
Space-Time Memory

Kishore Ramachandran

Georgia Tech

Joint work with researchers from Compaq CRL
(Rishiyur Nikhil, Jim Rehg, Bert Halstead, Chris Joerg,

Leonidas Kontothanassis and Kath Knobe)

a concurrent dynamic data structure for flexible
manipulation of time-sequenced data, with automatic GC

Interactive Stream-Oriented Apps

• vision, animation, multimedia collaboration

Why parallel computing for such apps?

• computationally intensive

• inherently parallel (pipelined, data, and
task)

Platforms?

• SMPs, and clusters

Problems

• dynamic data sharing

• real-time properties

CRL’s Smart Kiosk Application
• public access to info and entertainment

• multiple users interact with multiple Kiosks

• input: implicit (camera, gaze, infrared,...)
and explicit (voice, gesture, touch-screen,...)

• output: emotive face, synthesized speech, ...
digitizer

tracker

input net tracker

tracker

output net

.

.

decision

heterogeneous pieces of software: GUIs, trackers, etc.

What new issues?

• temporally evolving dynamic data
structures

• dynamic producer-consumer relationships

• not everything consumed

• inter-stream synchronization

digitizer

Hi-Fi
tracker

Low-Fi
tracker

buffers

time

Concurrent dynamic data structure

Space-Time Memory

.

.

.

.

.

.

 1
 2
 3
 4
 .
 .
 .

1 2 3 4 . . .

space

time

threads connections channels

An Example

chan1

chan2

chan3

space

Digitizer

Hi-Fi
tracker

Low-Fi
tracker

t1 t2 t3 t4 t5

virtual time
...

space-time memory

D_t1

H-t1

L_t1

Using the STM

consumer:
 get-item(in-connection, ts)
 code to use item
 consume-item(in-connection, ts)

in-connection

T
h
r
e
a
d

channelout-connection

producer:
 put-item(out-connection, ts)

channel

API includes calls to:
 create channel
 connect, disconnect to/from channel
 advance thread virtual time
 synchronize virtual time with real time

Summary
• STM, a concurrent dynamic data structure

for flexible manipulation of time-sequenced
data, with automatic GC

• Why is STM a good idea?
– time: important attribute for interactive apps

– sharing abstractions such as DSM, and
synchronization abstractions such as locks and
barriers are too low level

– current parallel programming languages do not
offer the right abstractions for stream-oriented
interactive apps.

