CS162
Operating Systems and
Systems Programming
Lecture 5

Cooperating Threads

September 15, 2008
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Per Thread State

- Each Thread has a Thread Control Block (TCB)

- Execution State: CPU registers, program counter,
pointer to stack

- Scheduling info: State (more later), priority, CPU time
- Accounting Info
- Various Pointers (for implementing scheduling queues)
- Pointer to enclosing process? (PCB)?
- Etc (add stuff as you find a need)
+ OS Keeps track of TCBs in protected memory
- In Arrays, or Linked Lists, or ..

Head Link Link Link
Tail Registers Registers Registers =
Other Other Other
Ready State State State
Queue TCB, TCB, TCByq
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.2

Review: Yielding through Internal Events

+ Blocking on I/0
- The act of requesting I/0 implicitly yields the CPU
* Waiting on a "signal” from other thread
- Thread asks to wait and thus yields the CPU
* Thread executes a yield()
- Thread volunteers to give up CPU
computePI1 () {
while(TRUE) {
ComputeNextDigit();
yieldQ);
he

}

- Note that yieldg) must be called by programmer
frequently enough!

9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.3

Review: Stack for Yielding Thread

ComputePL

yield
Trap to OS (

yimoub o015

* How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Later in lecture */

}
* How does dispatcher switch to a new thread?

- Save anything next thread may trash: PC, regs, stack

- Maintain isolation for each thread
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.4

Review: Two Thread Yield Example

+ Consider the following

code blocks:
proc AQ { Thread S Thread T
BO:; - A A
t
} 5 B(while) B(while)
(<]
proc BO { % yield yield
while(TRUE) { g
yieldQ);
b
b
* Suppose we have 2
threads:
- Threads S and T
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.5

Goals for Today

* More on Interrupts
+ Thread Creation/Destruction
+ Cooperating Threads

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.6

A ;@merrupf Controller

JETT
' LN]
_, 1212 T CPU
»l T o
d B
e | : > =| & |fnterrupt\[C]Int Disable
\ 3 41
: 218
8
Control

Network Interrupt
+ Interrupts invoked with interrupt lines from devices
+ Interrupt controller chooses interrupt request to honor
- Mask enables/disables interrupts
- Priority encoder picks highest enabled interrupt
- Software Interrupt Set/Cleared by Software
- Interrupt identity specified with ID line
* CPU can disable all interrupts with internal flag
Non-maskable interrupt line (NMI) can't be disabled

9/15/ 7 ubm owicz CS1 all 2008 Lec 5.7

NMI

Example: Network Interrupt

d x5~ Raise priority

d¥Reenable All Ints
Save registers
Dispatch to Handle

add $r1 $r2,%r3
subi $r4,$rl,#4
st $r4,%r4,#2

”

Y

Transfe r) Network

Pipeline Flush 2 Packet from hardwar
to Kernel Buffers

Iw $r2,0($r4)
Iw $r3,4($rd)
add $r2,$r2,%$r3
sw 8(%r4),%$r2

Restore registers
Clear current Int
Disable All Ints

Restore priority

RTI

External Interrupt
Interrupt Handler

"

J
 Disable/Enable All Ints = Internal CPU disable bit
- RTI reenables interrupts, returns to user mode
* Raise/lower priority: change interrupt mask

- Software interrupts can be provided entirely in

software at priori switchin boundames
9/1 5/07 ubidtowicz €S162 ©YCB Fall 2008 Lec 5.8

Review: Preemptive Multithreading

* Use the timer interrupt to force scheduling decisions

Some Routine
Interrupt

y4moub 3ovig

* Timer Interrupt routine:
TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

* This is often called preemptive multithreading, since
threads are preempted for better scheduling

- Solves problem of user who doesn't insert yield():

9/15/07 Kubiatowicz CS162 ©UCB Fall 2008 Lec 5.9

Review: Lifecycle of a Thread (or Process)

{ terminated J
/O or event completion\ SCNeIUeLAISPaIcN /),y o avent wait

waiting

admitted interrupt exit

+ As a thread executes, it changes state:
- new: The thread is being created
- ready: The thread is waiting to run
- running: Instructions are being executed
- waiting: Thread waiting for some event to occur
- terminated: The thread has finished execution
+ “Active” threads are represented by their TCBs

- TCBs organized into queues based on their state
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.10

ThreadFork(): Create a New Thread

= ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue

- We called this CreateThread() earlier
+ Arguments to ThreadFork()
- Pointer to application routine (fcnPtr)
- Pointer to array of arguments (fcnArgPir)
- Size of stack to allocate
* Implementation
- Sanity Check arguments
- Enter Kernel-mode and Sanity Check arguments again
- Allocate new Stack and TCB
- Initialize TCB and place on ready list (Runnable).

9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.11

Group assignments are completel!

*+ 6o to “Group/Section Assignments”
- Everyone should be up there.
- Let Andrey (cs162-tc) know if there are problems.

+ Sections:
Section Time Location TA
102 |Tu 1:00P-2:00P 320 Soda Jon Whiteaker
. . Andrey
103 | Tu 2:00P-3:00P 87 Evans Ermolinskiy
. . Andrey
104 |w 11:00P-12:00P 87 Evans Ermolinskiy
101 |W 1:00P-2:00p 320 Soda Tony Huang
3 Evans .
105 |W 2:00P-3:00P (Big Sectionl) Jon Whiteaker

9/15/07 Kubiatowicz CS162 ©UCB Fall 2008 Lec 5.12

Administrivia
* Information about Subversion on Handouts page
- Make sure to take a look
* Other things on Handouts page
- Synchronization examples/Interesting papers
- Previous finals/solutions
+ Sections in this class are mandatory

- Make sure that you go to the section that you have
been assigned!

* Reader will be available at Copy Central on Hearst
+ Should be reading Nachos code by now!

- Start working on the first project

- Set up regular meeting times with your group

- Try figure out group interaction problems early on

9/15/07 Kubiatowicz CS162 ©UCB Fall 2008 Lec 5.13

How do we initialize TCB and Stack?

- Initialize Register fields of TCB
- Stack pointer made to point at stack
- PC return address = OS (asm) routine ThreadRoot()
- Two arg registers initialized to fcnPtr and fcnArgPtr
+ Initialize stack data?
- No. Important part of stack frame is in registers (ra)

- Think of stack frame as just before body of
ThreadRoot() really gets started

Y4moub >opig

Initial Stack

9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.14

How does Thread get started?
Other Thread

A

B(while)

yield

Stack growth

New Thread

- Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()

- This really starts the new thread
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.15

What does ThreadRoot() look like?

+ ThreadRoot() is the root for the thread routine:
ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish(Q);
}
+ Startup Housekeeping H
- Includes 'l'hlr?s like r‘ecordmg Thread Code
start time of thread
- Other Statistics

+ Stack will gr'ow and shrink
with execution of thread

* Final return from thread returns into ThreadRoot()
which calls ThreadFinish()

- ThreadFinish() will start at user-level
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.16

Y4moub xoo4s

Running Stack

What does ThreadFinish() do?

* Needs to re-enter kernel mode (system call)

- "Wake up” (place on ready queue) threads waitin
for this EI"hr'(tlaaad Y4) J

- Threads (like the parent) may be on a wait queue
waiting for this thread to finish

* Can't deallocate thread yet
- We are still running on its stack!
- Instead, record thread as “waitingToBeDestroyed”
+ Call run_new_thread() to run another thread:
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(Q);

}

— ThreadHouseKeeping() notices waitingToBeDestroyed
and deallocates the finished thread’'s TCB and stack

9/15/07 Kubiatowicz CS162 ©UCB Fall 2008 Lec 5.17

Additional Detail

* Thread Fork is not the same thing as UNIX fork

- UNIX fork creates a new process so it has to
create a new address space

- For now, don't worry about how to create and
switch between address spaces

* Thread fork is very much like an asynchronous
procedure call

- Runs procedure in separate thread
- Calling thread doesn't wait for finish
* What if thread wants to exit early?

—ThreadFinish() and exit() are essentially the
same procedure entered at user level

9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.18

Parent-Child relationship

fsflush
pid =3

Typical process tree
for Solaris system

telnatdaemon
pid = 7776

| I-I g @ g

Netscape
pid = 7785

+ Every thread (and/or Process) has a parentage

- A "parent” is a thread that creates another thread
- A child of a parent was created by that parent

9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.19

ThreadJoin() system call
* One thread can wait for another to finish with the
ThreadJoin(tid) call

- Calling thread will be taken off run queue and placed on
waiting queue for thread tid

* Where is a logical place to store this wait queue?
- On queue inside the TCB

TCB, 4
Termination
Wait queue
Head Link — Link ——] Link —
Tail N Registers] |Registers] Registers] ~=
Other Other Other

State State State
TCBy TCB, TCBy,

- Similar to wait() system call in UNIX

- Lets parents wait for child processes
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.20

Use of Join for Traditional Procedure Call

* A traditional procedure call is logically equivalent to
doing a ThreadFork followed by ThreadJoin

« Consider the following normal procedure call of B()
by A():
AO { BO: }
B { Do interesting, complex stuff }

+ The procedure A() is equivalent to A'():

ATO {
tid = ThreadFork(B,null);
ThreadJoin(tid);

}

* Why not do this for every procedure?
- Context Switch Overhead

- Memory Overhead for Stacks
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.21

Kernel versus User-Mode threads

* We have been talking about Kernel threads
- Native threads supported directly by the kernel
- Every thread can run or block independently
- Ohne process may have several threads waiting on different
things
- Downside of kernel threads: a bit expensive
- Need to make a crossing into kernel mode to schedule
+ Even lighter weight option: User Threads
- User program provides scheduler and thread package
- May have several user threads per kernel thread

- User threads may be scheduled non-premptively relative to
each other (only switch on yield())

- Cheap
+ Downside of user threads:
- When one thread blocks on I/0, all threads block
- Kernel cannot adjust scheduling among all threads
- Option: Scheduler Activations
» Have kernel inform user level when thread blocks...

9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.22

Threading models mentioned by book

P,

%
¢ <— user thread

Simple One-to-One ; 0 ¢ ¢
Threading Model L A\
I() -’(k k\. \k) <—kernel thread

| 4

’ <
¢ «— user threar]

¥)

AT AY S
NS

4
¢ +— user thread
p

IaWaWwa

(/ .kqjl «+— kemel thread |f;) (k) L k/_:- +— kemel thread
Many-to-One Many-to-Many

9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.23

Multiprocessing vs Multiprogramming

* Remember Definitions:
- Multiprocessing = Multiple CPUs
- Multiprogramming = Multiple Jobs or Processes
- Multithreading = Multiple threads per Process
* What does it mean to run two threads “concurrently”?

- Scheduler is free to run threads in any order and
interleaving: FIFO, Random, ..

- Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A ﬁ
Multiprocessin B
P I ¢ —>
A B C
ﬁ q
Multiprogramming A B ¢ A B C B |
9/15/07 ubiatowicz CS162 ©UCB Fall 2008 Lec 5.24

Correctness for systems with concurrent threads

If dispatcher can schedule threads in any way,
programs must work under all circumstances

- Can you test for this?
- How can you know if your program works?
Independent Threads:
- No state shared with other threads
- Deterministic = Input state determines results
- Reproducible = Can recreate Starting Conditions, I/0
- Scheduling order doesn't matter (if switch() workslll)
+ Cooperating Threads:
- Shared State between multiple threads
- Non-deterministic
- Non-reproducible

* Non-deterministic and Non-reproducible means that
bugs can be intermittent

- Sometimes called "Heisenbugs”
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.25

Interactions Complicate Debugging

+ Is any program truly independent?

- Every process shares the file system, OS resources,
network, efc

- Extreme example: buggy device driver causes thread A to
crash “independent thread” B

* You probably don't realize how much you depend on
reproducibility:
- Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

- Example: Debugging statements can overrun stack
* Non-deterministic errors are really difficult to find
- Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors
- Example: Something which does interesting I/0

» User typing of letters used to help gener'ate secure keys
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.26

Why allow cooperating threads?

+ People cooperate; computers help/enhance people’s lives,
so computers must cooperate

- By analogy, the non-reproducibility/non-determinism of
people is"a notable problem for “carefully laid plans”

+ Advantage 1: Share resources
- One computer, many users
- One bank balance, many ATMs
» What if ATMs were only updated at night?
- Embedded systems (robot control: coordinate arm & hand)
* Advantage 2: Speedup
- Overlap I/0 and computation
» Many different file systems do read-ahead
- Multiprocessors - chop up program into parallel pieces
* Advantage 3: Modularity
- More important than you might think
- Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp | ccl | cc2 | as | Id

» Makes system easier to extend
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.27

High-level Example: Web Server

[

B S

+ Server must handle many requests
* Non-cooperating version:
serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

¥
* What are some disadvantages of this technique?

9/15/07 Kubiatowicz CS162 ©UCB Fall 2008 Lec 5.28

Threaded Web Server

* Now, use a single process
* Multithreaded (cooperating) version:
serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
* Looks almost the same, but has many advantages:

- Can share file caches kept in memory, results of CGI
scripts, other things

- Threads are much cheaper to create than processes, so
this has a lower per-request overhead

* Question: would a user-level (say one-to-many)
thread package make sense here?

- When one request blocks on disk, all block...

Thread Pools

* Problem with previous version: Unbounded Threads
- When web-site becomes too popular - throughput sinks

* Instead, allocate a bounded “pool” of worker threads,
representing the maximum level of multiprogramming

///""“-.~_Ahasfer
[::::::} Threadl
Thread Pool

worker(queue) {
while(TRUE) {
con=Dequeue(queue);
if (con==null)

master() {
allocThreads(worker,queue);
while(TRUE) {
con=AcceptCon();

. sleepOn(queue);
. . o Enqueue(queue,con);
* What about Denial of Service attacks or digg / Waﬂeup(gﬂeue)-) else
Slash-dot effects? 3 ServicellebPage (con) ;
Slashdot 3 }
9/15/07 Kubiatowicz CS162 © ¥ (e e, S0 el meiers, /15/07 Kubiatowicz €S162 @PCB Fall 2008 Lec 5.30
Summary

* Interrupts: hardware mechanism for returning control
to operating system

- Used for important/high-priority events

- Can force dispatcher to schedule a different thread
(premptive multithreading)

* New Threads Created with ThreadFork()
- Create initial TCB and stack to point at ThreadRoot()
—ThreadRoot() calls thread code, then ThreadFinish()

—ThreadFinish() wakes up waiting threads then
prepares TCB/stack for distruction

* Threads can wait for other threads using
ThreadJoin()

+ Threads may be at user-level or kernel level
+ Cooperating threads have many potential advantages
- But: introduces non-reproducibility and non-determinism

- Need to have Atomic operations
9/15/07 Kubiatowicz €S162 ©UCB Fall 2008 Lec 5.31

