
CS162
Operating Systems and
Systems Programming

Lecture 5

Cooperating Threads

September 15, 2008
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 5.29/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Per Thread State
• Each Thread has a Thread Control Block (TCB)

– Execution State: CPU registers, program counter,
pointer to stack

– Scheduling info: State (more later), priority, CPU time
– Accounting Info
– Various Pointers (for implementing scheduling queues)
– Pointer to enclosing process? (PCB)?
– Etc (add stuff as you find a need)

• OS Keeps track of TCBs in protected memory
– In Arrays, or Linked Lists, or …

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Ready
Queue

Lec 5.39/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Yielding through Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

computePI() {
while(TRUE) {

ComputeNextDigit();
yield();

}
}

– Note that yield() must be called by programmer
frequently enough!

Lec 5.49/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* Later in lecture */

}
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack
– Maintain isolation for each thread

yield

ComputePI Stack growthrun_new_thread

kernel_yield
Trap to OS

switch

Lec 5.59/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Two Thread Yield Example

• Consider the following
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:
– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch

Lec 5.69/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Goals for Today

• More on Interrupts
• Thread Creation/Destruction
• Cooperating Threads

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 5.79/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

Lec 5.89/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Example: Network Interrupt

• Disable/Enable All Ints ⇒ Internal CPU disable bit
– RTI reenables interrupts, returns to user mode

• Raise/lower priority: change interrupt mask
• Software interrupts can be provided entirely in

software at priority switching boundaries

…
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

PC
 sa

ved

Dis
ab

le
All

 In
ts

Su
per

vis
or

Mode

Restore PC

User Mode

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

…
Transfer Network

Packet from hardware
to Kernel Buffers

…
Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 H

an
dl
er

”

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

…

Ex
te

rn
al
 I

nt
er

ru
pt

Pipeline Flush

Lec 5.99/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Preemptive Multithreading

• Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();
run_new_thread();

}
• This is often called preemptive multithreading, since

threads are preempted for better scheduling
– Solves problem of user who doesn’t insert yield();

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack growth

Lec 5.109/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Review: Lifecycle of a Thread (or Process)

• As a thread executes, it changes state:
– new: The thread is being created
– ready: The thread is waiting to run
– running: Instructions are being executed
– waiting: Thread waiting for some event to occur
– terminated: The thread has finished execution

• “Active” threads are represented by their TCBs
– TCBs organized into queues based on their state

Lec 5.119/15/07 Kubiatowicz CS162 ©UCB Fall 2008

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue
– We called this CreateThread() earlier

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity Check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable).

Lec 5.129/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Group assignments are complete!

• Go to “Group/Section Assignments”
– Everyone should be up there.
– Let Andrey (cs162-tc) know if there are problems.

• Sections:

Tony Huang 320 SodaW 1:00P-2:00p101

Jon Whiteaker3 Evans
(Big Section!)W 2:00P-3:00P 105

87 Evans

87 Evans

320 Soda
Location

Andrey
ErmolinskiyW 11:00P-12:00P 104

Andrey
ErmolinskiyTu 2:00P-3:00P 103

Jon WhiteakerTu 1:00P-2:00P 102
TATimeSection

Lec 5.139/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Administrivia
• Information about Subversion on Handouts page

– Make sure to take a look
• Other things on Handouts page

– Synchronization examples/Interesting papers
– Previous finals/solutions

• Sections in this class are mandatory
– Make sure that you go to the section that you have
been assigned!

• Reader will be available at Copy Central on Hearst
• Should be reading Nachos code by now!

– Start working on the first project
– Set up regular meeting times with your group
– Try figure out group interaction problems early on

Lec 5.149/15/07 Kubiatowicz CS162 ©UCB Fall 2008

How do we initialize TCB and Stack?

• Initialize Register fields of TCB
– Stack pointer made to point at stack
– PC return address ⇒ OS (asm) routine ThreadRoot()
– Two arg registers initialized to fcnPtr and fcnArgPtr

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)
– Think of stack frame as just before body of
ThreadRoot() really gets started

ThreadRoot stub

Initial Stack

Stack growth

Lec 5.159/15/07 Kubiatowicz CS162 ©UCB Fall 2008

How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()
– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 5.169/15/07 Kubiatowicz CS162 ©UCB Fall 2008

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording
start time of thread

– Other Statistics
• Stack will grow and shrink

with execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() will start at user-level

ThreadRoot

Running Stack

Stack growth

Thread Code

Lec 5.179/15/07 Kubiatowicz CS162 ©UCB Fall 2008

What does ThreadFinish() do?
• Needs to re-enter kernel mode (system call)
• “Wake up” (place on ready queue) threads waiting

for this thread
– Threads (like the parent) may be on a wait queue
waiting for this thread to finish

• Can’t deallocate thread yet
– We are still running on its stack!
– Instead, record thread as “waitingToBeDestroyed”

• Call run_new_thread() to run another thread:
run_new_thread() {

newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping();

}
– ThreadHouseKeeping() notices waitingToBeDestroyed
and deallocates the finished thread’s TCB and stack

Lec 5.189/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Additional Detail

• Thread Fork is not the same thing as UNIX fork
– UNIX fork creates a new process so it has to
create a new address space

– For now, don’t worry about how to create and
switch between address spaces

• Thread fork is very much like an asynchronous
procedure call
– Runs procedure in separate thread
– Calling thread doesn’t wait for finish

• What if thread wants to exit early?
– ThreadFinish() and exit() are essentially the
same procedure entered at user level

Lec 5.199/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Parent-Child relationship

• Every thread (and/or Process) has a parentage
– A “parent” is a thread that creates another thread
– A child of a parent was created by that parent

Typical process tree
for Solaris system

Lec 5.209/15/07 Kubiatowicz CS162 ©UCB Fall 2008

ThreadJoin() system call
• One thread can wait for another to finish with the
ThreadJoin(tid) call
– Calling thread will be taken off run queue and placed on
waiting queue for thread tid

• Where is a logical place to store this wait queue?
– On queue inside the TCB

• Similar to wait() system call in UNIX
– Lets parents wait for child processes

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Head
Tail

Termination
Wait queue

TCBtid

Lec 5.219/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Use of Join for Traditional Procedure Call
• A traditional procedure call is logically equivalent to

doing a ThreadFork followed by ThreadJoin
• Consider the following normal procedure call of B()

by A():
A() { B(); }
B() { Do interesting, complex stuff }

• The procedure A() is equivalent to A’():
A’() {

tid = ThreadFork(B,null);
ThreadJoin(tid);

}
• Why not do this for every procedure?

– Context Switch Overhead
– Memory Overhead for Stacks

Lec 5.229/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Kernel versus User-Mode threads
• We have been talking about Kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different

things
• Downside of kernel threads: a bit expensive

– Need to make a crossing into kernel mode to schedule
• Even lighter weight option: User Threads

– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative to

each other (only switch on yield())
– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…

Lec 5.239/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Threading models mentioned by book

Simple One-to-One
Threading Model

Many-to-One Many-to-Many
Lec 5.249/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing ≡ Multiple CPUs
– Multiprogramming ≡ Multiple Jobs or Processes
– Multithreading ≡ Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 5.259/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic ⇒ Input state determines results
– Reproducible ⇒ Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 5.269/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 5.279/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 5.289/15/07 Kubiatowicz CS162 ©UCB Fall 2008

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?

Lec 5.299/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Threaded Web Server

• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

Lec 5.309/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads,

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool
queue

Lec 5.319/15/07 Kubiatowicz CS162 ©UCB Fall 2008

Summary
• Interrupts: hardware mechanism for returning control

to operating system
– Used for important/high-priority events
– Can force dispatcher to schedule a different thread
(premptive multithreading)

• New Threads Created with ThreadFork()
– Create initial TCB and stack to point at ThreadRoot()
– ThreadRoot() calls thread code, then ThreadFinish()
– ThreadFinish() wakes up waiting threads then
prepares TCB/stack for distruction

• Threads can wait for other threads using ThreadJoin()
• Threads may be at user-level or kernel level
• Cooperating threads have many potential advantages

– But: introduces non-reproducibility and non-determinism
– Need to have Atomic operations

