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Goals for Today

• Finish Remote Procedure Call
• Examples of Distributed File Systems

– Cache Coherence Protocols for file systems

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Slides on Testing from George Necula (CS169)
Many slides generated from my lecture notes by Kubiatowicz.
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RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network 
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name 
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of service→mbox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request
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Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a 
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same 

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while 
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free 

» Caching can help, but may make failure handling complex
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Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address 
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 25.711/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces 
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can 

be on a separate machine from X server; Neither has to run 
on the machine with the frame buffer.
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mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System: 
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system
by giving name and local mount point

» Transparent to user: all reads and writes 
look like local reads and writes to user
e.g. /users/sue/foo→/sue/foo on server

– A single, global name space: every file 
in the world has unique name
» Location Transparency: servers 

can change and files can move 
without involving user

Network
Read File

Data
Client Server
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Virtual File System (VFS)

• VFS: Virtual abstraction similar to local file system
– Instead of “inodes” has “vnodes”
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to 

be used for different types of file systems
– The API is to the VFS interface, rather than any specific 
type of file system
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Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use RPC to translate file system calls
– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view 
of file system to multiple clients

• Problems?  Performance!
– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck
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Administrivia

• MIDTERM II: Wednesday December 3th!
– One week from today
– 5:30-8:30, 10 Evans
– All material up to next Monday (lectures 13-26)
– Includes virtual memory 
– One page of handwritten notes, both sides

• Final Exam 
– December 18th, 8:00-11:00am, Bechtel Auditorium
– Covers whole course except last lecture
– Two pages of handwritten notes, both sides

• Final Topics: Any suggestions?
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Server cache
F1:V1F1:V2

Use of caching to reduce network load
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• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done 
locally, don’t need to do any network traffic…fast!

• Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other
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Failures

• What if server crashes? Can client wait until server 
comes back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after 
seek? Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does 
UNIX “rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with 

two-phase commit protocol, but NFS takes a more ad hoc 
approach)

• Stateless protocol: A protocol in which all information 
required to process a request is passed with request
– Server keeps no state about client, except as hints to 
help improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can 
continue where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!
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Schematic View of NFS Architecture 
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Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close 
calls + file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to 
server’s disk before results are returned to the client 
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice 
changes! (more on this later)
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NFS Continued
• NFS servers are stateless; each request provides all 

arguments require for execution
– E.g. reads include information for entire operation, such 
as ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file –
each operation stands on its own

• Idempotent: Performing requests multiple times has 
same effect as performing it exactly once
– Example: Server crashes between disk I/O and message 
send, client resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-
write file block – no side effects

– Example: What about “remove”?  NFS does operation 
twice and second time returns an advisory error 

• Failure Model: Transparent to client system
– Is this a good idea?  What if you are in the middle of 
reading a file and server crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know 

they are talking over network)
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 
seconds (exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, 
but other clients use old version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!
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• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, 
another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the 
same as if all processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new 

copy; otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic
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Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS 
(commercial product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only 
after the file is closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible 

immediately to other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch 

new version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask 
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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World Wide Web

• Key idea: graphical front-end to RPC protocol

• What happens when a web server fails?
– System breaks!
– Solution: Transport or network-layer redirection 

» Invisible to applications
» Can also help with scalability (load balancers)
» Must handle “sessions” (e.g., banking/e-commerce)

• Initial version: no caching
– Didn’t scale well – easy to overload servers
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WWW Caching

• Use client-side caching to reduce number of 
interactions between clients and servers and/or 
reduce the size of the interactions:
– Time-to-Live (TTL) fields – HTTP “Expires” header 
from server

– Client polling – HTTP “If-Modified-Since” request 
headers from clients

– Server refresh – HTML “META Refresh tag”
causes periodic client poll

• What is the polling frequency for clients and 
servers? 
– Could be adaptive based upon a page’s age and its 
rate of change

• Server load is still significant!
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WWW Proxy Caches

• Place caches in the network to reduce server load
– But, increases latency in lightly loaded case
– Caches near servers called “reverse proxy caches”

» Offloads busy server machines
– Caches at the “edges” of the network called “content 
distribution networks”
» Offloads servers and reduce client latency

• Challenges:
– Caching static traffic easy, but only ~40% of traffic
– Dynamic and multimedia is harder

» Multimedia is a big win: Megabytes versus Kilobytes
– Same cache consistency problems as before

• Caching is changing the Internet architecture
– Places functionality at higher levels of comm. protocols



Lec 25.2511/26/08 Kubiatowicz CS162 ©UCB Fall 2008

Conclusion
• Remote Procedure Call (RPC): Call procedure on remote 

machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without 
user programming (in stub)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface 
for different types of file systems

• Distributed File System:
– Transparent access to files stored on a remote disk

» NFS: Network File System
» AFS: Andrew File System

– Caching for performance
• Cache Consistency: Keeping contents of client caches 

consistent with one another
– If multiple clients, some reading and some writing, how do 
stale cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks so can be notified by 
server of changes


