CS162
Operating Systems and
Systems Programming
Lecture 25

Distributed File Systems

November 26, 2008
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: RPC Information Flow

bundle
' args
P — . ca . send
\‘ E Client »| Client »| Packet
|
—~=/ |(caller)} Stub |« -
\@ (r) return u receive
unbundl Ie
. ret vals
Machine A
Machine B
bundle
ret vals
P return send
@? Server »iServen
|
=24 |(callee Stub |« -
\@ ()l call receive
unbundle
args
11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.2

Goals for Today

* Finish Remote Procedure Call
- Examples of Distributed File Systems
- Cache Coherence Protocols for file systems

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Slides on Testing from George Necula (CS169)

Many slides generated from my lecture notes by Kubiatowicz.

11/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Lec 25.3

1

RPC Details (continued)

How does client know which mbox fo send To?
- Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)
- Binding: the process of converting a user-visible name

into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
Dynamic Bmdmg
- Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service—>mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)
» Choose unloaded server for each new request
» Only works if no state carried from one call to next

What if multiple clients?

- Pass pointer to client-specific return mbox in request
Kubiatowicz €CS162 ©UCB Fall 2008 Lec 25.4

1/26/08

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a
single machine
- Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same
machine to fail
» Some machine is compromised by malicious party
- Before RPC: whole system would crash/die
- After RPC: One machine crashes/compromised while
others keep working
- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?
- Answer? Distributed transactions/Byzantine Commit

+ Performance

- Cost of Procedure call « same-machine RPC « network RPC

- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.5

Cross-Domain Communication/Location Transparency

* How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc..
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

« RPC's can be used to communicate between address
spaces on different machines or the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
+ Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.6

Microkernel operating systems

- Example: split kernel into application-level servers.
- File system looks remote, even though on same machine

App [| App [| App App| | Sy | |windows
file system windowing RPc address
M Networking h sgaces
Threads fhreads

Monolithic Structure Microkernel Structure

* Why split the OS into separate domains?
- Fault isolation: bugs are more isolated (build a firewall)

- Enforces modularity: allows incremental upgrades of pieces

of software (client or server)
- Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run

on the machine with the frame buffer.
11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.7

* Naming choices (always an issue):

~ Distributed File Systems

‘/\ Nefwork Ay
\% i I 8 :

. Data S \’/
Client o

Server

- Distributed File System:

- Transparent access to files stored on a remote disk

mount
kubi:/jane

() users l /

- Hostname:localname: Name files explicitly
» No location or migration transparency
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo—/sue/foo on server
- A single, global name space: every file
in the world has unique name

» Location Transparency: servers mount mount
can change clzr! files can move coeus:/sue
11/26/08 without invo VI RPSEcz cs162 @uca Fall 2008

Virtual File System (VFS)

Bo-system interlace ‘

o

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the APT) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific
1126 7yPe of file system

Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.9

Simple Distributed File System

cache

- Remote Disk: Reads and writes forwarded to server
- Use RPC to translate file system calls
- No local caching/can be caching at server-side
* Advantage: Server provides completely consistent view
of file system to multiple clients
* Problems? Performance!
- Going over network is slower than going to local memory
- Lots of network traffic/not well pipelined

- Server can be a bottleneck
11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.10

Administrivia

+ MIDTERM II: Wednesday December 3l
- One week from today
- 5:30-8:30, 10 Evans
- All material up to next Monday (lectures 13-26)
- Includes virtual memory
- One page of handwritten notes, both sides
+ Final Exam
- December 18'h, 8:00-11:00am, Bechtel Auditorium
- Covers whole course except last lecture
- Two pages of handwritten notes, both sides
* Final Topics: Any suggestions?

11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.11

Use of caching to reduce network load

— > /—7/\
:2338:3::\\5 i cache\!/;// /_Read (RPC) \
read(f1)-V1 ' Refurn (Data)
read(f1)-V1 Client

ite(f1)>OK cache
write V2
read(f1)-V2
* Idea: Use caching to reduce network load

- In practice: use buffer cache at source and destination
* Advantage: if open/read/write/close can be done

locally, don't need to do any network traffic..fast!
* Problems:

- Failure:

» Client caches have data not committed at server
- Cache consistency!

11726108 > Client caches not. consistent with, sgsyer/each other o 12

Client

Failures

* What if server crashes? Can client wait until server
comes back up and continue as before?
- Any data in server memory but not on disk can be lost

- Shared state across RPC: What if server crashes after

seek? Then, when client does “read”, it will fail
- Message retries: suppose server crashes after it does
UNIX "rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NF5 takes a more ad hoc

approach)

+ Stateless protocol: A protocol in which all information

required to process a request is passed with request
- Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)
- Thus, if server crashes and restarted, requests can
continue where left off (in many cases)
* What if client crashes?
- Might lose modified data in client cache

11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.13

Schematic View of NFS Architecture

client server

system-calls interface

VFS interface ’—> VFS interface

v ' ‘
other types of UNIX file NFS NFS UNIX file
file systems system client server system
o
i ‘ RPC/XDR ‘ ‘ RPC/XDR ‘ R
S . |
disk disk
— [network ‘ —
11/26/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 25.14

Network File System (NFS)

+ Three Layers for NFS system

- UNIX file-system interface: open, read, write, close
calls + file descriptors

- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* Write-through caching: Modified data committed to

server's disk before results are returned to the client

- lose some of the advantages of caching
- time to perform write() can be long

- Need some mechanism for readers to eventually notice
changes! (more on this later)

11/26/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 25.15

NFS Continued

NF35 servers are sTafeless; each request provides all
ar'gEumen'l's require for execution
- E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)
- No need to perform network open() or close() on file -
each operation stands on its own

+ Idempotent: Performing requests multiple times has

same effect as performing it exactly once
- Example: Server crashes between disk I/0 and message
send, client resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-
write file block - no side effects
- Example: What about “"remove”? NFS does operation
twice and second time returns an advisory error
Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of
reading a file and server crashes?
- Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don't know

11720008 They are talkjng over network) Lec 25.16

NFS Cache consistency

* NFS protocol: weak consistency
- Client polls server periodically to check for changes

» Polls server if data hasn't been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

cache\!/;/ W

Client

cache

Clent

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!
11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.17

Sequential Ordering Constraints

* What sort of cache coherence might we expect?

- i.e. what if one CPU changes file, and before it's done,
another CPU reads file?

- Example: Start with file contents = “A”"

Client 1: | Read:igets A || WriteB | [Read: parts of B or (]

Client 2: |Read: gets A or B|]| Write C |

Client 3: [Read: parts of B or |
Time

* What would we actually want?

- Assume we want distributed system to behave exactly the
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy
- For NFS:
» If read starts more than 30 seconds after write, get new

copy: otherwise, could get partial update
11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.18

NFS Pros and Cons

* NFS Pros:
- Simple, Highly portable
* NFS Cons:
- Sometimes inconsistent!
- Doesn't scale to large # clients
» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

11/26/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 25.19

Andrew File System

* Andrew File System (AFS, late 80's) - DCE DFS

(commercial product)

* Callbacks: Server records who has copy of file

- On changes, server immediately tells all with old copy
- No polling bandwidth (continuous checking) needed

*+ Write through on close

- Changes not propagated to server until close()

- Session semantics: updates visible to other clients only
after the file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible
immediately to other programs who have file open

* In AFS, everyone who has file open sees old version
- Don't get newer versions until reopen file

11/26/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 25.20

Andrew File System (con't)

* Data cached on local disk of client as well as memory
- On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server
- On write followed by close:

» Send copy to server; tells all clients with copies to fetch
new version from server on next open (using callbacks)

* What if server crashes? Lose all callback statel

- Reconstruct callback information from client: go ask
everyone “who has which files cached?”

+ AFS Pro: Relative to NFS, less server load:
- Disk as cache = more files can be cached locally
- Callbacks = server not involved if file is read-only

* For both AFS and NFS: central server is bottleneck!
- Performance: all writes—server, cache misses—server
- Availability: Server is single point of failure
- Cost: server machine’s high cost relative to workstation

11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.21

World Wide Web

- Key idea: graphical front-end to RPC protocol

+ What happens when a web server fails?
- System breaks!
- Solution: Transport or network-layer redirection
» Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

+ Initial version: no caching
- Didn't scale well - easy to overload servers

11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.22

WWW Caching

* Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:

- Time-to-Live (TTL) fields - HTTP “Expires” header
from server

- Client polling - HTTP "If-Modified-Since” request
headers from clients

- Server refresh - HTML "META Refresh tag”
causes periodic client poll

* What is the polling frequency for clients and
servers?

- Could be adaptive based upon a page's age and its
rate of change

- Server load is still significant!

11/26/08 Kubiatowicz CS162 ©UCB Fall 2008 Lec 25.23

WWW Proxy Caches

* Place caches in the network to reduce server load
- But, increases latency in lightly loaded case
- Caches near servers called “"reverse proxy caches”
» Offloads busy server machines

- Caches at the “edges” of the network called “content
distribution networks”

» Offloads servers and reduce client latency
* Challenges:
- Caching static traffic easy, but only ~40% of traffic
- Dynamic and multimedia is harder
» Multimedia is a big win: Megabytes versus Kilobytes
- Same cache consistency problems as before
* Caching is changing the Internet architecture

- Places functionality at higher levels of comm. protocols
11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.24

Conclusion

+ Remote Procedure Call (RPC): Call procedure on remote
machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments without
user programming (in stub)
* VFS: Virtual File System layer
- Provides mechanism which gives same system call interface
for different types of file systems
- Distributed File System:
- Transparent access to files stored on a remote disk
» NFS: Network File System
» AFS: Andrew File System
- Caching for performance
* Cache Consistency: Keeging contents of client caches
consistent with one another
- If multiple clients, some reading and some writing, how do
stale cached copies get updated?
- NFS: check periodically for changes
- AFS: clients register callbacks so can be notified by
server of changes

11/26/08 Kubiatowicz €S162 ©UCB Fall 2008 Lec 25.25

