
Review: RPC Information Flow

CS162 Operating Systems and Systems Programming Lecture 25

Distributed File Systems

November 26, 2008 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162

Goals for Today

- Finish Remote Procedure Call
- Examples of Distributed File Systems
 - Cache Coherence Protocols for file systems

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Slides on Testing from George Necula (CS169) Many slides generated from my lecture notes by Kubiatowicz.

RPC Details (continued)

 How does client know which mbox to send to?
- Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)
- Binding: the process of converting a user-visible name
- Binding: The process of converting a user-visible name
into_a_network_endpoint
» This is another word for "naming" at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
• Dynamic Binding
- Most RPC systems use dynamic binding via name service
 Most RPC systems use dynamic binding via name service » Name service provides dynamic translation of service —mbox
- Why dynamic binding?
* Access control: check who is permitted to access service
 Access control: check who is permitted to access service Fail-over: If server fails, use a different one
» rail-over. If server fails, use a different one
 What if there are multiple servers?
 Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next
 What if multiple clients?
- Pass pointer to client-specific return mbox in request
11/26/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 25.4

Lec 25.3

Problems with RPC

Non-Atomic failures

- Different failure modes in distributed system than on a single machine
- Consider many different types of failures
 - » User-level bug causes address space to crash
 - » Machine failure, kernel bug causes all processes on same machine to fail
 - » Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while others keep working
- Can easily result in inconsistent view of the world
 - » Did my cached data get written back or not?
 - » Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit
- Performance

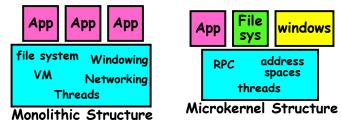
11/26/08

- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free » Caching can help, but may make failure handling complex

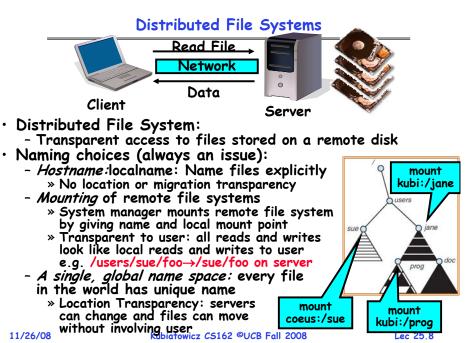
Kubiatowicz CS162 ©UCB Fall 2008

Cross-Domain Communication/Location Transparency

- How do address spaces communicate with one another?
 - Shared Memory with Semaphores, monitors, etc...
 - File System
 - Pipes (1-way communication)
 - "Remote" procedure call (2-way communication)
- RPC's can be used to communicate between address spaces on different machines or the same machine
 - Services can be run wherever it's most appropriate
 - Access to local and remote services looks the same
- Examples of modern RPC systems:
 - CORBA (Common Object Request Broker Architecture)
 - DCOM (Distributed COM)
 - RMI (Java Remote Method Invocation)

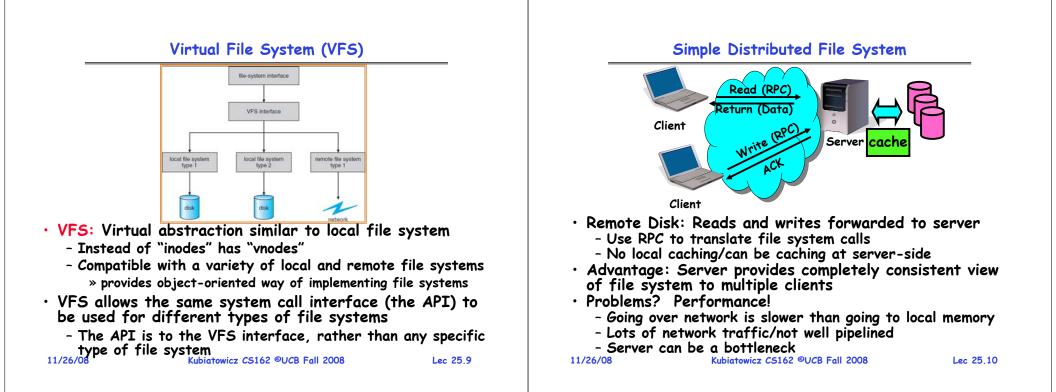

```
11/26/08
```

Kubiatowicz CS162 ©UCB Fall 2008


Lec 25.6

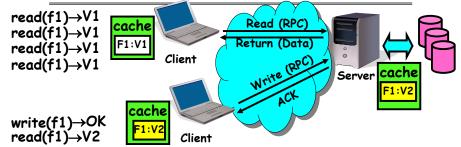
Microkernel operating systems

• Example: split kernel into application-level servers. - File system looks remote, even though on same machine



- Why split the OS into separate domains?
 - Fault isolation: bugs are more isolated (build a firewall)
 - Enforces modularity: allows incremental upgrades of pieces of software (client or server)
 - Location transparent: service can be local or remote
 - » For example in the X windowing system: Each X client can be on a separate machine from X server; Neither has to run on the machine with the frame buffer.

11/26/08


Lec 25.5

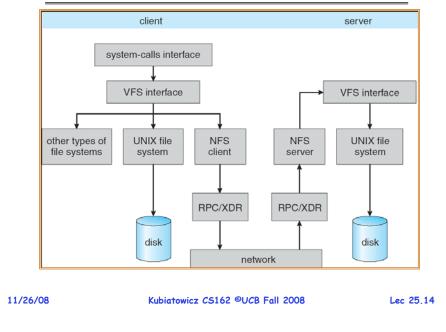
Administrivia

- MIDTERM II: Wednesday December 3th!
 - One week from today
 - 5:30-8:30, 10 Evans
 - All material up to next Monday (lectures 13-26)
 - Includes virtual memory
 - One page of handwritten notes, both sides
- Final Exam
 - December 18th, 8:00-11:00am, Bechtel Auditorium
 - Covers whole course except last lecture
 - Two pages of handwritten notes, both sides
- Final Topics: Any suggestions?

Use of caching to reduce network load

- Idea: Use caching to reduce network load - In practice: use buffer cache at source and destination
- Advantage: if open/read/write/close can be done locally, don't need to do any network traffic...fast!
- Problems:
 - Failure:
 - » Client caches have data not committed at server
 - Cache consistency!

Lec 25.11


Failures

- What if server crashes? Can client wait until server comes back up and continue as before?
 - Any data in server memory but not on disk can be lost
 - Shared state across RPC: What if server crashes after seek? Then, when client does "read", it will fail
 - Message retries: suppose server crashes after it does UNIX^{*}'rm foo", but before acknowledgment?
 - » Message system will retry: send it again
 - » How does it know not to delete it again? (could solve with two-phase commit protocol, but NFS takes a more ad hoc approach)
- Stateless protocol: A protocol in which all information required to process a request is passed with request
 - Server keeps no state about client, except as hints to help improve performance (e.g. a cache)
 - Thus, if server crashes and restarted, requests can continue where left off (in many cases)
- What if client crashes?
- Might lose modified data in client cache 11/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Lec 25,13

Schematic View of NFS Architecture

Network File System (NFS)

• Three Layers for NFS system

- UNIX file-system interface: open, read, write, close calls + file descriptors
- VFS layer: distinguishes local from remote files » Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture » Implements the NFS protocol
- NFS Protocol: RPC for file operations on server
 - Reading/searching a directory
 - manipulating links and directories
 - accessing file attributes/reading and writing files
- Write-through caching: Modified data committed to server's disk before results are returned to the client
 - lose some of the advantages of caching
 - time to perform write() can be long
 - Need some mechanism for readers to eventually notice changes! (more on this later)

NFS Continued

- NFS servers are stateless; each request provides all arguments require for execution
 - E.g. reads include information for entire operation, such **as** ReadAt(inumber, position), **not** Read(openfile)
 - No need to perform network open() or close() on file each operation stands on its own
- Idempotent: Performing requests multiple times has same effect as performing it exactly once
 - Example: Server crashes between disk I/O and message send, client resend read, server does operation again
 - Example: Read and write file blocks: just re-read or rewrite file block - no side effects
 - Example: What about "remove"? NFS does operation twice and second time returns an advisory error
- Failure Model: Transparent to client system
 - Is this a good idea? What if you are in the middle of reading a file and server crashes?
 - Options (NFS Provides both):
 - » Hang until server comes back up (next week?)
- » Return an error. (Of course, most applications don't know they are talking over network) 11/26/08 Lec 25,16

Lec 25,15

NFS Pros and Cons

- · NFS Pros:
 - Simple, Highly portable
- · NFS Cons:
 - Sometimes inconsistent!
 - Doesn't scale to large # clients
 - » Must keep checking to see if caches out of date
 - » Server becomes bottleneck due to polling traffic

Andrew File System

- Andrew File System (AFS, late 80's) → DCE DFS (commercial product)
- Callbacks: Server records who has copy of file
 - On changes, server immediately tells all with old copy
 - No polling bandwidth (continuous checking) needed
- Write through on close
 - Changes not propagated to server until close()
 - Session semantics: updates visible to other clients only after the file is closed
 - » As a result, do not get partial writes: all or nothing!
 - » Although, for processes on local machine, updates visible immediately to other programs who have file open
- \cdot In AFS, everyone who has file open sees old version
 - Don't get newer versions until reopen file

Lec 25.19

11/26/08

Andrew File System (con't)

- Data cached on local disk of client as well as memory
 - On open with a cache miss (file not on local disk): » Get file from server, set up callback with server
 - On write followed by close:
 - » Send copy to server; tells all clients with copies to fetch new version from server on next open (using callbacks)
- What if server crashes? Lose all callback state!
 - Reconstruct callback information from client: go ask everyone "who has which files cached?"
- AFS Pro: Relative to NFS, less server load:
 - Disk as cache \Rightarrow more files can be cached locally
 - Callbacks \Rightarrow server not involved if file is read-only
- For both AFS and NFS: central server is bottleneck!
 - Performance: all writes—server, cache misses—server
 - Availability: Server is single point of failure
 - Cost: server machine's high cost relative to workstation

11/26/08	Kubiatowicz CS162 ©UCB Fall 2008	Lec 25.21	11/26/08	Kubiatowicz CS162 ©UCB Fall 2008	Lec 25.22

WWW Caching

- Use client-side caching to reduce number of interactions between clients and servers and/or reduce the size of the interactions:
 - Time-to-Live (TTL) fields HTTP "Expires" header from server
 - Client polling HTTP "If-Modified-Since" request headers from clients
 - Server refresh HTML "META Refresh tag" causes periodic client poll
- What is the polling frequency for clients and servers?
 - Could be adaptive based upon a page's age and its rate of change
- Server load is still significant!

11/26/08

Lec 25,23

World Wide Web

• Key idea: graphical front-end to RPC protocol • What happens when a web server fails? - System breaks! - Solution: Transport or network-layer redirection » Invisible to applications » Can also help with scalability (load balancers) » Must handle "sessions" (e.g., banking/e-commerce) Initial version: no caching - Didn't scale well - easy to overload servers

WWW Proxy Caches

- Place caches in the network to reduce server load
 - But, increases latency in lightly loaded case
 - Caches near servers called "reverse proxy caches"
 - » Offloads busy server machines
 - Caches at the "edges" of the network called "content distribution networks"
 - » Offloads servers and reduce client latency
- Challenges:
 - Caching static traffic easy, but only ~40% of traffic
 - Dynamic and multimedia is harder
 - » Multimedia is a big win: Megabytes versus Kilobytes
 - Same cache consistency problems as before
- Caching is changing the Internet architecture
- Places functionality at higher levels of comm. protocols Kubiatowicz CS162 ©UCB Fall 2008 11/26/08

Conclusion

- Remote Procedure Call (RPC): Call procedure on remote machine
 - Provides same interface as procedure
 - Automatic packing and unpacking of arguments without user programming (in stub)
- VFS: Virtual File System layer
 - Provides mechanism which gives same system call interface for different types of file systems
- Distributed File System:
 - Transparent access to files stored on a remote disk
 - » NFS: Network File System
 - » AFS: Andrew File System
 - Caching for performance
- Cache Consistency: Keeping contents of client caches consistent with one another
 - If multiple clients, some reading and some writing, how do stale cached copies get updated?
 - NFS: check periodically for changes
 - AFS: clients register callbacks so can be notified by server of changes

4.4	101	100
11.	/26/	08

Kubiatowicz CS162 ©UCB Fall 2008

Lec 25,25