
CS162
Operating Systems and
Systems Programming

Lecture 25

Distributed File Systems

November 26, 2008
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 25.211/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Review: RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 25.311/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Goals for Today

• Finish Remote Procedure Call
• Examples of Distributed File Systems

– Cache Coherence Protocols for file systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Slides on Testing from George Necula (CS169)
Many slides generated from my lecture notes by Kubiatowicz.

Lec 25.411/26/08 Kubiatowicz CS162 ©UCB Fall 2008

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of service→mbox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 25.511/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

» Caching can help, but may make failure handling complex

Lec 25.611/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 25.711/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 25.811/26/08 Kubiatowicz CS162 ©UCB Fall 2008

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo→/sue/foo on server

– A single, global name space: every file
in the world has unique name
» Location Transparency: servers

can change and files can move
without involving user

Network
Read File

Data
Client Server

Lec 25.911/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to

be used for different types of file systems
– The API is to the VFS interface, rather than any specific
type of file system

Lec 25.1011/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use RPC to translate file system calls
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view
of file system to multiple clients

• Problems? Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client

Write
 (RP

C)

ACK

cache

Lec 25.1111/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Administrivia

• MIDTERM II: Wednesday December 3th!
– One week from today
– 5:30-8:30, 10 Evans
– All material up to next Monday (lectures 13-26)
– Includes virtual memory
– One page of handwritten notes, both sides

• Final Exam
– December 18th, 8:00-11:00am, Bechtel Auditorium
– Covers whole course except last lecture
– Two pages of handwritten notes, both sides

• Final Topics: Any suggestions?

Lec 25.1211/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done
locally, don’t need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Lec 25.1311/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Failures

• What if server crashes? Can client wait until server
comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does
UNIX “rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with

two-phase commit protocol, but NFS takes a more ad hoc
approach)

• Stateless protocol: A protocol in which all information
required to process a request is passed with request
– Server keeps no state about client, except as hints to
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

Lec 25.1411/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Schematic View of NFS Architecture

Lec 25.1511/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

Lec 25.1611/26/08 Kubiatowicz CS162 ©UCB Fall 2008

NFS Continued
• NFS servers are stateless; each request provides all

arguments require for execution
– E.g. reads include information for entire operation, such
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”? NFS does operation
twice and second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of
reading a file and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know

they are talking over network)

Lec 25.1711/26/08 Kubiatowicz CS162 ©UCB Fall 2008

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified,
but other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

Lec 25.1811/26/08 Kubiatowicz CS162 ©UCB Fall 2008

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done,
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

Lec 25.1911/26/08 Kubiatowicz CS162 ©UCB Fall 2008

NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

Lec 25.2011/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

Lec 25.2111/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

Lec 25.2211/26/08 Kubiatowicz CS162 ©UCB Fall 2008

World Wide Web

• Key idea: graphical front-end to RPC protocol

• What happens when a web server fails?
– System breaks!
– Solution: Transport or network-layer redirection

» Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

• Initial version: no caching
– Didn’t scale well – easy to overload servers

Lec 25.2311/26/08 Kubiatowicz CS162 ©UCB Fall 2008

WWW Caching

• Use client-side caching to reduce number of
interactions between clients and servers and/or
reduce the size of the interactions:
– Time-to-Live (TTL) fields – HTTP “Expires” header
from server

– Client polling – HTTP “If-Modified-Since” request
headers from clients

– Server refresh – HTML “META Refresh tag”
causes periodic client poll

• What is the polling frequency for clients and
servers?
– Could be adaptive based upon a page’s age and its
rate of change

• Server load is still significant!

Lec 25.2411/26/08 Kubiatowicz CS162 ©UCB Fall 2008

WWW Proxy Caches

• Place caches in the network to reduce server load
– But, increases latency in lightly loaded case
– Caches near servers called “reverse proxy caches”

» Offloads busy server machines
– Caches at the “edges” of the network called “content
distribution networks”
» Offloads servers and reduce client latency

• Challenges:
– Caching static traffic easy, but only ~40% of traffic
– Dynamic and multimedia is harder

» Multimedia is a big win: Megabytes versus Kilobytes
– Same cache consistency problems as before

• Caching is changing the Internet architecture
– Places functionality at higher levels of comm. protocols

Lec 25.2511/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Conclusion
• Remote Procedure Call (RPC): Call procedure on remote

machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without
user programming (in stub)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface
for different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS: Network File System
» AFS: Andrew File System

– Caching for performance
• Cache Consistency: Keeping contents of client caches

consistent with one another
– If multiple clients, some reading and some writing, how do
stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks so can be notified by
server of changes

