
CS162
Operating Systems and
Systems Programming

Lecture 24

Network Communication Abstractions /
Distributed Programming

November 24, 2008
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 24.211/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Seq:190
Size:40

Review: Window-Based Acknowledgements (TCP)

Seq:230 A:190/140

Seq:260 A:190/100

Seq:300 A:190/60

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100

Seq:100
Size:40

140

Seq:140
Size:50

190

Seq:230
Size:30

230 260

Seq:260
Size:40

300

Seq:300
Size:40

340

Seq:340
Size:40

380

Seq:380
Size:20

400

Retransmit!

Lec 24.311/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Server
Socket

socket socketconnection

Reque
st Co

nnect
ion

new
socket

ServerClient

Review: Socket Setup (Con’t)

• Things to remember:
– Connection requires 5 values:
[Src Addr, Src Port, Dst Addr, Dst Port, Protocol]

– Often, Src Port “randomly” assigned
» Done by OS during client socket setup

– Dst Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

Lec 24.411/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Goals for Today

• Messages
– Send/receive
– One vs. two-way communication

• Distributed Decision Making
– Two-phase commit/Byzantine Commit

• Remote Procedure Call
• Distributed File Systems (Part I)

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 24.511/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 24.611/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1→T2

– T1→buffer→T2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 24.711/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:int msg1[1000];while(1) {prepare message; send(msg1,mbox);}
Consumer:int buffer[1000];while(1) {receive(buffer,mbox);process message;}

• No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 24.811/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)char response[1000];

send(“read rutabaga”, server_mbox);receive(response, client_mbox);
Server: (responding with the file)char command[1000], answer[1000];

receive(command, server_mbox);decode command;read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

Lec 24.911/24/08 Kubiatowicz CS162 ©UCB Fall 2008

• General’s paradox:
– Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

Yeah, but what if you
Don’t get this ack?

General’s Paradox

11 am ok?

So, 11 it is?
Yes, 11 works

Lec 24.1011/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do
something, or not do it, atomically

• Two-Phase Commit protocol does this
– Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its

log to recover state of world at time of crash
– Prepare Phase:

» The global coordinator requests that all participants will
promise to commit or rollback the transaction

» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its

log and tells everyone to abort; each records “Abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log

– Log can be used to complete this process such that all
machines either commit or don’t commit

Lec 24.1111/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Two phase commit example
• Simple Example: A≡WellsFargo Bank, B≡Bank of America

– Phase 1: Prepare Phase
» A writes “Begin transaction” to log

A→B: OK to transfer funds to me?
» Not enough funds:

B→A: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance & promise to commit to log
B→A: OK, I can commit

– Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

• What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees that there is a transaction in progress;
sends “Abort” to B

• What if B crashes at beginning of phase 2?
– B comes back up, looks at log; when A sends it “Commit”
message, it will say, “oh, ok, commit”

Lec 24.1211/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Administrivia

• Projects:
– Project 4 design document due Today (Monday, 11/24)

• MIDTERM II: Wednesday Dec 3rd
– One Week from Wednesday!
– Location: 10 Evans, 5:30pm – 8:30pm
– Any conflicts? Please contact me by tomorrow!
– Topics:

» All material from last midterm and up to Monday 12/1
» Lectures #13 – 27
» One cheat sheet (both sides)

• Final Exam
– Thursday, Dec 18th, 8:00-11:00am
– Topics: All Material except last lecture (freebie)
– Two Cheat sheets.

• Final Topics: Any suggestions?
– Please send them to me…

Lec 24.1311/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,

sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update

• Alternative: There are alternatives such as “Three
Phase Commit” which don’t have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making

Lec 24.1411/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that:
– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

General

Attack!

Attac
k!

Attack!
Retrea

t!

Attack!

Retreat!
Attack!

Attack!Attack!

Lieutenant

Lieutenant

LieutenantMalicious!

Lec 24.1511/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 24.1611/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: remoteFileSystem→Read(“rutabaga”);
– Translated automatically into call on server:fileSys→Read(“rutabaga”);

• Implementation:
– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.

Lec 24.1711/24/08 Kubiatowicz CS162 ©UCB Fall 2008

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 24.1811/24/08 Kubiatowicz CS162 ©UCB Fall 2008

RPC Details
• Equivalence with regular procedure call

– Parameters ⇔ Request Message
– Result ⇔ Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition
language (IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for

result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack

results, send them off
• Cross-platform issues:

– What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded

(avoids unnecessary conversions).

Lec 24.1911/24/08 Kubiatowicz CS162 ©UCB Fall 2008

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of service→mbox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 24.2011/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

» Caching can help, but may make failure handling complex

Lec 24.2111/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 24.2211/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 24.2311/24/08 Kubiatowicz CS162 ©UCB Fall 2008

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo→/sue/foo on server

– A single, global name space: every file
in the world has unique name
» Location Transparency: servers

can change and files can move
without involving user

Network
Read File

Data
Client Server

Lec 24.2411/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 24.2511/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use RPC to translate file system calls
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view
of file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client

Write
 (RP

C)

ACK

cache

Lec 24.2611/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Lec 24.2711/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Failures

• What if server crashes? Can client wait until server
comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does
UNIX “rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NFS takes a more ad hoc
approach)

• Stateless protocol: A protocol in which all information
required to process a request is passed with request
– Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 24.2811/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Schematic View of NFS Architecture

Lec 24.2911/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Lec 24.3011/24/08 Kubiatowicz CS162 ©UCB Fall 2008

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)

Lec 24.3111/24/08 Kubiatowicz CS162 ©UCB Fall 2008

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 24.3211/24/08 Kubiatowicz CS162 ©UCB Fall 2008

Conclusion
• Two-phase commit: distributed decision making

– First, make sure everyone guarantees that they will commit if
asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making with

malicious failures
– One general, n-1 lieutenants: some number of them may be

malicious (often “f” of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n ≥ 3f+1

• Remote Procedure Call (RPC): Call procedure on remote machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user

programming (in stub)
• VFS: Virtual File System layer

– Provides mechanism which gives same system call interface for
different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk
– Caching for performance

