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Abstract

Today’s commodity microprocessors require a low latency

memory system to achieve high sustained performance. The

conventional high-performance memory system provides fast

data access via a large secondary cache. But large secondary

caches can be expensive, particularly in large-scale parallel

systems with many processors (and thus many caches).

We evaluate a memory system design that can be both

cost-effective as well as provide better performance, partic-

ularly for scientific workloads: a single level of (on-chip)

cache backed up only by Jouppi’s stream buffers [10] and

a main memory. This memory system requires very little

hardware compared to a large secondary cache and doesn’t

require modifications to commodity processors. We use trace-

driven simulation of fifteen scientific applications from the

NAS and PERFECT suites in our evaluation. We present

two techniques to enhance the effectiveness of Jouppi’s orig-

inal stream buffers: jiltering schemes to reduce their mem-

ory bandwidth requirement and a scheme that enables stream

buffers to prefetch data being accessed in large strides. Our

results show that, for the majority of our benchmarks, stream

buffers can attain hit rates that are comparable to typical hit

rates of secondary caches. Also, we find that as the data-set

size of the scientific workload increases the performance of

streams typically improves relative to secondary cache per-

formance, showing that streams are more scalable to large

data-set sizes.

1 Introduction

A key design question for any computer system is: what

kind of memory hierarchy should be provided? Conventional

high-performance workstations (circa 1993) contain a pro-

cessor with an on-chip cache augmented by an off-chip (sec-

ondary SRAM) cache of a megabyte or more. We consider
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Stream Buffers

Figure 1: Logical organization of a typical uniprocessor

This figure displays our default system assumptions. Stream buffers prefetch

data from main memory and make it available to the processor when aon-chip

cache miss occurs. Note the existence of afasr path to memory bypassing the

stream buffers; this is used when the data is not found in the stream buffers.

replacing the secondary cache with Jouppi’s stream buffers

[10]. Stream buffers require much less hardware to imple-

ment, yet we find that they can provide performance similar

to a large secondary cache for scientific codes. Some of the

cost saved by replacing the expensive secondary cache with

cheaper stream buffers can be applied towards implementing

more plentiful main memory bandwidth, and the resulting

system will likely have both significantly higher overall sys-

tem cost-efficiency and performance, particularly for typical

scientific codes that have regular access patterns. Memory

system efficiency is particularly critical within the context

of large-scale parallel machines (1 K processors or more) be-

cause the costs of any inefficiencies are magnified by the scale

of the system. Gigabytes of SRAM are required to implement

the conventional workstation memory system dee.i~n for each

processor in these systems; this is an exorbitant cost if the

caches are not being effectively used.

Stream buffers are FIFO prefetch buffers that prefetch

cache blocks. Figure 1 illustrates the logical organization

of a typical uniprocessor (or one of the processors in a large

parallel system). For our simulations, we assume a com-

modity microprocessor that is backed up only by streams and

a main memory. Streams prefetch cache blocks from the
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main memory resulting in faster service of on-chip misses

than in a system with only on-chip caches and main memory.

Stream buffers will be most effective in systems with “suf-

ficient” main memory bandwidth since some extra memory

bandwidth is inevitably wasted by unnecessary prefetching,

though streams can still be effective in a wide range of sys-

tems when the system limits memory bandwidth wastage via

the jiltering technique we introduce in this paper. Compared

to secondary caches, stream buffers require very little logic,

and we find that they scale better with larger scientific data

sets.

This study is particularly timely since stream buffers have

recently become commercially available. MacroTek [7] an-

nounced a memory controller chip for PowerPC based sys-

tems (a commodity microprocessor-based system) that in-

corporates stream buffers. The Macrotek implementation is

similar to the original streams implementation we consider,

except that it allows partitioned instruction and data streams.

We evaluate stream buffers for a large number of scien-

tific application codes (fifteen applications), and determine

the types of these programs that benefit most from streams.

We show that for the majority of our programs stream buffers

can reach good performance levels (hit ratio ~ 50VO). We

also show how stream buffers could result in considerable

inefficient use of memory bandwidth and how this can be

improved by adding a jilter. We present an implementation

to extend the original streams to handle the case of non-unit

stride memory accesses. We also compare stream buffer per-

formance to that of secondary caches, indicating the relatively

better scalability of streams to larger data set sizes.

The remainder of this paper is divided into eight sections.

The next section describes related work. In section 3, we

describe stream buffers. Section 4 describes the simulation

methodology and framework. Section 5 gives simulation

results for the performance of the original stream buffers,

Section 6 describes the technique to reduce the memory band-

width requirement of streams, Section 7 presents the scheme

for detecting non-unit strides, and finally Section 8 compares

streams to secondary caches for varying data set size. We

draw conclusions in Section 9.

2 Related work

Many interesting prefetching studies appear in the litera-

ture. Prefetching strategies can be broadly classified into

two groups: hardware based and software based.

Baer and Chen [1] proposed an on-chip scheme that de-

tects strides in program references using history buffers. A

hardware table (maintained as a cache), called the reference

prediction table, keeps currently active loadlstore instructions

and predicts future references. Fu and Patel [6] use the stride

information encoded in vector instructions to prefetch in vec-

tor processors. They also suggest a scheme [5] for scalar pro-

To processor Address f~m processor
4

I I
Next Address Cache Block Valid Tag

+5
Comparator

%+--+-+

~~
Prefetch Address From memory

Figure 2: Stream buffer

A stream buffer has one or more entries, where each ent]y consists of a
cacheblock of data, tag for the cache block and a valid bit, In addition, an
incrementedis usedto generateprefetch addressesand a comparator is used
to match the miss addresswith the tag of the cache block at the head of the
buffer.

cessors that is similar to the Baer and Chen scheme. Another

similar scheme is suggested by Sklenar [13]. jNote that all

of these hardware schemes make use of the program counter

(PC) of the loadktore instruction to implement prefetching.

This is a significant disadvantage since it requires that com-

modity processors be modified to insert prefetch logic. Ram-

bus Inc. has developed a memory system [8] that consists

of a small (1 KB) prefetching secondary cache backed by

high bandwidth Rambus DRAMS. They find thi~t for typical

corporate applications their cache achieves hit rates that are

comparable to that shown by conventional Pentium system

implementations with a 256 KB secondary cache and a 64-bit

interleaved DRAM memory. Smith [14] evaluated schemes

based on the one-block-lookahead (OBL) policy of prefetch-

ing block i + 1 whenever block i is referenced. So and

Rechtschaffen [16] suggest using a reference to a non-MRU

(most recently used) block to trigger prefetches. As an exten-

sion to OBL, Jouppi suggested stream buffers [10]. Jouppi

suggested using stream buffers on-chip to prefetch data at the

maximum bandwidth of the second level cache. Smith and

Hsu studied instruction cache prefetching in supercomputers

(e.g. [15]).

Several schemes for compiler prefetching of data have been

suggested. Porterfield et. al. [4] looked at prefetching array

references within inner loops and used a simple heuristic of

prefetching cache blocks a single loop iteration in advance.

Mowry, Lam and Gupta [12] present a compiler algorithm

to perform prefetch insertion. Their compiler takes into ac-

count data reuse to eliminate unnecessary prefetches. They

show that selective prefetching is better than indiscriminate

prefetching. While more flexible than hardware prefetching,

software prefetching has a few disadvantages. Prefetch in-

structions require extra cycles for their execution. Perhaps

even more importantly, they consume external or pin band-

width of the commodity processor chip. Also, software may

not be able to predict conflict or capacity cache misses, so

unnecessary prefetches may be executed while the data is

already in the cache.
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3 Stream buffers 4 Methodology

Jouppi first proposed the notion of stream buffers or streams

[10]. They are FIFO prefetch buffers that prefetch consecu-

tive cache blocks starting at a given address. Each entry of a

stream buffer consists of a tag, an available bit, and a cache

block as shown in Figure 2. When a reference misses in

the on-chip cache, it allocates a stream and prefetches cache

blocks starting at the miss target. The adder generates the ad-

dress of the next cache block to be prefetched. When a cache

block returns from main memory, the stream buffer hardware

fills the tag and data fields of the entry and sets the available

bit.

While Jouppi considered stream buffer prefetching from a

large secondary cache into a primary cache, we instead con-

sider prefetching directly from the main memory into buffers

close to the processor chip.

Subsequent primary cache misses compare their address

against the head of the stream buffer. If the reference hits

in the stream buffer, the processor pulls the cache block into

the primary cache. Write-backs bypass the streams and on

their way to memory invalidate any stale copies that might

be present in the streams. Compared to second level caches,

stream buffers require little hardware. Each buffer needs a

comparator and an adder in addition to a small amount of

SRAM for the cache blocks. Also, the access time for stream

buffers can be smaller than that of second level caches as there

is no RAM lookup involved.

Since most programs access more than one array inside a

loop, one could potentially benefit by using more than one

stream in parallel. (as Jouppi also recognized [10]). Mtdti-

wuy streams help in prefetching multiple data streams con-

currently. The primary cache miss address is compared with

the head of each stream in parallel. If the reference hits in

one of the streams, the cache block is transferred to the pri-

m~ cache; otherwise, the oldest stream is flushed and reset
to prefetch from the miss address. We assume that a least re-

cently used (LRU) replacement policy selects the stream to be

reallocated. We have found the required number of streams

to be sufficiently small (eight or less) that the parallel search

mentioned above should not cause any significant access time

increase.

Two important design parameters for stream buffers are the

number of streams and the depth of each stream. The number

of prefetched entries in each stream is called the depth of the

stream. The optimal depth depends largely on the character-

istics of the memory system that backs up the processor. A

stream should be deep enough so that it can cover the main

memory latency and supply data to the processor at its maxi-

mum rate. Since we wish to make as few assumptions about

the underlying memory system as possible, we will assume a

constant stream buffer depth of two. Henceforth, we will use

the words stream, stream buffer and buffer interchangeably.

4.1 Benchmarks and simulation environment

We used trace driven simulation as our evaluation methodol-

ogy. We used Shade [17] to generate address traces of primary

cache misses. We fed these traces to a stream buffer simulator

which generates hit rate and other relevant statistics for the

program. We used time sampling [11] to reduce the size of

the trace files. We switched tracing on and off for 10,000

and 90,000 references, respectively, so that we sampled 10%

of the trace. We used fifteen scientific applications, listed in

Table 1 from the PERFECT [3] and NAS [2] suites, as our

benchmarks. These Fortran programs were first converted to

C using “f2c” and then compiled using “gee” (version 2.4.3)

with the -02 option. We traced complete program runs. The

number of instructions executed by each application varied

from a few hundred million to a few billion.

Simulations were done assuming 64K I + 64K D 4-way

set associative caches. The write policy of the data cache

is write-back and write-allocate. The caches use a random

replacement policy. We think this cache configuration is

representative of what future processors will have. Also,

the associativity minimized the effect of cache conflicts, so

that we could focus on stream buffers. (In a direct-mapped

cache, Jouppi’s victim buffers may also be needed.)

Table 1 shows the base performance of the benchmarks

used. The table shows that in general, for the input sizes we

used, the PERFECT codes show much lower primary cache

miss rates than the NAS codes. The low miss rates may be

partially explained by the small data set sizes selected for the

simulations to complete within a reasonable period of time.

At the same time, for four of the benchmarks we found larger

data set sizes improved stream buffer performance (as we

show in Table 4). It should be mentioned that we used the

benchmark codes “as is” and did not modify them to make

efficient use of stream buffers.

4.2 Performance metric

We use stream hit rate as our primary performance indicator.

There are a number of reasons for using stream hit rate rather

than metrics such as total execution time or effective CPI.

First, hit rates indicate the maximum benefit that streams

can provide. Second, there were no previous results (other

than Jouppi’s [10] original results) to indicate what kind of

stream buffer performance to expect for scientific workloads.

Consequently we thought it was important to study a wide

variety of benchmarks. Third, we did not want to make this

paper too specific to any particular memory system design

details. Also, we think that hit rate is an accurate metric

for the kind of target systems we have in mind; systems for

which memory bandwidth is “sufficiently” greater than the

load data requirements of the processor. (An example target
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Name Description Input Data Data MFi_
Data Set Set Size(Mb) Miss Rate(%)

—
NAS

—

embar Embarrassingly parallel n = 2z0 1.0 0.28 0.16-
mgrid Multigrid kernel 32X 32X 32 grid 1.0 0.84 0.08
cgm Smallest eigen-value of 1400 X 1400 matrix, 2.9 3.33 1.43

a sparse matrix 78148 non-zero elements

fftpde 3-D pde solver using FIT 64X 64X 64 complex array 14.7 3.08 0.50
buk Integer sort 64K integers, maxkey = 2048 0.80 0.53 0.20

appsp Fluid dynamics 24X 24X 24 grid, 50 iterations 2.2 2.24 0.38
appbt Fluid dynamics 18X 18X 18 grid, 30 iterations 4.2 1.88 0.45

applu Fluid dynamics 18X 18 X 18 grid, 50 iterations 5.4 1.26 0.18—
PERFECT

—

spec77 Weather Simulation 1.3 0.50 0.13-

adm Air pollution 64X 1 X 16 grid, 720 time steps 0.6 0.04 0.00
bdna Nucleic acid simulation 500 molecules, 20 counter ions 2.1 1.39 0.42

dyfesm Structural dynamics 4 elements, 1000 time steps 0.1 0.01 0.00

mdg Liquid water simulation 343 molecules, 100 time steps 0.2 0.03 0.01

qcd Quantum chromodynarnics 12X 12X 12X 12 lattice 9.2 0.16 0.06

t~d Quantum Mechanics - 8.0 0.05 0.00—

Table 1: Benchmmk Characteristics
This table describes the benchmarks used in this paper. The first eight programs are from the NAS suite. The rest were selected from the PERFECT suite. The

fourth column gives the data set size of the benchm~rk as returned by the Unix utility size. The fifth column gwes the primary cache miss rate assuming 641CB,

4-way on-chip instruction and data caches. The final column shows the number of misses per instruction in percentage for the same cache configuration.

system is the Cray T3D, for which the available raw main

memory bandwidth is 600 MB/see while the maximum off-

chip processor load bandwidth is 320 MB/see.)

5 Performance

streams

While it is simple enough

of unit stride-only

to understand the usefulness of

streams for small kernels, it is an entirely different question

as to how well stream buffers will perform on larger exam-

ples that include real code. Figure 3 shows how hit rates

vary with the number of streams for our benchmarks. Hit

rates here are the fractions of on-chip misses that hit in the

streams. The stream buffers are unified (i.e. they prefetch

both instructions and data). Partitioning the streams into sep-

arate instruction and data streams was not beneficial since the

relatively large on-chip instruction cache resulted in very few

instruction misses.

From Figure 3 we can see that majority of the benchmarks

show hit rates in the 50-80% range. Also, hit rates plateau as

the number of streams is increased. The number of streams at

which the hit rate saturates is related to the number of unique

array references in the program loops of the benchmark. For

our benchmarks, seven to eight streams suffice. j’lpde and

appsp from the NAS suite perform poorly as they have a

large number of non-unit stride references. Similarly, adrrr

and dyfesm show low hit rates since a high percentage of the

references made by these programs reference data via array

indirection (scatter/gather). Surprisingly cgm exhibits good

stream performance even though it is a sparse matrix program

that has a significant number of array indirection.

How good are hit rates in the 50% -80% range? Values of

local hit rates for second level caches are in the 70% - 85%

range [9] for “typical” applications. Also, for scientific codes

this number may often be lower due to the lack of temporal

locality in these codes. Hence, the fact that streams achieve

comparable, though perhaps slightly lower, hit rates suggests

their use as a viable and cost-effective alternative to huge

second level caches. (We do more comparison with caches in

section 8.)

Compared to secondary caches, streams require more mem-

ory bandwidth. This is because the unnecessary prefetches

made by streams consume memory bandwidth. If NUP rep-

resents the number of useless prefetches, NC the number of

cache misses, and iVS the number of stream misses then the

extra bandwidth (EB) can be quantified as follows:

EB = NUP/ NC

= (NS * depth)/ NC

= stream miss ratio* depth

By a stream miss we mean a cache miss that allso misses in

the streams. Whenever a stream is re-allocated, it could have

up to depth prefetches that have to be flushed Hence, the

total number of useless prefetches will be the product of the

number of stream allocations (this is equal to the number of

misses since a stream is allocated on every miss) and depth.
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Figure 3: Stream buffer performance of the benchmarks

This figure shows how the hh rate varies with the number of streams. Here hk rate is the fraction of on-chip misses that hit in the streams. Using multiple streams

helps in locking on to interleaved streams of data.

P
NAS

~

embar 8

cgm 30

mgrid 36

fflpde 158

is 48

appsp 134

appbt 62

applu 38

PERFECT

spec77 44

adm

bdna

dyfesm

mdg

qcd

ted

150

68

108

76

74

96

Table 2: Extra Bandwidth consumed by ordinary streams

This figure shows the amount of memory bandwidth wasted by ordinary

streams as a percentage of the actual memory bandwidth required by the

program in the absence of streams. This wastage is due to the speculative

nature of the prefetching scheme.

Table 2 shows the extra bandwidth required by streams. From

the table it is clear that ordinary streams, depending on the

program, could waste a lot of memory bandwidth. This is

especially true for programs for which streams do not perform

well (low hit rates). For example, for t~d the extra bandwidth

required is as high as 96Y0. Since memory bandwidth is not

free it is desirable to reduce the amount of extra bandwidth

required by streams. Also, it would be nice if we could do this

with at most a slight reduction in hit rate. The next section

describes a technique for doing this.

6 Reducing the Memory Bandwidth

Requirements of Stream Buffers

To reduce wasted bandwidth we have to avoid useless

prefetches (i.e. we have to prefetch with greater accuracy

[16]). One way to avoid unnecessary prefetches is to allocate

a stream only when a particular reference shows promise of

belonging to a stream. The scheme we use to reduce memory

bandwidth wastage filters away isolated references and does

not present them to the stream buffers. This can be done using

the following allocation policy for streams - a stream is allo-

cated when there are misses (note that a miss here means the

reference missed both in the primary cache and the streams)

to consecutive cache blocks. For example, if there is a miss

on a reference to cache block i and then there is a miss on

reference to cache block i + 1, only then will a stream be

allocated for prefetching cache blocks i + 2, i + 3, and so on.

A reference is considered to be isolated if there is no reference

to the preceding cache block in the “recent” past.

continue enter into table
A A

On-chip
miss

I

I

Unit-stride filte~

Figure 4: Filter mechanism

stream

This policy can be implemented as follows: maintain a

list of the N most recent miss addresses in a history buffer,



but store a + 1 for miss address a. For every primary cache

miss that also misses in the stream buffers, the miss address

is compared with the addresses stored in the history buffer.

If there is a hit, this means that there were two references

a and a + 1 and there is a good possibility that there will

be a reference to a + 2 and so on. In this case a stream is

allocated. However, if the miss address doesn’t match in the

history buffer, then a + 1 is stored in the history buffer. (Since

the history buffer is not infinite, the new entry might cause an

old entry to be replaced.)

We call this history buffer afilter. N is the number of entries

in the filter. It helps in filtering away isolated references. Our

experimental results suggest that a filter of eight to ten entries

is sufficient. Also, an entry in the filter need not be allocated

for the entire duration of a stream; it is freed as soon as the

stream is detected. Figure 4 illustrates the scheme.

The above scheme helps in two ways. It reduces the number

of unnecessary prefetches and it prevents active streams from

being disturbed. However, the total number of hits could be

reduced, since now we allocate a stream only after observing

the second reference of a stream of accesses.

We can calculate the extra memory bandwidth required

with a filter as we did when the filter was not present. For

a filter-based stream buffer, we allocate a stream only when

the miss address matches in the filter. Hence, in this case the

extra bandwidth (EB) required is

EB = NUP/ NC

= (NS * filter hit ratio* depth)/ NC

= stream miss ratio * filter hit ratio* depth

In this case a stream is allocated only when a reference misses

both in the primary cache and the streams and hits in the filter.

This explains the factor j alter hit ratio in the number of

useless prefetches. The above expressions show that there

is a trade-off between filter hit rate (but perhaps not stream

buffer hit rate !) and the extra memory bandwidth required by

streams.

6.1 Hit rates for filter-based unit stride streams

We studied how a filter affects the performance of stream

buffers. We used ten streams for the experiments reported

in the rest of this paper. Figure 5 shows how hit rate and

EB, the extra bandwidth required, vary with the addition of a

filter. For most of the benchmarks the filter was very effective

in reducing EB; often the reduction is more than 50%. For

example, the t~d hit rate remains almost the same while EB

falls from 96% to 11 %. In this case the filter is very successful

at eliminating isolated references. Similarly, for is, appsp and

cgm EB falls from 489Z0 to 7%, 134’%. to 6~0, rmd 30% to 13%

respectively with almost no reduction in hit rate. In the case

of ~de the filter actually increased hit rate by preventing

Benchmark Len@h distribution (% h[its)

I 1-5 I 6-;0 I 11-15 I 1;-20 ~

NAS

embar 110 0 OT-E
mgrid

cgm

fftpde

is

appsp

appbt

13

3

41

4

5

63

1

0
0
2

0
0

0
0
0
1

11

0

0
0
0
0
0
0

86

97

59

93

84

37

applu 22 3 4
TM

PERFECT

spec77 1411 1

adm

bdntt

dyfesm

mdg

qcd

trfd

73

36

50
32
50
7

12

17

17

9
6
2 L

5

8

7

7

1

1

0
1

5
1

6
0
0

84

9

33

25

46

43

90

Table 3: Distribution of stream lengths

Thk figure shows how the stream lengths are dkibuted. Note that this

dkibution depends on the number of streams being usecl. We used ten

streams for these experiments.

active streams from being disturbed, and EB also fell from

158% to 379Z0. On the other hand, for appbt, hit rate drops

from 65% to 45% and EB falls only from 62% to 48%. This

indicates that the filter may not be optimal for all applications,

depending on the available memory bandwidth in relation to

the processor demands.

These variations in hit rates can be explained by looking at

how the stream lengths are distributed. By stream length, we

mean the number of references after which the regular pattern

of accesses is broken. Stream length distributions are shown

in Table 3. For most benchmarks stream lengths of less than

5 and greater than 20 constitute a major fraction of the hits.

The programs that have a large concentration of small stream

lengths show a greater reduction in hit rate when the filter is

used. This is obvious since the filter requires two references

for verifying a unit-stride pattern of accesses. For example,

in the case of appbt the fact that 639Z0 of the hits are from

stream lengths of less than 5 explains why the filter reduces

the hit rate from 65 YOto 45%.

From the above results we conclude that a filter may often

be a good idea, since in most cases it reduces the memory

bandwidth requirement of streams for a small or negligible

performance hit. At the same time if the program’s memory

bandwidth requirement is not high and the melmory system

is capable of supplying the extra bandwidth, the filter should

be deactivated, since the stream buffer hit rate typically falls

slightly with the filter.
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Figure 5: Performance of filter

This figure displays how the filter affects stream performance, The top graph shows the stream hit rate with and without the filter. The bottom graph represents

the extra bandwidth required in each case. For this data we used ten streams and a filter of sixteen entries.

7 Detecting non-unit strides

A closer look at the benchmarks revealed that some of them,

appsp,jlpde, and t~d contain significant percentages of large

non-unit stride memory accesses. Streams, as proposed @

Jouppi, are of little use in prefetching cache blocks being

accessed in large non-unit strides. In this section we show

ways to extend the original streams to detect non-unit strides.

Detecting non-unit strides off-chip is harder than detecting

them on-chip. Once off-chip the only information one has are

the physical addresses of the data references. For instance,

Baer and Chen [1] use the reference prediction table with an

entry for each loadktore instruction for calculating strides.

But since off-chip logic almost always does not know the the

PC of the instruction that issued the reference, it is difficult to

maintain a similar table off-chip.

We instead extend the basic stream buffer structure for

prefetching cache blocks being accessed in non-unit stride. A

stride field is added to maintain the prefetch stride. Also, the

incremented is replaced by a general adder (see Figure 2).

The basic idea behind our non-unit stride detection scheme

is to dynamically partition the physical address space and de-

tect strided references within each partition. Two references

are within the same partition if their addresses have the same

tag (higher order) bits. The processor (i.e. program) sets

the size of the tag by storing a mask in a memory-mapped

location. A history buffer, shown in Figure 6, is used to store

the tags of the currently active partitions. We call this history

buffer a non-unit stride filter. Also, we use a finite state ma-

chine (FSM) to detect the stride for references that fall within

the same partition. The FSM we use is depicted in Figure 7.

It verifies that the difference between the third and the second

address is the same as the difference between the second and

the first address. If so, the off-chip logic allocates a stream

and sets its stride. Partitioning helps in grouping references

to an array and analyzing them in isolation to detect strides.

The details of the non-unit stride detection scheme follow.

We partition each word address into two parts: czone or the

concentration zone, the size of which is set at run-time, and

the tag. Each entry of the non-unit stride filter, in addition

to the tag of the partition, has a few state bits, last address

and stride fields which are required to implement the stride

detecting FSM. At the end of three consecutive strided refer-

ences a stream is allocated and the entry in the filter is freed.

To minimize the effects this scheme has on the scheme for

detecting the common case of unit-strides we use the non-unit
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Tag czone

Physical address

-’l
tag last addr stride atate

Non-unit stride filter

Figure 6: Scheme for detecting non-unit strides

stride filter behind the unit-stride filter (i.e the non-unit stride

filter processes references that miss in the unit-stride filter),

We considered other schemes to detect non-unit strides.

One that showed similar performance is what we call the

minimum delta scheme. Here, we cache the last N miss

addresses and maintain them in a history buffer. When an

on-chip miss occurs and it misses in the streams, we find the

minimum distance (or delta) between the address and arty of

the entries in the history buffer. The delta is then used as

a stride for the stream. The hardware requirements of this

scheme make it less attractive than the partition scheme.

7.1 Performance of non-unit stride detecting

scheme

Figure 8 shows how the partition scheme for detecting non-

unit stride streams performs. From the figure we can see that

last_addr = a
stride = a - last_addr
le$t_addr = a

stride = a-last_addr

stride == a-laat addr I
allocate stream

Figure 7: State Machine for detecting strides

This figure displays the finite state machine required to verify a non-unit

stride. The FSM is triggered by a on-chip miss. The state of the FSM

(srride, last~ddr) is stored in a filter entry. lastaddr stores the previous

miss address and stride stores the current guess for the stride. Note that some

of the transitions are conditional.

for&de, appsp and tfld, programs which have ii significant

number of non-unit stride references, our scheme does well.

For example, for &de the hit rate increases from Z6Y0 to

717.. Similarly for appsp and t~d the hit rate improves from

33% to 65% and 50% to 65%, respectively. Gains in other

benchmmks are minor.

Figure 9 shows how hit rate varies with the size of the

czone. It indicates that for flpde the size of the czone should

lie between 16 and 23 bits for the scheme to be effective.

However, for the other two benchmarks appsp and t~d, a large

value for the czone is sufficient to predict most of the non-

unit stride references. This shows that one has to be careful

in selecting the czone size; if the czone size is too small then

three consecutive strided references will not fall in the same

partition. On the other hand, if the czone is too large then

references from more than one stream may fall into the same

partition, and hence prevent stride detection. The optimal

size for the c.zone is (a little more than) twice the :stride of the

references. Since the size of the czone depends cm the stride
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Benchmark Input size Stream hit-rate (%) Mlnm. L2 cache size

for same hit-rate

appsp 12X12X12 43 128 KB
24X24X24 65 1 MB

appbt 12X12X12 50 512KB
24X24X24 52 2 MB

applu 12X12X12 62 1 MB

24X24X24 73 2 MB

cgm 1400 X 1400,78148 85 lMB

5600 X 5600,98148 51 64 KB

mgrid 32X32X32 76 2MB

64X64X64 88 4 MB

Table 4: Stream buffers versus secondary cache

This table shows how the performance of streams and secondary caches vary with the input size. We used ten streams, a unit-stride filter of sixteen entries backed

up by a non-unit stride filter of sixteen entries. For the secondary cache we considered associativities from one (direct-mapped) to four as well as block sizes of

64 and 128 bytes. Set Sampling[11] was used to determine the hit rate of secondary caches.
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Figure 9: Hit-rate sensitivity to czone size

Thk graph shows how stream hit rate varies with the size of the czone. Only

programs that contain significant percentage of non-unit stride references are

shown here. This data assumes ten streams.

and the array dimensions (in the case of multi-dimensional

array references), it is possible for the programmer or the

compiler to set it to a suitable value.

8 Comparison with second level caches

For five benchmarks, appsp, appbt, applu, cgm, and mgrid,

we compare how secondary cache performance and stream

buffer performance scale with the input size. In particular,

we determine the minimum size of the secondary cache re-

quired to obtain the same (local) hit rate as stream buffers.

For the secondary cache we considered associativities from

one (direct-mapped) to four as well as block sizes of 64 and

128 bytes. Our results, shown in Table 4, indicate that stream

buffers typically scale better than secondary caches. For ex-

ample, for applu, when the input size was increased, stream

hit rate improved from 62% to 73% while the minimum sec-

ondary cache size for achieving the same hh rate doubled

from lMB to 2MB. For all the benchmarks except cgm there

was very little temporal reuse and the cache size that had ap-

proximately the same miss ratio as streams is proportional to

the data set size. This emphasizes that as the data set size for

scientific programs increases, it maybe more cost-effective to

exploit the regular pattern in memory references rather than

to fit a large data set in a huge second level cache. The reason

for the anamolous behavior of cgm is that for the larger data

set the sparse matrix had a very irregular distribution of ele-

ments. This benchmark also shows where streams might not

perform well - programs that involve widely-scattered array

in-directions.

A caveat to the comparison of this section is that it isn’t en-

tirely fair to directly compare streams and caches via their hit

ratios since a stream buffer entry may have been prefetched

but the data hasn’t returned from memory yet. In our stream

results, we would call this a hit since the prefetch was correct,

but the performance of this case could possibly be more simi-

lar to a cache miss since the processor’s request for data must

wait until the streaming data returns from main memory. The

probability of this situation depends highly on the particular

memory system design. We feel that in many realistic system

designs the depth of the streams will be sufficient that most of

the time the stream data will immediately available, so the di-

rect comparison between hit rates is fair. We particularly feel

this is a balanced comparison since, depending on the system

design, stream buffer access time on hits may be lower than

the access time of a cache on hits because stream buffers do

not require a large RAM lookup.

9 Conclusions

In this paper we evaluated stream buffers for efficient memory

system design with scientific codes. We showed that stream
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buffers can achieve hit rates that are comparable to the (local)

hit rates of very large caches. We also presented schemes

for reducing the memory bandwidth requirement of stream

buffers. For the majority of the benchmarks we studied, a hit

rate of greater than 60% using only 3090 extra main memory

bandwidth was achieved using ten streams. However, they

did not perform as well for benchmarks that had a large num-

ber of irregular accesses (e.g. array indirection). We also

extended streams to prefetch cache blocks being referenced in

non-unit strides. For programs that have significant percent-

age of non-unit stride references our scheme is successful in

detecting them. We found that as the data set size of the sci-

entific codes increase, streams typically performed relatively

better than large secondary caches. Hence, we conclude that

stream buffers are a viable implementation option for regular

scientific workloads and systems with “sufficient” memory

bandwidth. We also conclude that stream buffers can be more

economical than large secondary caches for scientific codes:

the cost savings of stream buffers over large caches can be

applied to increase the main memory bandwidth, resulting in

a system with better overall performance.
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