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Review: Important Aspects of Memory Multiplexing
• Controlled overlap:

– Separate state of threads should not collide in physical 
memory.  Obviously, unexpected overlap causes chaos!

– Conversely, would like the ability to overlap when 
desired (for communication)

• Translation: 
– Ability to translate accesses from one address space 
(virtual) to a different one (physical)

– When translation exists, processor uses virtual 
addresses, physical memory uses physical addresses

– Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

• Protection:
– Prevent access to private memory of other processes

» Different pages of memory can be given special behavior 
(Read Only, Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves
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Review: General Address Translation
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Goals for Today

• Address Translation Schemes
– Segmentation
– Paging
– Multi-level translation
– Paged page tables
– Inverted page tables

• Discussion of Dual-Mode operation
• Comparison among options

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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Review: Simple Segmentation: Base and Bounds (CRAY-1)

• Can use base & bounds/limit for dynamic address 
translation (Simple form of “segmentation”):

– Alter every address by adding “base”
– Generate error if address bigger than limit

• This gives program the illusion that it is running on its 
own dedicated machine, with memory starting at 0

– Program gets continuous region of memory
– Addresses within program do not have to be relocated 
when program placed in different region of DRAM
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Base and Limit segmentation discussion
• Provides level of indirection

– OS can move bits around behind program’s back
– Can be used to correct if program needs to grow 
beyond its bounds or coalesce fragments of memory

• Only OS gets to change the base and limit!
– Would defeat protection

• What gets saved/restored on a context switch?
– Everything from before + base/limit values
– Or: How about complete contents of memory (out to 
disk)? 

» Called “Swapping”
• Hardware cost

– 2 registers/Adder/Comparator
– Slows down hardware because need to take time to do 
add/compare on every access

• Base and Limit Pros: Simple, relatively fast
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Cons for Simple Segmentation Method
• Fragmentation problem (complex memory allocation)

– Not every process is the same size
– Over time, memory space becomes fragmented
– Really bad if want space to grow dynamically (e.g. heap) 

• Other problems for process maintenance
– Doesn’t allow heap and stack to grow independently
– Want to put these as far apart in virtual memory space 
as possible so that they can grow as needed

• Hard to do inter-process sharing
– Want to share code segments when possible
– Want to share memory between processes
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More Flexible Segmentation

• Logical View: multiple separate segments
– Typical: Code, Data, Stack
– Others: memory sharing, etc

• Each segment is given region of contiguous memory
– Has a base and limit
– Can reside anywhere in physical memory
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Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax. 
• What is “V/N”?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V
+ Physical

Address

> Error

Lec 12.1010/8/06 Kubiatowicz CS162 ©UCB Fall 2007

Intel x86 Special Registers

Typical Segment Register
Current Priority is RPL
Of Code Segment (CS)

80386 Special Registers
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Example: Four Segments (16 bit addresses)

0x30000x00003 (stack)
0x10000xF0002 (shared)
0x14000x48001 (data)
0x08000x40000 (code)
LimitBaseSeg ID #

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might 
be shared
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Example of segment translation

Let’s simulate a bit of this code to see what happens (PC=0x240):
• Fetch 0x240. Virtual segment #? 0; Offset? 0x240

Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 → $a0, Move PC+4→PC

2. Fetch 0x244. Translated to Physical=0x4244.  Get “jal strlen”
Move 0x0248 → $ra (return address!), Move 0x0360 → PC

3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0,0”
Move 0x0000 → $v0, Move PC+4→PC

4. Fetch 0x364. Translated to Physical=0x4364. Get “lb $t0,($a0)”
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850, 
Load Byte from 0x4850→$t0, Move PC+4→PC

0x240 main: la $a0, varx0x244 jal strlen
… …

0x360 strlen: li $v0, 0  ;count0x364 loop: lb $t0, ($a0)0x368 beq $r0,$t1, done
… …

0x4050 varx dw 0x314159 0x30000x00003 (stack)
0x10000xF0002 (shared)
0x14000x48001 (data)
0x08000x40000 (code)
LimitBaseSeg ID #
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Administrivia
• Midterm I coming up in two days:

– Wednesday, 10/10, 6:00-9:00pm
– Should be 2 hour exam with extra time
– Closed book, one page of hand-written notes (both sides)

• Two testing rooms:
– If your Last Name starts with A-P

» Take Midterm in 120 Latimer
– If your Last Name starts with Q-Z

» Take Midterm in 141 McCone
• No class on day of Midterm

– Extra Office Hours: Wed 1:00-4:00, Tue?   Perhaps.
• Midterm Topics

– Topics: Everything up to today (Monday 10/8)
– History, Concurrency, Multithreading, Synchronization, 
Protection/Address Spaces

• Make sure to fill out Group Evaluations!
• Project 2 

– Initial Design Document due Wednesday 10/17 
– Look at the lecture schedule to keep up with due dates!
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Observations about Segmentation
• Virtual address space has holes

– Segmentation efficient for sparse address spaces
– A correct program should never address gaps (except 
as mentioned in moment)

» If it does, trap to kernel and dump core
• When it is OK to address outside valid range:

– This is how the stack and heap are allowed to grow
– For instance, stack takes fault, system automatically 
increases size of stack

• Need protection mode in segment table
– For example, code segment would be read-only
– Data and stack would be read-write (stores allowed)
– Shared segment could be read-only or read-write

• What must be saved/restored on context switch?
– Segment table stored in CPU, not in memory (small)
– Might store all of processes memory onto disk when 
switched (called “swapping”)
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Schematic View of Swapping

• Extreme form of Context Switch: Swapping
– In order to make room for next process, some or all 
of the previous process is moved to disk

» Likely need to send out complete segments 
– This greatly increases the cost of context-switching

• Desirable alternative?
– Some way to keep only active portions of a process in 
memory at any one time

– Need finer granularity control over physical memory
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Paging: Physical Memory in Fixed Size Chunks
• Problems with segmentation?

– Must fit variable-sized chunks into physical memory
– May move processes multiple times to fit everything
– Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1⇒allocated, 0⇒free

• Should pages be as big as our previous segments?
– No: Can lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
– Consequently: need multiple pages/segment
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Physical Address
Offset

How to Implement Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W

N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #
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PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R
N

V,R,W
N

page #4 V,R
V,R,W

page #4 V,R

What about Sharing?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

OffsetVirtual
Page #

Virtual Address:
Process B

Shared
Page

This physical page
appears in address

space of both processes

page #2 V,R,W
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Simple Page Table Discussion
• What needs to be switched on 

a context switch? 
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is 
sparse?

» E.g. on UNIX, code starts at 
0, stack starts at (231-1).

» With 1K pages, need 4 million 
page table entries!

– Con: What if table really big?
» Not all pages used all the 

time ⇒ would be nice to have 
working set of page table in 
memory

• How about combining paging 
and segmentation?
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Example (4 byte pages)
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• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W

N
V,R,W

Offset
Physical Address

Virtual 
Address: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error
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What about Sharing (Complete Segment)?
Process

A OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R

V,R,W
V,R,W

N
V,R,W

Shared Segment

Process
B OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V
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Physical
Address: OffsetPhysical

Page #

4KB

Another common example: two-level page table
10 bits 10 bits 12 bits

Virtual 
Address: OffsetVirtual

P2 index
Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single 
PageTablePtr register

• Valid bits on Page Table Entries 
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables 
can reside on disk if not in use 4 bytes
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Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we 
need for application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional reference 
counting)

• Cons:
– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly one 
page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!
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• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of 
virtual memory allocated to processes

– Physical memory may be much less
» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #
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Dual-Mode Operation
• Can Application Modify its own translation tables?

– If it could, could get access to all of physical memory
– Has to be restricted somehow

• To Assist with Protection, Hardware provides at 
least two modes (Dual-Mode Operation):

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only 
accessible in kernel-mode

• Intel processor actually has four “rings” of 
protection:

– PL (Priviledge Level) from 0 – 3
» PL0 has full access, PL3 has least

– Privilege Level set in code segment descriptor (CS)
– Mirrored “IOPL” bits in condition register gives 
permission to programs to use the I/O instructions

– Typical OS kernels on Intel processors only use PL0 
(“user”) and PL3 (“kernel”)
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For Protection, Lock User-Programs in Asylum
• Idea: Lock user programs in padded cell 

with no exit or sharp objects
– Cannot change mode to kernel mode
– User cannot modify page table mapping 
– Limited access to memory: cannot 
adversely effect other processes

» Side-effect: Limited access to 
memory-mapped I/O operations 
(I/O that occurs by reading/writing memory locations)

– Limited access to interrupt controller 
– What else needs to be protected?

• A couple of issues
– How to share CPU between kernel and user programs? 

» Kinda like both the inmates and the warden in asylum are 
the same person.  How do you manage this???

– How do programs interact?
– How does one switch between kernel and user modes?

» OS → user (kernel → user mode): getting into cell
» User→ OS (user → kernel mode): getting out of cell
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How to get from Kernel→User
• What does the kernel do to create a new user 

process?
– Allocate and initialize address-space control block
– Read program off disk and store in memory
– Allocate and initialize translation table 

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore PSL (hardware pointer to translation table)

Lec 12.2810/8/06 Kubiatowicz CS162 ©UCB Fall 2007

User→Kernel (System Call)
• Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled User→Kernel transition
– Can any kernel routine be called?

» No!  Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel
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System Call Continued
• What are some system calls?

– I/O: open, close, read, write, lseek
– Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
– Process: fork, exit, wait (like join)
– Network: socket create, set options

• Are system calls constant across operating systems?
– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel mem

» User addresses must be translated!w
» Kernel has different view of memory than user

– Every Argument must be explicitly checked!
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User→Kernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous 

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions:
– Divide by zero, Illegal instruction, Bus error (bad 
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves 
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU 
state, and switches to kernel stack
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Additions to MIPS ISA to support Exceptions?
• Exception state is kept in “Coprocessor 0”

– Use mfc0 read contents of these registers:
» BadVAddr (register 8): contains memory address at which 

memory reference error occurred
» Status (register 12): interrupt mask and enable bits 
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

• Status Register fields:
– Mask: Interrupt enable

» 1 bit for each of 5 hardware and 3 software interrupts
– k = kernel/user: 0⇒kernel mode
– e = interrupt enable: 0⇒interrupts disabled
– Exception⇒6 LSB shifted left 2 bits, setting 2 LSB to 0:

» run in kernel mode with interrupts disabled 

Status
15 8 5 4 3 2 1 0

k e k e k eMask
old prev cur
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Closing thought: Protection without Hardware
• Does protection require hardware support for 

translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in 
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express 
program that would trash another program

– Loader needs to make sure that program produced by 
valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate 
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation 
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot 
do certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior 
(loads and stores recompiled on fly to check bounds)
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Summary (1/2)
• Memory is a resource that must be shared

– Controlled Overlap: only shared when appropriate
– Translation: Change Virtual Addresses into Physical 
Addresses

– Protection: Prevent unauthorized Sharing of resources
• Dual-Mode

– Kernel/User distinction: User restricted
– User→Kernel: System calls, Traps, or Interrupts
– Inter-process communication: shared memory, or 
through kernel (system calls)

• Exceptions
– Synchronous Exceptions: Traps (including system calls)
– Asynchronous Exceptions: Interrupts
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Summary (2/2)
• Segment Mapping

– Segment registers within processor
– Segment ID associated with each access

» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

– Each segment contains base and limit information 
» Offset (rest of address) adjusted by adding base

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped 
through page table to physical page number

– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted page table
– Size of page table related to physical memory size


