
CS162
Operating Systems and
Systems Programming

Lecture 3

Concurrency:
Processes, Threads, and Address Spaces

September 8, 2008
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 3.29/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: History of OS

• Why Study?
– To understand how user needs and hardware constraints
influenced (and will influence) operating systems

• Several Distinct Phases:
– Hardware Expensive, Humans Cheap

» Eniac, … Multics
– Hardware Cheaper, Humans Expensive

» PCs, Workstations, Rise of GUIs
– Hardware Really Cheap, Humans Really Expensive

» Ubiquitous devices, Widespread networking
• Rapid Change in Hardware Leads to changing OS

– Batch ⇒ Multiprogramming ⇒ Timeshare ⇒ Graphical UI
⇒ Ubiquitous Devices ⇒ Cyberspace/Metaverse/??

– Gradual Migration of Features into Smaller Machines
• Situation today is much like the late 60s

– Small OS: 100K lines/Large: 10M lines (5M browser!)
– 100-1000 people-years

Lec 3.39/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Migration of OS Concepts and Features

Lec 3.49/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Implementation Issues
(How is the OS implemented?)

• Policy vs. Mechanism
– Policy: What do you want to do?
– Mechanism: How are you going to do it?
– Should be separated, since policies change

• Algorithms used
– Linear, Tree-based, Log Structured, etc…

• Event models used
– threads vs event loops

• Backward compatability issues
– Very important for Windows 2000/XP/Vista/…
– POSIX tries to help here

• System generation/configuration
– How to make generic OS fit on specific hardware

Lec 3.59/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Goals for Today

• How do we provide multiprogramming?
• What are Processes?
• How are they related to Threads and Address

Spaces?

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 3.69/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Concurrency

• “Thread” of execution
– Independent Fetch/Decode/Execute loop
– Operating in some Address space

• Uniprogramming: one thread at a time
– MS/DOS, early Macintosh, Batch processing
– Easier for operating system builder
– Get rid concurrency by defining it away
– Does this make sense for personal computers?

• Multiprogramming: more than one thread at a time
– Multics, UNIX/Linux, OS/2, Windows NT/2000/XP,
Mac OS X

– Often called “multitasking”, but multitasking has
other meanings (talk about this later)

• ManyCore ⇒ Multiprogramming, right?

Lec 3.79/8/07 Kubiatowicz CS162 ©UCB Fall 2008

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources:
– Hardware: single CPU, single DRAM, single I/O devices
– Multiprogramming API: users think they have exclusive
access to shared resources

• OS Has to coordinate all activity
– Multiple users, I/O interrupts, …
– How can it keep all these things straight?

• Basic Idea: Use Virtual Machine abstraction
– Decompose hard problem into simpler ones
– Abstract the notion of an executing program
– Then, worry about multiplexing these abstract machines

• Dijkstra did this for the “THE system”
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)

Lec 3.89/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Fetch
Exec

R0
…

R31
F0
…

F30
PC

…
Data1
Data0

Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using registers)
– Write results to registers/mem
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

Lec 3.99/8/07 Kubiatowicz CS162 ©UCB Fall 2008

How can we give the illusion of multiple processors?

CPU3CPU2CPU1

Shared Memory

• Assume a single processor. How do we provide the
illusion of multiple processors?
– Multiplex in time!

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

CPU1 CPU2 CPU3 CPU1 CPU2

Time

Lec 3.109/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources
– I/O devices the same
– Memory the same

• Consequence of sharing:
– Each thread can access the data of every other
thread (good for sharing, bad for protection)

– Threads can share instructions
(good for sharing, bad for protection)

– Can threads overwrite OS functions?
• This (unprotected) model common in:

– Embedded applications
– Windows 3.1/Machintosh (switch only with yield)
– Windows 95—ME? (switch with both yield and timer)

Lec 3.119/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Modern Technique: SMT/Hyperthreading
• Hardware technique

– Exploit natural properties
of superscalar processors
to provide illusion of
multiple processors

– Higher utilization of
processor resources

• Can schedule each thread
as if were separate CPU
– However, not linear
speedup!

– If have multiprocessor,
should schedule each
processor first

• Original technique called “Simultaneous Multithreading”
– See http://www.cs.washington.edu/research/smt/
– Alpha, SPARC, Pentium 4 (“Hyperthreading”), Power 5

Lec 3.129/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Administriva: Second Try for Project Signup
• Still working on section assignments
• Wednesday 2-3 oversubscribed

– Thinking of trying to:
» add Wednesday 1-2
» remove Tuesday 1-2

– Would this help?
• Also, some people signed up twice
• Some people didn’t sign up at all
• Try again?
• Project Signup: “Group/Section Assignment Link”

– Due date: Tomorrow (9/9) by 11:59pm
• Sections:

– Go to Telebears-assigned Section this week (Tue/Wed)

Lec 3.139/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Administrivia (2)

• Cs162-xx accounts:
– Make sure you got an account form
– If you haven’t logged in yet, you need to do so

• Email addresses
– We need an email address from you
– If you haven’t given us one already, you should get
prompted when you log in again (or type “register”)

• Wednesday: Start Project 1
– Go to Nachos page and start reading up
– Note that all the Nachos code will be printed in your
reader (TBA)

Lec 3.149/8/07 Kubiatowicz CS162 ©UCB Fall 2008

How to protect threads from one another?

• Need three important things:
1. Protection of memory

» Every task does not have access to all memory
2. Protection of I/O devices

» Every task does not have access to every device
3. Preemptive switching from task to task

» Use of timer
» Must not be possible to disable timer from

usercode

Lec 3.159/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Program
 A

ddress Space

Recall: Program’s Address Space

• Address space ⇒ the set of
accessible addresses + state
associated with them:
– For a 32-bit processor there are
232 = 4 billion addresses

• What happens when you read or
write to an address?
– Perhaps Nothing
– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)

Lec 3.169/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Providing Illusion of Separate Address Space:
Load new Translation Map on Switch

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Lec 3.179/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Traditional UNIX Process

• Process: Operating system abstraction to
represent what is needed to run a single program
– Often called a “HeavyWeight Process”
– Formally: a single, sequential stream of execution
in its own address space

• Two parts:
– Sequential Program Execution Stream

» Code executed as a single, sequential stream of
execution

» Includes State of CPU registers
– Protected Resources:

» Main Memory State (contents of Address Space)
» I/O state (i.e. file descriptors)

• Important: There is no concurrency in a
heavyweight process

Lec 3.189/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Process
Control
Block

How do we multiplex processes?
• The current state of process held in a

process control block (PCB):
– This is a “snapshot” of the execution and
protection environment

– Only one PCB active at a time
• Give out CPU time to different

processes (Scheduling):
– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different
processes (Protection):
– Controlled access to non-CPU resources
– Sample mechanisms:

» Memory Mapping: Give each process their
own address space

» Kernel/User duality: Arbitrary
multiplexing of I/O through system calls

Lec 3.199/8/07 Kubiatowicz CS162 ©UCB Fall 2008

CPU Switch From Process to Process

• This is also called a “context switch”
• Code executed in kernel above is overhead

– Overhead sets minimum practical switching time
– Less overhead with SMT/hyperthreading, but…
contention for resources instead

Lec 3.209/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Diagram of Process State

• As a process executes, it changes state
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

Lec 3.219/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Process Scheduling

• PCBs move from queue to queue as they change state
– Decisions about which order to remove from queues are
Scheduling decisions

– Many algorithms possible (few weeks from now)

Lec 3.229/8/07 Kubiatowicz CS162 ©UCB Fall 2008

What does it take to create a process?

• Must construct new PCB
– Inexpensive

• Must set up new page tables for address space
– More expensive

• Copy data from parent process? (Unix fork())
– Semantics of Unix fork() are that the child
process gets a complete copy of the parent
memory and I/O state

– Originally very expensive
– Much less expensive with “copy on write”

• Copy I/O state (file handles, etc)
– Medium expense

Lec 3.239/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Process =? Program

• More to a process than just a program:
– Program is just part of the process state
– I run emacs on lectures.txt, you run it on
homework.java – Same program, different processes

• Less to a process than a program:
– A program can invoke more than one process
– cc starts up cpp, cc1, cc2, as, and ld

main ()
{

…;
}
A() {

…
}

main ()
{

…;
}
A() {

…
}

Heap

Stack

A
main

Program Process

Lec 3.249/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Multiple Processes Collaborate on a Task

• High Creation/memory Overhead
• (Relatively) High Context-Switch Overhead
• Need Communication mechanism:

– Separate Address Spaces Isolates Processes
– Shared-Memory Mapping

» Accomplished by mapping addresses to common DRAM
» Read and Write through memory

– Message Passing
» send() and receive() messages
» Works across network

Proc 1 Proc 2 Proc 3

Lec 3.259/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Shared Memory Communication

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Data 2
Stack 1
Heap 1
Code 1
Stack 2
Data 1
Heap 2
Code 2
Shared

• Communication occurs by “simply” reading/writing
to shared address page
– Really low overhead communication
– Introduces complex synchronization problems

Code
Data
Heap
Stack
Shared

Code
Data
Heap
Stack
Shared

Lec 3.269/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Inter-process Communication (IPC)

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with
each other without resorting to shared variables

• IPC facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus,
systcall/trap)

– logical (e.g., logical properties)

Lec 3.279/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Modern “Lightweight” Process with Threads

• Thread: a sequential execution stream within process
(Sometimes called a “Lightweight process”)
– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a
number of different concurrent activities
– Sometimes called multitasking, as in Ada…

• Why separate the concept of a thread from that of
a process?
– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (Protection)
– Heavyweight Process ≡ Process with one thread

Lec 3.289/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

Lec 3.299/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Examples of multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with
concurrent requests by multiple users

– But no protection needed within kernel
• Database Servers

– Access to shared data by many concurrent users
– Also background utility processing must be done

Lec 3.309/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Examples of multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent operations
– File server, Web server, and airline reservation
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one program
at a time

Lec 3.319/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Thread State

• State shared by all threads in process/addr space
– Contents of memory (global variables, heap)
– I/O state (file system, network connections, etc)

• State “private” to each thread
– Kept in TCB ≡ Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, Temporary variables
– return PCs are kept while called procedures are
executing

Lec 3.329/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {
if (tmp<2)
B();

printf(tmp);
}
B() {
C();

}
C() {
A(2);

}
A(1);

A: tmp=2
ret=C+1Stack

Pointer

Stack Growth

A: tmp=1
ret=exit

B: ret=A+2

C: ret=b+1

Lec 3.339/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr
sp

ac
es

:

Lec 3.349/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Java APPS

OS

Hardware

Java OS
Structure

Example: Implementation Java OS
• Many threads, one Address Space
• Why another OS?

– Recommended Minimum memory sizes:
» UNIX + X Windows: 32MB
» Windows 98: 16-32MB
» Windows NT: 32-64MB
» Windows 2000/XP: 64-128MB

– What if we want a cheap network
point-of-sale computer?
» Say need 1000 terminals
» Want < 8MB

• What language to write this OS in?
– C/C++/ASM? Not terribly high-level.
Hard to debug.

– Java/Lisp? Not quite sufficient – need
direct access to HW/memory management

Lec 3.359/8/07 Kubiatowicz CS162 ©UCB Fall 2008

Summary
• Processes have two parts

– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(),
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Book talks about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

