Programming Biological Cells

Ron Weiss, George Homsy, Radhika Nagpal Tom Knight, Gerald Sussman, Nick Papadakis

MIT Artificial Intelligence Laboratory

Motivation

∠ Goal: program biological cells

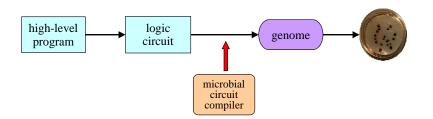
Characteristics

• small (*E.coli*: 1x2μm , 10⁹/ml)

self replicating

energy efficient

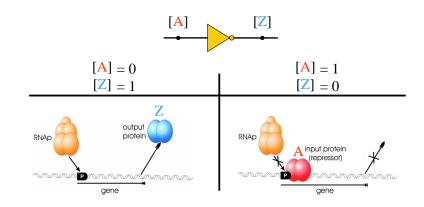
Potential applications


"smart" drugs / medicine

agriculture

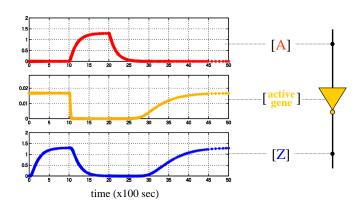
embedded systems

Approach

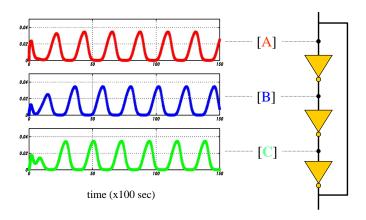


Outline:

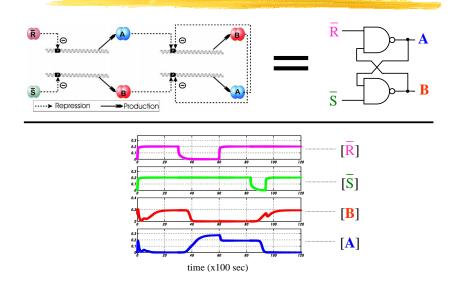
- Building biological digital circuits
 - compute, connect gates, store values
- ∠ High-level programming issues


Compute: Biological Inverter

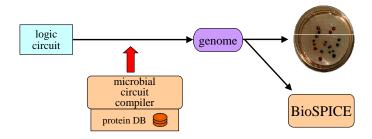
- ✓ signal = protein concentration level
- computation = protein production + decay


Inverter Behavior

 \angle Simulation model based on λ phage biochemistry

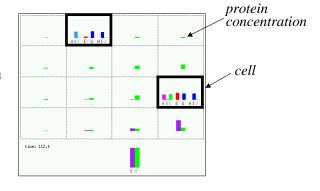


Connect: Ring Oscillator


Connected gates show oscillation, phase shift

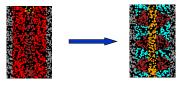
Memory: RS Latch

Microbial Circuit Design



- Assigning proteins is hard.
- ∠ BioSPICE: Simulate a colony of cells

BioSPICE


- Prototype protein level simulator
 - intracellular circuits, intercellular communication

Simulation snapshot

High Level Programming

- Requires a new paradigm
 - colonies are amorphous
 - · cells multiply & die often
 - expose mechanisms cells can perform reliably
- Microbial programming language
 - example: pattern generation using aggregated behavior

Conclusions + Future Work

- ≥ Biological digital gates are plausible
- ∠ Now:
 - Implement digital gates in *E. coli*
- Also:
 - Analyze robustness/sensitivity of gates
 - Construct a protein kinetics database
 - Study protein protein interactions for faster logic circuits