
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producer:
   put-item(out-connection, ts)

channel

API includes calls to:
   create channel
   connect, disconnect to/from channel
   advance thread virtual time
   synchronize virtual time with real time

Summary
• STM, a concurrent dynamic data structure

for flexible manipulation of time-sequenced
data, with automatic GC

• Why is STM a good idea?
– time: important attribute for interactive apps

– sharing abstractions such as DSM, and
synchronization abstractions such as locks and
barriers are too low level

– current parallel programming languages do not
offer the right abstractions for stream-oriented
interactive apps.


