
Efficient Superscalar Performance
Through Boosting

Michael D. Smith, Mark Horowitz, Monica S. Lam
Computer Systems Laboratory

Stanford University

Abstract

The foremost goal of superscalar processor design is to increase
performance through tie exploitation of instruction-level parallel-
ism (ILP). Previous studies have shown that speculative execution
is required for high instruction per cycle (IPC) rates in non-numer-
ical applications. The general trend has been toward supporting
speculative execution in complicated, dynamically-scheduled pro-
cessors. Performance, though, is more than just a high IPC rate; it
also depends upon instruction count and cycle time. Boosting is an
architectural technique that supports general speculative execution
in simpler, statically-scheduled processors. Boosting labels specu-
lative instructions with their control dependence information. This
Iabelling eliminates control dependence constraints on instruction
scheduling while still providing full dependence information to the
hardwere. We have incorporated boosting into a trace-based, glo-
bal scheduling algorithm that exploits ILP without adversely
affecting the instruction count of a program. We use this algorithm
and estimates of the boosting hardware involved to evaluate how
much speculative execution support is rerdly necessary to achieve
good performance. We find that a statically-scheduled superscalar
processor using a minimal implementation of boosting can easily
reach the performance of a much more complex dynamically-
schcduled superscalar processor.

1 Introduction

The RISC rcvohstion has driven processor design to the point
where scalar machines are able to maintain an execution rate of
nearly one instruction per cycle on non-numerical code. For com-
puter architects, the next step is obvious: drive the IPC above one
by executing multiple instructions per cycle. Multiple instruction
execution machines exploit instruction-level parallelism through
superscalat end/or superpipelined techniques. And es Jouppi and
Wall [16] point out, these techniques are equivalent in their ability
to exploit ILP. In non-numerical applications, the amount of ILP is
limited. Limit studies, studies which try to bound the amount of
exploitable ILP in applications, show that superscalar processors
must look beyond branch boundaries to exploit the available ILP in
non-numerical applications [22] [29]. These studies show that good
performance requires both a good instruction schedule and specu-

lative executioq the execution of instructions before it is known
for certain whether those instructions will be executed. What is not
known is how to best schedule instructions for a superscalar
machine that supports aggressive speculative execution and how

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ASPLOS V - 101921VfA,USA

9 1992 ACM 0-89791 -535-6 /92/0010 /0248 . ..$1 .50

much speculative execution support is necessary to achieve good
performance.

A growing perception is that dynamically-scheduled superscahir
processors are the only effective way to couple instruction sched-
uling and speculative execution [19]. This perception seems to be
supported in the commercial world assuperscalar implementations
move from dynamic dependence checking (e.g. the Sun Super-
SPARC [5]) toward more complex dynamic scheduling techniques
with support for speculative execution (e.g. the Motorola 88110
[5]). Yet, this hardware-intensive approach has a flutdarnental
problem: these machines analyze only a small window of irtstruc-
tions at a time and use simplistic heuristics for choosing among the
available instructions. Thus they are not guaranteed to generate a
good instruction schedule.

On the other hand, many compiler algorithms exist for the effec-
tive scheduling of instructions across branch boundaries (e.g.
[8][10] [20]). These techniques, which are referred to es global
scheduling techniques, have adventages over run-time instruction
scheduling because they are able to analyze a much larger portion
of the program at any time, and they can use sophisticated heuris-
tics to choose among the available instructions. These advantages
allow the compiler to optimize the schedule for the critical paths of
the program. While these compiler-based approaches have the ben-
efit of much simpler issue hardware, they have been limited in
their ability to use speculative execution. TO augment these global
scheduling algorithms, a number of researchers have proposed
architectural techniques (e.g. guarding [14] and non-excepting
instructions [6] [7]) which extend, but still limit, the compiler’s
ability to schedule instructions for speculative execution.

Recently we proposed a general architectural mechanism called
boosting that provides the compiler with art unconstrained model
of speculative execution [23]. That paper discusses the ideas that
lead to the concept of boosting, and it contains a preliminary
experiment to justify further research. Since then, we have con-
structed a complete compiler system and a working hardwere
model to better understand the capabilities and costs of boosting.
Section 2 reviews speculative execution and the concept of boost-
ing. Section 3 describes the global scheduling algorithm used in
our compiler system. Boosting is supported by mechanisms in the
hardware, and these mechanisms can be complex in the general
case.By varying the hardware constraints on the instruction sched-
uler, we can answer the question of how much speculative execu-
tion support is really necessary for good performance. Section 4
dkcusses the hardware and scheduling implications that result
from different boosting constraints. Performance comparisons
show that good performance is achievable with only a minimal
amount of hardware support for speculative execution and no hard-
ware support for instruction scheduling.

248

2 Speculative Execution

Speculative execution is necessary because a conditional branch
imposes a control dependence upon the instructions that occur
after the branch. For example, the instructions in the THEN and
ELSE portions of an IF statement are control dependent upon the
IF condition because we cannot determine whether the THEN or
the ELSE instructions should be executed until the condition in the
IF is executed. Speculative execution allows for the THEN instruc-
tions or the ELSE instructions (or both) to be moved above and
executed before the execution of the condhion.

The movement of en instruction above its control dependent
branch results in one of four types of speculative execution. The
next subsection enumerates these different cases, and it briefly
explains what mechanisms are necessary to support the movement
of any instruction above its control dependent branch. Using this
description, the second subsection reviews two of the more popular
architectural approaches to overcome control dependence con-
straints. The last subsection explains how boosting is different
from these previous approaches, and how boosting is able to sup-
port any speculative movement.

2.1 Achieving Safe Speculative Execution

Speculative movemeng the straightforward movement of an
instruction from btdow to above its control dependent branch, does
not always maintain program semantics. Even if we assume that
the movement preserves operand availability of the moving
instructio~ the speculative execution of this operation can stiII vio-
late program semantics in two ways. The combination of these two
possible violations results in the four types of speculative execu-
tion which are illustrated in Figure 1.

aa
(a) safeandlegal (b) itlegal

aa
(c)unsafe (d) unsafeandiLtegal

Figure 1: Types of speculative execution.

For a speculative operation, a branch can be either correctly pre-
dicted or incorrectly predicted. A branch is said to be correctly pre-
dicted for a speculative operation if the block from which the
speculative operation was moved is executed after the branch is
executed otherwise, the branch is said to be incorrectly predicted.
A speculative operation is said to be illegal if that operation over-
writes a location whose previous value is needed by some instruc-
tion when the branch is incorrectly predicted; this speculative
movement can be thought of as breakiig an existing true data
dependence constraint along the incorrectly-predicted path of the
branch. Figure lb is an example of an illegal speculative operation.
A speculative operation is said to be unsafe if that operation can
cause an exception to occur; thk exception should only occur if the
branch is correctly predicted. Figure lC is an example of an unsafe

speculative operation since the load operation can cause an
addressing exception. A speculative operation can obviously be
both unsafe and illegal as in Figure ld.

To preserve program semantics, a speculative movement should
only result in speculative execution that is safe and legal. This
requirement constrains the code motions available to static global
schedtdiig techniques. A compiler may overcome some specula-
tive movements that are illegal by renaming the destination regis-
ter of a speculative operation so that it does not conflict with the set
of registers that are needed (i.e. the set of registers that are live) on
the incorrectly-predicted path of the branch. This renaming may
require extra instructions later to select between multiple reaching
values. Register renaming does not overcome speculative move-
ments that are illegal due to a dependence through memory. Fur-
thermore, a compiler can never transform an unsafe speculative
movement into safe speculative execution, and thus a compiler
alone cannot support the general movement of instructions above
their control dependent branch.

There are numerous hardware techniques that allow dynamic
schedulers to safely move any insmtction above its control depen-
dent branch [15][21]. The basis of all these tectilques is the inclu-
sion of extra buffering in the hardwere which holds the effects of
the speculative operational. The sequential stafe of the machme is
defined as that machine state that is not a result of any speculative
operation, and conversely, the speculative state of the machme is
defined as the machine state that is a result of speculative opera-
tions. The extra buffering separates the sequential and speculative
states, and it postpones the speculative side effects (e.g. specula-
tive exceptions) until the branch(es) is resolved. If all branches that
a speculative instruction depends on are correctly predicted, hard-
ware mechanisms must correctly update the sequential state of the
machine with the speculative effects of that instruction. We refer to
the updating of the sequential state as a cornrnit of the speculative
effects. If any dependent branch for a speculative instruction is
incorrectly predicted, the machine simply dkcrtrds the speculative
state and side effects for that operation. We refer to the action of
throwing away the speculative effects as a squash or nullifi opera-
tion.

2.2 Existing Architectural Approaches

To extract the most ILP horn a program, we need to incorporate
the sophisticated scheduling ability of the pure compiler
approaches with the unconstrained speculative execution of the
pure hardware approaches. To accomplish thk goal, we require an
architectural technique that removes the control dependence con-
straints on static instruction scheduling. Guarded instruction archl-
tectures [14] and non-excepting instruction architectures [6][7] are
the most widely accepted of these architectural techniques.

Guarded instruction architectures predicate a control dependent
operation with its dependent branch condition. If the predicate
evaluates to true, the effect of the operation is committed, if the
predicate evaluates to false, the effect is squashed. The guarding
predicates can be quite complex and can encode the control depen-
dence information for multiple branches. Guarding also allows for
the possible elimination of branch instructions. Another advantage
of this technique is that the required speculative state is very small,
and is held in the pipeliie bypass registers that are already in the
machine. The problem with guarding, however, is that the schedul-

1. In someof the proposals, the hardware buffering actually backs up the state that
was displaced by the speculative operations. Thrse schemes must ensure that the cor-
xect state is rebuitt on an incorrect prediction. These schemes do not postpone excep-
tion processing, and thus are. not discussed fuxther,

249

ing of guarded operations is constrained by the availability of the
dependent branch condition.

Non-excepting instruction architectures rely on hardware mecha-
nisms to handle unsafe speculative movements and on software
renaming to handle illegal speculative movements. Non-excepting
instruction architectures label unsafe speculative movements as
non-excepting instructions. The semantics of a non-excepting
instruction is that this instruction never signals an exception. If it
causes an exception, it simply generates a polluted result. Eventu-
ally, some later (regular) instruction may try to use this polluted
value, and it is at this time that the exception is signalled. In this
way, non-excepting instruction architectures can detect exceptions
on speculative operations. These polluted values are often implem-
ented by building a tagged-data architecture. By carrying the
address of the “excepting” non-excepting operation in the data
field of the polluted operand these architectures cart indicate
which instruction originally caused the exception.

A complexity iriherent to any architecture that postpones the sig-
naling of an exception involves the restart of the program after the
handling of the postponed exception. The exception handler must
be able to determine which instructions between the excepting
point and the signaling point need to be re-executed (i.e. which
instructions are dependent upon the original excepting operation).
Also, the compiler or hardware must guarantee that all of the oper-
ands for these re-executed instructions are still available. In summ-
ary, non-excepting architectures rely on software renaming to
overcome some illegal speculative movements and on hardware
mechanisms to overcome unsafe. speculative movements. For
unsafe speculative movements, the hardware completely removes
the control dependence constraints on static scheduling, but the
movement of the operations is still limited by the capability of the
exception handling mechanism.

2.3 Boosting

Boosting is an architectural mechanism that provides the compiler
with an unconstrained model of speculative execution. Boosting an
operation removes all the control dependence constraints that
inhibit the movement of that operation. In contrast to a non-except-
ing architecture, a boosting architecture includes hardware buffer-
ing to convert both unsafe and illegal speculative movements into
safe and legal speculative execution. Furthermore, boosting
cleanly handles all aspects of exception handling by providing a
precise exception mechanism for all operations.

Only the hardware can efficiently buffer all effects of a speculative
operation (including those side effects that would cause unsafe
speculative execution), and only the hardwares can efficiently
monitor the dynamic state of the conditional branch. Boosting
requires that the hardware provide these features so the compiler
can rely on the hardware to ensure that the semantics of the pro-
gram is not violated during speculative execution. In order for the
boosting hardware to correctly maintain the program semantics,
the compiler must cmnrnunicate its assumptions to the hardware.
Thus, whenever the compiler moves an instruction above a control
dependent branch, the compiler may label this instruction as a
boosted instruction. This Iabelling encodes the control dependence
information needed by the hardware so that the hardware can
determine when the effects of the boosted instruction are no longer
speculative. The labelling indicates which branch or branches the

2. This roblem becomes even more ditlicutt when tie path between the exceptins
fpoint an the slgnatlmg pourt IS dynaaricatty determined.

boosted instruction is control dependent uporL and the labelling
indicates the predicted direction of each of these branches.

A speculative instruction that is moved above n control dependent
branches is referred to as an instruction that is boosted n levels.
The instruction iz in Figure 2 is an example of an instruction that is
boosted two levels; this is indicated by adding a “.BRR” suffix to
the instruction destination. A labelling of “.BRR” indicates that the
instruction is dependent upon the next two branches going RIGHT.
In this example, the number of Rs or Ls that follow the B indicate
the level of boosting while each R (RIGHT) or L (LEFT) indicates
the direction of the dependent branch. In general, an independent
branch can be included in the sequence by inserting an X (DON’T
CARE). A boosting suffix on a destination register implies that a
future value has been generated for that register. A boosting suffix
on the destination of a memory store operation implies that a future
value has been generated for that memory location. In general, a
boosting suffix names a readable and writable location for future
values, and thus the sources of a boosted instruction may also have
beosting level suffixes as in the base register of instruction i2

Even though the effects of a boosted instruction are accessible by
other instructions boosted along a path, speculative effects do not
update the sequential state until after the execution of the last
branch upon which the instruction depends. In other words, the
result of instruction il in Figure 2 is accessible to instruction i2, but
the result returned by the load instruction is not committed to the
sequential state (i.e. the value in r4.BRR is not accessible by the
name r4) unless both branches in Figure 2 are correctly predicted.
If either branch is incorrectly predicted, the effects of the load
operation are prevented from affecting the sequential state. With
these semantics, the effects (including the side effects) of the
boosted operations only affect the sequential state if the flow of
control would have executed those instructions anyway. In terms
of the types of speculative execution discussed in Figure 1, lmost-
ing effectively renames registers (rl .BR is different from r 1) so
that speculative movements that would have been illegal are now
legal, and boosting postpones all side effects so that speculative
movements that would have been unsafe are now safe. The details
of how exceptions are handled are given later in this section.

CAT:~
4 rl.BR = r2 & r3 ;~K&

)

*
i2 r4.BRR=loa~:4(rl.t3R)

$“!

w

$
i3 r2 = rl ... i rl=r2&!3

‘$%

rwk

,.,

~.r4= load 4(rl)

Figure 2: Boosting example.

The most general form of boosting requires hardware exponential
in the boosting level, since speculative state is needed for each
prssible branch prediction path. To limit the hardware to a more
reasonable level, we only boost instructions that are speculative on
the most-frequently taken direction of a branch (this restriction is
used throughout the rest of the paper). Since boosting now applies
to the most-frequently taken direction of each branch, the branch
instructions can encode the prediction information (i.e. taken or
not taken), and each boosted instruction can simply indicate that it
is dependent upon the next n conditional branches (e.g. the label-
ling of the destination register of instruction i2 in Figure 2 is sim-

250

plified from “.BRR” to “.B2”). To simplify matters further, once an
instruction is boosted to indicate dependence upon a conditional
branch, that boosted instruction is assumedto be control dependent
upon all subsequent branches it is moved above. By encoding the
boosting level as a count of the number of these control dependent
branches, the hardware can reconstruct the control dependence
information. That is, a boosted instruction of level n is control
dependent upon the execution of the next n conditional branches,
and this boosted instruction is committed only if all of the next n

conditional branches are correctly predicted. This constraint makes
the boosting information easier to encode, and the hardware simp-
ler to build, The actual hardware mechanisms that support these
trace-based boosting semantics are discussed in Section 4, and the
viability of this simplification is discussed in Section 5.

Before leaving the topic of boosting, we briefly describe the han-
dling of exceptions on boosted operations. The key to our excep-
tion handling is the realization that, though the hardware can
efficiently postpone exception processing, only the compiler can
efficiently determine which instructions to re-execute. In boosting,
all speculative exceptions are postponed until the commit point so
that no extraneous exceptions are signalled. This postponing is
handled through a one-bh shift buffer where each location in the
shift buffer corresponds to a level of boosting. If a boosted instrtrc-
tion of level n excepts, the hardware sets the appropriate bit in this
buffer and discards the exception signal. On an incorrectly-pre-
dicted branch, the buffer is cleared, and all the speculative excep-
tions are ignored. On a correct prediction, the buffer is shifted and
the out-shifted bit is checked. If the blt indicates that no boosted
exceptions occurred, the speculative state is committed. If, on the
other hand, a boosted exception occurred, the hardware discards
the speculative state and invokes a boosted exception handler. This
exception handler was constructed by the compiler and lives in
user space.The handler uscs the address of the committing branch
to index into a jump table so that it can vector to a copy of the
boosted code (the recovery code) that is dependent upon the com-
mitting branch. This jump table and recovery code were also gen-
erated by the compiler. In this way, the machine regenerates the
“speculative” state, except this time, the exception will occur on a
sequential instruction (remember that the branch was correctly pre-
dicted). Thk exception is a normal sequential exceptiou and it can
be handled precisely. The recovety code ends in a unconditional
jump back to the predicted target of the committing branch. The
cost of this solution is an increase in the size of the object file (less
than a two-times growth), and an approximate 10-cycle overhead
in exception processing time caused by the boosted exception han-
dler, Both of these overheads are quite acceptable since most
exception processing routines occur infrequently, and when they
do occur, they run for a long time. A more in-depth discussion of
boosted exception handling can be found in Smith [25].

Boosting provides the compiler with a clean and unconstrained
model of speculative execution. Boosted instructions are free to
move far above their dependent branches, and boosting makes
exception handling simple and precise. The tradeoff is between
different types of hardware complexity (e.g. our renameable buffer
space versus the tagged data architecture of the non-excepting
instruction architectures).

3 Global Instruction Scheduling

Global scheduling algorithms, such as Trace Scheduling [10] and
Percolation Scheduling [20], define a framework within which a
compiler can perform code motions acrossbasic block boundaries.
This section begins with a discussion of the existing globaf sched-
uling algorithms, and explains the tradeoffs involved in construct-

ing a scheduler. The basic issues that need to be resolved are
determining what instructions are available to schedule, and how
much freedom the algorithm has to generate the schedule. After
reviewing previous work we describe our global scheduling algo-
rithm, which is optimized for the scheduling non-numerical codes
on modest superscalar machines.

3.1 Background

Global instruction scheduling grew out of the work done on local
microcode compaction techniques of the 1970s rind early 1980s
(see [27] for a comprehensive reference list). The early attempts at
global scheduling understood the basic rules for code motion
between basic blocks, and they optimized a program by repeatedly
moving instructions between dynamically adjacent basic blocks to
improve the local schedules. The culmination of these iterative,
“neighborhood” scheduling rdgorithms is Percolation Scheduling
[20] which describes a complete set of semantics-preserving trans-
formations for moving any operation between adjacent blocks.

The next step taken by global scheduling researchers was to extend
the “neighborhood” to include conditional pairs [27] (also called
equivaleti basic blocks [2]). Two basic blocks are equivalent if and
only if the execution of one block implies the execution of the
other block; equivalence is simply a combination of the rrwve-op
and unification transformations of Percolation Scheduling for con-
trol-independent basic blocks. We refer to these types of algo-
rithms as “neighbor and peer” scheduling algorithms. Tokoro [27]
dkcusses some early versions of iterative “neighbor and peer”
scheduling. Region Scheduling [13] is another iterative “neighbor
and peer” scheduling algorithm that uses a program dependence
graph [9] to determine equivalent basic blocks. All of these algo-
rithms repeatedly apply transformations using a “local” policy.
This type of incremental scheme does not always lead to a good
global schedule.

More recent work has focused on implementing a global instruc-
tion scheduler that uses a global policy during instruction schedul-
ing. A global schedule must first find a set of ready instructions.
These rue instructions where all their data-dependent predecessor
instructions have been scheduled and their latencies fulfilled. To
generate thk pool of instructions, the scheduler finds the instruc-
tions that are available for scheduling at a point in the control flow
graph (CFG) by determining if there is some set of global transfor-
mations which result in a ready irrstance of this instruction. At
every point in the generation of an irtstruction schedule, the sched-
ulers first find the available instructions, then use heuristics to
choose which of the available instructions will produce the best
schedule, and finally invoke the global transformations to safely
move the requested instructions to the current scheduling point.
The key difference between schedulers is how the available
instruction set is generated, and the types of global transformation
used.

Bernstein and Rodeh [2] describe a scheduling algorithm that
looks in “neighbor and peer” basic blocks for available instruc-
tions. “Neighbor and peer” basic blocks are only a small set of the
blocks from which instructions are available, and thus, this deci-
sion greatly limits the size of the available set. The calculation of
available instructions is further constrained by the use of weak
transformation rules, For example, Figure 3 contains part of a CFG
in which blocks A and D are equivalent. Let us assume that the
machine architecture in this figure uses a delayed branching
scheme. Under their definition of availability (called M-ready [3]),
instruction iq is not available for scheduling in the delay slot of the
branch at the end of basic block A until instruction i3 in block B is
scheduled. Yet, it is possible to schedule instruction i4 in block A

251

by placing a copy of the instruction at the end of the unscheduled
block B. If the path ACD is executed more frequently than the path
ABD, we definitely want to perform thk code motion. Even
though instruction i~ is executed twice along the path ABD, we
have not lengthened the execution time of that path (the delay slot
cycle exists whether the scheduler fills it or not), and we have
shortened the execution time of ACD (the more frequent path).

B i3: x=3

Figure 3: Availability example.

Trace Scheduling [10] was the first attempt at an instruction sched-
uler with a more global calculation of availability. Trace Schedul-
ing uses probabilities to select a trace of basic blocks. From this
trace, a directed acyclic graph (DAG) is built which contains all of
the necessary constraints on code motion within the trace. Thk
DAG includes extra constraint edges to indicate the limitations of
the global transformations. The algorithm then schedules this DAG
as if the trace was one large basic block. The calculation of avail-
ability is simply a calculation of readiness within the DAG of the
trace. Because of the trace, Trace Schedtdiig looks well beyond
“neighbor and peer” blocks for available instructions. Still, the cal-
culation of availability in Trace Scheduling is limited by “tunnel
vision”. Instructions are available only from basic blocks on the
most probable trace and not from all possible successorpaths. Fur-
thermore, a trace ends when it reaches a back edge or an already
scheduled block; in other words, Trace Scheduling does not imple-
ment the movement of instructions between traces.

Though the code transformations in Trace Scheduling are powerful
enough to completely determine all the available instructions
within a trace, they ignore information that is important in creating
space ~d time efficient code after a glob~ code motion. For
instance, to maintain semantic correctness, the movement of
instruction i4 in Figure 3 from block D to block A along the trace
ACD requires a copy of that instruction to be placed at the end of
block B, but the same movement of instruction i5 does not require
a copy. The transformation rules in Trace Scheduling create copies
for both movements. By focusing only on the trace, this algorithm
does not take into account the cost of the transformations on the off
trace paths. This cost can be significant for applications where
there is more than one important trace. The insertion of compensa-
tion code to maintain semantic correctness in the face of global
code motions is referred to as bookkeeping. Gross and Ward [12]
describe some modifications to Trace Scheduling to improve the
transformations and optimize the compensation code, but the gen-
eral algorithm still does not consider the cost of compensation
code on the off-traces during the scheduling of the main &ace.

The IMPACT compiler [6] also uses the concept of traces to obtain
a scheduling algorithm with a more global calculation of availabil-
ity. In the IMPACT work, a trace of basic blocks is converted into a

superblock by code duplication. A superblock is a block of code
with a single entry at the top of the block and one or more exits
throughout the block. The single entry point ensures that upward
code motions in the superblock never require compensation.
Though this approach eliminates the determination of whether
duplication is required during the scheduling of a supcrblock, the
schedules that are not part of the most-probable superblock are
inefficient because all possible code duplications are made before
any scheduling takes place (i.e. an instruction is duplicated inde-
pendent of whether or not it is later moved). Like the original
Trace Scheduling algorithm, IMPACT does not worry about the
cost of compensation on the less-likely traces.

Ebciojjlu and Nlcolau [8] dkcuss an approach to instruction sched-
uling called Percolation Scheduling with resources (PSr) that is
more global than Trace Scheduling in its calculation of available
instructions. In PSr, the available instructions (called the r.mijable-

ops) for a basic block are calculated from all successor blocks on
all paths from the current basic block (a path stops when it reaches
a back edge in the CFG). That is, PSr computes availability as a
dataflow calculation on a CFG with its back edges removed. PSr
uses the Percolation Scheduling rules to determine availability and
to transform the code after the scheduling of an operation. Like
Trace Scheduling, PSr was developed for VLIW machines with a
large number of resources, and it seems that the routines to trans-
form the code after scheduling were developed only with concern
for correctness and not with concern for efficiency.

3.2 Our Algorithm

Most of the existing algorithms were developed for VLIW
machines where resources are abundant, and thus efficient com-
pensation code is a secondary concern. Or, they were developed
for the scheduling of numerical applications where traces are
extremely predictable, and thus again, efficient compensation code
is a secondary concern. In contrast, the goal of our global schedul-
ing algorithm is to produce good schedules for non-numerical
applications running on strperscalar machines with limit~
resources. This domain requires’ an algorithm which is based on
powerful and efficient transfonnations, and it requires an algo-
rithm whose heuristics limit the penalties imposed on the less-
Iikely traces.

Section 3.2.1 reviews the top-level scheduling process for the first
implementation of our algorithm. This implementation uses traces
as our global view of the program structure. We found that most
conditional branches in non-numerical code are predictable (see
Table 1 on page 9 and Chang et al. [6]), and therefore, traces are a
good, first approximation of the entire availability set. Unlike the
original Trace Scheduling algorithm though, we maintain the con-
cept of basic blocks within the trace so that can tightly control the
scheduling process and lirnh the penalties imposed on the less-
likely traces.

Our global scheduling algorithm relies on transformations which
implement only upward code motion-the motion of imtruction5
against the direction of the edges in the CFG. Section 3.2.2 over-
views the implementation of our upward code motion algorithm.
This algorithm inserts compensation code to maintain semantic
correctness during upward code motion. Since boosting augments
the capabilities of this algorithm, our bookkeeping process not
only includes the duplication of instructions, but also the boosting
(i.e. speculative marking) of instructions, Finally, this subsection
discusses the use of Iiveness and equivalence information to
improve the efficiency of the compensation code produced by
upward code motion algorithm.

252

3.2.1 ATrace-Scheduling Framework

Figure 4 contains an outline of our global scheduling algorithm. At
theoutennost level, the algorithm schedules one procedure at a
time, Within each procedure, scheduling proceeds from innermost
to outermost regions, where a region is either a loop or the proce-
dure body. The algoritlun does not perform code motions across a
region boundary; traces areconstrained toremain within a region.
Traces are selected and scheduled within a region until no
unscheduled traces exist. At this poin~ the region is collapsed, and
its data-flow information is summarized so that code motions can
occur around this inner region.

foreach PROCEDURE (
generate CFG and compute global data-flow info;

foreach REGION (innermost loop out to procedure level){
while (exists unscheduled TRACE) {

select next best TRACE;
foreach BB in TRACE {

list schedule BB;
fill in the holes through upward code motion;

,}

~ollapse REGION;

}
)

Figure 4: Overview of our global scheduling algorithm.

Trace selection proceeds through a region in a topological order.
The next unscheduled basic block is choosen as the start of the new
trace. A trace is grown from this basic block using branch proba-
bilities until one of four conditions is mec the next block is not in
the current region (e.g. a call); the next basic block is dynamically
determined (e.g. an irtdnect jump); the next basic block is already
in the trace (e.g. a loop edge); or the next basic block is already
scheduled. For the last two conditions, the trace is extended one
more basic block to mitigate the usual lack of scheduling looka-
head associated with the end of a trace. During the construction of
the trace, two data structures are built. One is a simple data depen-
dence graph of all the instructions in the trace, and the other cap-
tures the control dependence and off-trace data dependence
information needed by the upward code motion routine.

Whhin each trace, a list scheduling algorithm is used to top-down,
cycle schedule each basic block. By viewing a trace as a collection
of basic blocks, we cm tightly control the scheduling process. This
tight control exists for two reasons. First, we are scheduling for
superscalar machine models with small amounts of parallel
resources; we do not have a lot of spare resources to handle exces-
sive compensation code. Second the traces in non-numerical
applications are not as obvious as they are in numerical code, and
we do not want to penalize the off-trace paths with excessive com-
pensation code. Consequently, the list scheduling algorithm gives
priority to those instructions that originally lived in the current
basic block3, and the instructions are not allowed to move down
out of the current basic block, The list scheduler tries to fill in the
empty slots in the current basic block schedule with instructions
from basic blocks later in the trace. In this way, a basic block
schedule is never lengthened by a globrd code motion; global code
motions only occur to fill empty instruction slots. Our scheduler
may not produce as good a schedule as Fisher’s Trace Scheduling
algorithm would produce for a very probable trace, but our sched-
uler never lengthens an off-trace schedule.

3. There is a whole set of heuristics that further prioritize the ready instructions, but
they are uninteresting to this discussion.

The calculation of available instructions is extremely simple in our
current algorithm. To the list scheduler, the data dependence graph
for the trace looks just like a DAG for a basic block, and thus a
ready instruction in the data dependence graph is an available
instruction, Because boosting supports general speculative execu-
tion, our available set is larger than the available set for Trace
Scheduling. No edges are added to our data dependence graph to
enforce control dependence constraints. Our algorithm only adds
edges to the data dependence graph to maintain the original order
of the branches. This ordering is imposed to minimize the potential
for code explosion during scheduling.

Currently, our algorithm separates instruction scheduling and reg-
ister allocation. Though a number of techniques exist for handling
the interaction between register allocation and instruction schedul-
ing [4] [11], we only perform instruction scheduling after register
allocation. This means that scheduling is constrained by anti- and
output dependence created by the register allocator, and we try to
miniiize these dependence by using a round-robin register allo-
cator. Our scheduler is capable of scheduling instructions for an
infinite register model. In thk way, we can bound the performance
of an integrated register allocator and instruction scheduler.

3.2.2 Upward Code Motion

Bookkeeping is done during our upward code motion routine. All
instructions (except branches)4 are allowed to move upward across
multiple basic block boundaries. Our algorithm for upward code
motion follows three basic rules:

(1) a rule for intra-block motion,

(2) a rule for motion out of the top of a block and

(3) a rule for motion into the bottom of a block.

The rule for intra-block motion simply involves the movement of
an instruction over earlier instructions in the basic block. This
motion is inhibited by earlier instructions which impose data
dependence upon the instruction being moved. For instance, we
cannot move an instruction above the availability of its operands.
If we assume that all preceding, data dependent instructions have
already been moved up by the application of the code motion rules,
then the current instruction is free to flow up to the top of the basic
block.

Once an instruction is at the top of the block, it is free to move to
the bottom of the preceding blocks. A copy of the instruction must
be placed at the end of each preceding basic block so that the
instruction executes on every path that reaches the current basic
block. Thus, the motion of an instruction out of the top of a block
can require duplication. To ensure that the copied instruction is
only executed on those paths that reach the current basic block,
this instruction is labelled asboosted in each preceding basic block
that has multiple successors. Boosting guarantees that the effects
of an instruction are committed only if the predicted edge (the
CFG edge that the instruction moved across) is taken. Thus, the
motion of an instruction into the bottom of a block can require
boosting,

Now that the instruction is at the bottom of a block, we are again at
the point where we can apply the first rule. Thus, through succes-
sive application of the three basic rules, we can continue to move
an instruction up through the CFG. These three rules are sufficient

4. Branch instnrctions can be duplicated or bnnsted, but rhey am never moved furiher
than into the preceding base block (due to delay slot schedutmg problems).

253

because they cover all possible entry and exit configurations for a
basic block in a CFG.

Boosting makes these rules simple because the algorithm is never
limited by a speculative code motion that is unsafe or illegal. It is
interesting to note that this is exactly how a dynamic scheduler
handles speculative execution—all instructions moved across a
branch point are dependent upon that branch. Though these basic
rules are a sufficient solution for upward code motion, they are not
an efficient solution. These rules boost and duplicate instructions
more often than necessary because they do not take advantage of
global data-flow information.

Boosting is only necessary for a code motion into a block with
multiple successors if the speculative movement is unsafe or ille-
gal. Unsafe speculative movements are easily determinable by
checking if the current instmction is capable of signaling an
exception. Illegal speculative movements are recognizable if we
can determine what values are needed when the non-predicted
edge of the block is taken. This information is exactly the informa-
tion that is provided by live variable analysis [1]. By checking the
live-IN sets of the non-predicted successor blocks against the des-
tination register of the cument instruction, an algorithm can deter-
mine when a speculative movement is illegal. By using the
exception and live variable analysis information, an algorithm can
boost instructions only when necessary for correctness.

Duplication is used to ensure that an instruction moved above a
basic block with multiple predecessors (a join block) is executed
on every path reaching the join block, Duplication, however, is not
required for the upward motion of every instruction out of every
join block. Equivalence catches the most important case where
duplication may not be required for the upward code motion of an
instruction. For example, blocks A and D of Figure 3 are equiva-
lent because the execution of one implies the execution of the
other, and an instruction moved from block D to block A is always
useful (not speculative). We refer to this condition ascontrol equiv-
alence.

Control equivalence is not a sufficient condition to remove the
need for duplication. The moving instruction must also be free of
data dependence with any instruction along any path between the
control equivalent blocks. If this second condition holds, we say
that the two blocks are data equivalerzi with respect to the moving
instruction. If two blocks exist that are both control equivalent and
data equivalent with respect to the moving instruction, the code
motion algorithm can simply move the instruction between the two
blocks without duplication (or boosting). By checking for control/
data equivalent pairs of basic blocks during code motion, we can
reduce the amount of compensation code produced. Figure 5 out-
lines our upward code motion algorithm that uses global data-flow
information to reduce the amount of boosting and duplication per-
formed.

The upward movement of an instruction and the creation of com-
pensation code can cause changes to the CFG and to the state of
the dependence structures. Our trace-based approach atlows for
on-demand creation of basic blocks to hold duplicated instructions,
and it simplifies the dynamic update of the dependence structures
due to a duplication. An in-depth discussion of our algorithm can
be found in Smith [25].

In summary, our global scheduling algorithm can be thought of as
conscientious trace scheduling. It is conscientious because the
scheduler is aware of the compensation costs of each code motion,
and because the code transformations try to minimize the creation
of compensation code. Though a trace-based approach limits the
size of our available instruction set, a trace ensures that our set
contains those instructions of the larger set which are most benefi-

given an instruction I in block A to move;
given a path from block B to block A;
while (A != B) {

move i to top of A;
if (control/data equivalent pair to A exists on path) {

move I to bottom of pair;
A = equivalent pair on path;

} else{
foreach (predecessor C of A) {

duplicate I at end of C;
if (duplicate unsafe or illegal) boost duplicate;

1
remove I from A;
A = predecessor of A on path;

)
)

Figure 5: An ejjicient algorithm for upward code motion,

cial to the creation of a good global schedule. Furthermore, our
trace-based approach overcomes many of the problems associated
with the original Trace Scheduling algorithm such as lack of over-
lap between traces and inefficient compensation code. In these
ways, we feel that our algorithm, even without boosting, produces
efficient code for superscalar processors with limited resources.
Boosting simply provides the scheduler with a straightforward
mechanism to move any instruction upward over multiple basic
blocks. Since boosting and our global scheduling algorithm are
orthogonal, we can use our algorithm as an effective base for
experimenting with boosting,

4 Evaluating Hardware Support for
Boosting

Boosting is a powerful techrique for supporting general specula-
tive execution that requires specific hardware support. In this sec-
tion, we first describe the hardware support that is necessary for
global scheduling using boosting. Then we discuss three options
for reducing the amount of hardware support for boosting, and we
describe how our global scheduling algorithm is modified to gener-
ate code for each of these restrictive options. Finally, we choose
four machine models which vary only in their hardware support for
boosting. By collecting cycle~time independent performance num-
bers and by understanding the complexity of the hardware support
for boosting, we can evaluate exactly how much boosting support
is really necessary to achieve good performance. We tind that very
little hardware is required to support speculative execution effi-
ciently,

4.1 Full Support for Boosting

The effects of boosted instructions are held in hardware shadow
structures from the time the boosted instruction is executed until
the time that the boosted effect is squashed or committed. To deter-
mine what shadow structures are necessar~, we must determine
what effects are possible for all non-branch instructions in a par-
ticular architecture. We use the MIPS R2000 architecture [17] as
our base architecture. In the MIPS architecture, there are three pos-
sible effects from instruction execution: a register is written, a
memory location is written, or an exception is signalled. Shadow
structures are therefore required for the register file and for the

5. Due to limited movement of branches in our scheduter, bnosted branch effects are
atways squashed in the. p@ine, and thus no additional shadow structures are needed,

254

store buffer. Any exception signalled by a boosted instruction is
handled as discussed in Section 2.3.

In the simplest case, the shadow structures can be thought of as
copies of the sequential structure. For instance, wecan constructa
shadow register location for each sequential register location.
However, a single shadow structure supports only a single level of
boosting. To support boosting across multiple branches, each
shadow structure must contain a location for each allowable level
of boosting. Thus, in the general case,we must construct n shadow
register locations for each sequential register location. Figure 6b
illustrates alegalinstruction schedule that impossible when r3.Bl
end r3 .B2 are each separatephysical locations.6

h d h d h 4

r3.B2 = 3 r3=l
r3=l r3.Bl = 2

r3.Bl = 2

lx I
r3.Bl = 3

I 1 I

*T i, v v
r i

r4 = r3

(b) Schedulewith
multiple shadow

registerfiles

ur4 = r3

(a) Desired
codemotion

I r4 = r3 I
(c) Schedule with
a singleshadow

registerfile

Figure 6: Schedules possible under different shadow register file
con]gurations.

Though these general shadow structures require a large amount of
hardware, this hardware is straightforwmd to implement. The key
insight in implementing the shadow structures is to realize that the
data needs only to logically move on a commit. This logical move
is implemented by a technique that is similar to register renaming
[18]. For each sequential register in the architecture, we physically
build a pool of register and counter pairs. These counters contain
the logical name of each physical register. The register in the pool
with a count value of Oholds the sequential state, the one with a
count value of 1 holds the boosted-level-one state, etc. Addition-
ally, a valid bit is kept with each register in the pool to indicate
whether a valid boosted value exists for this register. During a
commit, we want the data in the shadow state to shift down one
level of boosting. Rather than moving the data, each counter is
decremented since each counter represents the boosting level of its
register. The most complex part of this hardware is to make sure
that the sequential register is only updated if the boosted-level-one
register contains valid data. If it doesn’t, then the sequential regis-
ter counter is not decremented (it stays at O)and the boosted-level-
one counter (which was at 1) is set to the maximum boosting level
(essentially it is decremented twice).

6. We continue to follow the trace-based boosting notation assumed at the end of Sec-
tion 23.

4.2 Partial Support for Boosting

Providing full support for the movement of any instruction above
multiple conditional branches requires a significant amount of
hardware as described in the previous subsection. We can reduce
the amount of speculation hardware necessary if we constrain the
speculative code motions that our scheduler is allowed to perform.
Iu this way, we trade off hardware complexity for performance and
compiler complexity. Whether this is a good tradeoff depends upon
how much hardware complexity we are able to reduce and still
achieve effective instruction scheduling. The rest of this subsection
dkcusses three options for constraining the instruction scheduler
and reducing the hardware support necessary. Section 4.3 evahr-
ates four different combinations of these options to determine
exactly how much boosting support is necessary for good perfor-
mance.

In Option 1, we propose that the shadow store buffer be removed.
Whhout a shadow store buffer, the scheduler cannot boost any
store instructions, but since the MIPS architecture is a load/store
architecture, the scheduler is still free to boost any non-store
instructions. Thk restriction implies that the scheduler cannot
boost a calculation that involves a store to memory and then a load
of that value from memory. However, given an architecture with
enough registers and a compiler with an effective register allocator,
this sequence should occur infrequently, and therefore the penalty
of this restriction should be minimal.

In Option 2, we propse that the multiple shadow register files be
collapsed into a single shadow register file that is capable of han-
dling multiple levels of boosting. Whhout a dktinct storage loca-
tion for each possible level of boosting, r3.B 1 and r3.B2 in Figure
6b refer to the same physical storage location, and the compiler
must handle this output-like dependence when it schedules the
code. In other words, the scheduler must produce the code sched-
ule in Figure 6c. If this output-like dependence occurs infrequently
or the limbed overlap of operations as in Figure 6Cis sufficien~ the
cycle-count penalty of this restriction should be minimal.

For supporting multiple levels of boosting, Option 2 significantly
reduces the amount of hardware support necessary because it
requires only two registers, one counter, and one valid bit for each
sequential register name. Figure 7 illustrates how the hardware for
t.hk scheme is organized. The counter maintains the current boost-
ing-level of the v ahre in the shadow register. This counter is decre-
mented each time a branch executes that was predicted correctly. If
the count field is one and the register holds valid dat% then on the
next correct branch prediction the flip-flop is toggled to “pong” the
registers—the boosted register becomes the sequentird register and
vice versa. This hardware implements the shadow state and only
adds a single gate to the register file accesspath.

For Option 3, we propose that the entire shadow register file be
removed. To still allow for the boosting of operations, we augment
the processor’s pipeline control so that the scheduler is able to
boost into the “shadow” of the conditional branch. This scheme is
basically en extension of squashing branches where instructions
are nullified in the cycles following the branch if the branch was
incorrectly predicted. For our scheme, only the boosted instruc-
tions in the cycles following the branch are nullified not all the
instructions in those cycles, Without any shadow storage in the
machine, the scheduler is constrained to boosting only a few cycles
into a branch-ending basic block. For the MIPS R2000 pipetine,
the instructions issued with the branch and in the branch delay slot
are simple to squash in the pipeline. This scheme requires the least
amount of hardware support, but it also imposes the greatest con-
straints on instruction scheduling.

255

F,
‘J ‘-6 ---,-

.

or one paw
)f.ao; .f’w,

-777=E:~

decode
register

II specifier

Bit to indicate
which regisfer

is shadow

-ureadyto
commit? xQQ

T

commit

valid

Figure 7: Hardware functionality of the Option 2.

4.3 Performance Evaluation

Table 1 lists the benchmark set we used to evaluate the different
options for boosting. There are three SPEC benchmarks and four
UNIX utilities. All of these programs are written in C, and all are
run to completion.

Total R2000 Avg. R2000 Branch
Cycles IPC Prediction Accuracy

awk 47.2M 0.89 82.0~0
compress 29.3M 0.87 82.7%
eqntott 0.7M 0.95 72.1%
espresso 97.8M 0.89 75.7%
grep 28.6M 0.81 97.9%
nroff 66.4M 0.82 96.7%
xlisp 1.OM 0.89 83.5%

Table 1: Benchmark programs and their simulation information.

Our base scalar machine model is the MIPS R2000. All results are
derived from a trace-driven simulator based on pixie [24], though
we also have a fitnctional simulator that verifies that the hardware
is correct and an instruction-level simulator that verifies that the
scheduled code is correct. The trace-based simulator reports the
performance of the superscalar processor in terms of speedup over
the MIPS R2000 processor, where speedup is a defined as the total
number of R2000 cycles divided by the total number of sttperscalar
cycles. The scalar program is scheduled by the commercial MIPS
assembler, the superscalar program is scheduled with our global
instruction scheduler, and both schedulers start with the same opti-
mized assembly file. The assembly file is generated by our SUIF
compiler, and the optimizer in this compiler implements all the
standard optimization [26]. Our scheduler uses a branch profile of
the program to generate the static branch prediction information
needed during scheduling. This branch profile is generated from a

different input set than is used to determine performance. Table 1
also lists the observed branch prediction accuracy.

For the results presented in this paper, our trace-driven simulator
assumes a perfect memory system, i.e. the caches never miss.
Thus, we are only modelling the execution time of the CPU. The
true speedup of our superscalar processor over a scalar processor is
dependent upon the effectiveness of the memory system. The more
effective the memory system, the closer these CPU speedups rep-
resent the speedups of the entire system.

4.3.1 Superscalar Base Model

Our base stmerscalar mocessor is similar to those commercially
designed today: the i~sue size is kept smaI1—2 instructions p~r
cycle; the issue mechanism is restricted-not all pairs of irtstruc-
tions can issue together; and only a single data memory pat is pro-
vided. We distribute the functional units so that one side of our 2-
issue machine contains an integer ALU, a branch uniti a shifter, an
integer multiply/divide unit, ad a floating-point tmi~ the other
side contains just an integer ALU and a memory port. It is interest-
ing to note that we can perform two integer ALU operations in par-
allel, but not a branch and a shift operation in parallel. The base
superscalar machine also assumesthat an instruction that is fetched
for one side of the machine can execute on that side. The scheduler
is responsible for ensuring that instructions are issued to the cor-
rect side of the machine; there is no swap logic. Each functional
unit in the superscalar model has the same characteristics as that
functional unit has in the MIPS R2000 processor. Like the R2000,
load and branch instructions have a single delay slot. The base
superscalar processor contains no hardware support for boosting.

Since the cycle time of this simple superscalar processor should be
very close to the cycle time of a single-issue implementation of
this processor, we can use cycle counts to indicate the relative per-
formance of the base superscalar machine over the base scalar
machine. Figure 8 presents speedups for the case where our
instruction scheduler onfy schedules within a basic block, and for
the case where the instruction scheduler usesour global instruction
scheduling algorithm to move instructions past basic block botmd-
aries. In the global scheduling case, only safe speculative execu-
tions are permitted since the base superscalar processor does not
contain hardware to support boosting. The lower portion of each
global scheduling bar represents the performance when register
allocation is done before instruction scheduling. The upper portion
of each bar represents the increase in performance when schedul-
ing is done with an infinite register model. (Figure 8 presents the
speedups for basic block scheduling only with register allocation
before scheduling. Unless specifically stated otherwise, our discus-
sion focuses on the performance numbers with register allocation
done before scheduling.) The simplest superscalru processor that
we can build uses global scheduling (no boosting), and it gets a
geometric mean speedup of 1.24x under global scheduling.

4.3.2 Superscalar Models with Boosting

To this base superscalar, we now add hardware to support specula-
tive execution. The four augmented machine models are called:
Squashing, Boostl, A4inBoost3, and Boost7. To evaluate the use-
fulness of the additional hardware, we normalize the performance
of the augmented superscalar processors to the best performance of
our base superscalar processor (i.e. performance under global
scheduling with register allocation and without boosting). Table 2
presents the percentage improvement in performance for these
augmented superscalar processors.

7. The SPEC benchmarks were w with tie shorter of the distributed input data sets
to timit the. run time of the simulations,

256

~ basic block scheduling (1.14)
Q 2,00 —
3

ittttmx;iw global scheduling (1 .24)
g
Q

w 1.75.

1.25

1.00

Figure 8: Performance achievable without speculative execution
hardware.

Sq~ashing Boostl MinBoost3 Boost7

awk 11.2% 16.4?. 17.2% 18.1%
compress 9.1% 10.6% 10.6% 10.6’%0
eqntott 8.0% 14.4% 16.0% 16.0%
espresso 9.8% 18.0% 21.3’%0 23.t)~o
grep 15.4% 27.7% 40.8% 40.8%
moff 11.4% 24.4% 31.7% 36.6%
xlisp 6.7% 13.3% 12.5% 14.2%

G.M. 9.9% 17.0?40 19.3% 20.5%

Table 2: Performance improvements over global scheduling from
exploiting various degrees of speculative execution.

The Squashing model achieves slightly less that a 10% improve-
ment in performance over our base superscalar processor. The
Squashing model contains no shadow structures and boosting is
only supported by a squashing pipeline. This scheme adds the
smallest amount of hardware possible for a scheme that supports
boosting. With this limited boosting ability, our global scheduler
with boosting is constrained to boosting only those instructions in
the delay branch cycle of a branch-ending basic block, asdiscussed
in Option 3 of Section 4.2.

The Boostl model achieves slightly less than double the improve-
ment of the Squashing model. The Boostl model contains a single
shadow register file and a single shadow store buffer without any
extra logic to perform multiple levels of boosting. This scheme
adds a small amount of hardware to support the boosting of all
types of non-brrmch instructions, but the boosted instructions are
constrained to depend only on a single conditional branch. Refer-
ring to the hardware in Figure 7, the shadow register file hardware
for the Boostl model does not contain any counters, and the gate
which clocks the T flip-flop is simply an AND of valid and com-
mi[. Since the boosting specifier is only one bit, the OR-gate of
Figure 7 is also not necessary,

The MinBoost3 model doubles the improvement of the Squashing
model. The MinBoost3 model contains a single shadow register
file that supports boosting over three control dependent branches,

but it does not contain any shadow store buffer. This scheme adds
the smallest amount of hardware possible for a scheme that sup-
ports boosting over a large number of branches. For this scheme,

the scheduler is constrained asdkcussed in Options 1 and 2 of Sec-
tion 4.2.

The BOOS17model achieves only a small performance benefit over
the Boostl or MinBoost3 models. The Boost7 model contains all
the hardware necessaty to support unconstrained boosting over
seven control dependent branches. The hardware in this scheme is
obviously unreasonable, and the performance numbers show that
thk amount of extra hardware does little to improve performance.

The best schemes for cost-effective performance are Boostl and
MinBoost3. Both schemes are basically advocating a duplicated
register file. As we mentioned in Section 4.2, the addition of a sin-
gle shadow register tile causes the register file access time to be
approximately one gate delay longer than the access time of the
simple scalar register file. Since the register file is not currently in
the critical path of our implementation, we do not expect this com-
plexity to increase the cycle time of our processor. Also, the addi-
tional hardware required by our more complex register file is not
large. The decoder for a Boostl machine with 32 sequential regis-
ters contains only 33~0 more transistors than a normal decoder for
a register file with 64 registers (50~0 more transistors are required
for a MinBoost3 implementation).

The performance improvements in Table 2 are over the global
scheduling model with a 32-register register file. Furthermore, this
model is eonstrained by illegal speculative movements because it
does not perform register renaming during scheduling. An interest-
ing question to ask is whether the Boostl or MinBoost3 schemes
actually do better than a global scheduling scheme which incorpo-
rates software renaming and a 64-register register file. Though we
cannot generate code for this enhanced global scheduling scheme
with our current compiler, we have the performance of our global
scheduling scheme with an infinite register model (see Figure 8).
Global scheduling with infinite registers achieves a 7.8% perfor-
mance improvement (geometric mean) over our base global sched-
uling scheme. This is a smaller improvement than that achieved by
Boostl and MinBoost3. Thus hardware support for unsafe specula-
tive code motions improves machine performance beyond the best
performance of the pure software schemes.

Figure 9 compares the speedup (relative to the base scalar proces-
sor) of the MinBoost3 model to the speedup of a dynamically -
scheduled superscalar processor with speculative execution sup-
port. The dynamic scheduler is fictionally equivalent to our base
superscalar machine. The dynamic scheduler fetches and decodes
two instructions per cycle. It uses a total of 30 reservation station
locations [28] and a 16-entry reorder buffer [21] to implement out-
of-order execution with speculation, and it uses a 2048-entry, 4-
way set associative branch target buffer to predict branches. It has
the same number of functional units as our statically-scheduled
machine, but since the dynamically-scheduled machine uses reser-
vation stations, it can issue up to 6 instructions per cycle. In Figure
9, the lower portion of the MinBoost3 bars represent the perfor-
mance when register allocation is done before instruction schedul-

ing> ~d the lower portion of the dynamic scheduler b~s represent
the performance without register renaming logic. The upper por-
tion of the MinBoost3 bars represent the increase in performance
when scheduling is done with an infinite register model, and the
upper portion of the dynamic scheduler bars represent the perfor-
mance with register renaming logic. Under the more restricted reg-
ister model, both machine models achieve about a 1.5x
performance improvement over the scalar processor, but the
dynamic scheduler does so with a larger amount of hardware.

We believe that we can improve the performance of the dynamic
scheduler by using our global scheduling algorithm (without
boosting) to preschedule the code. By prescheduling, we can more

257

~ MinBoost3

Q 2.00 — %ZW.MMMDynamic Scheduler

3
0
0

‘1.75.

1.50

1.25

1.00

Figure 9: Performance comparison with an dynamic scheduler.

efficiently use the machine resources. We also believe that we can
improve the performance of MinBoost3 by carefully adding ILP-
increasing optimization (such as loop unrolling and procedure
inlining) to our compiler. We have performed some preliminary
experiments with a loop tmroller which unrolls all the loops in a
program module. Though performance did increase slightly, the
improvement was well below what we expected. Upon closer
inspection of the code, we discovered that no one problem is limit-
ing the performance. What is required is an effective mix of solu-
tions to problems in many areas (e.g. loop-level optimizations,
procedure inlining, and better memory disambiguation). We are
continuing our reseach in this area.

5 Conclusions

This paper presents an integrated solution, consisting of both com-
piler and architectural components, to the problem of effectively
exploiting ILP. Our focus is on supporting general speculative exe-
cution in an environment with sophisticated instruction scheduling.
Speculative execution is needed to find arty significant amount of
ILP in non-numerical applications. The key idea in our approach is
in defining the right architectural interface; an interface that appro-
priately divides the work among the hardware and software. Our
boosting approach relies on simple but useful hardware mecha-
nisms that minimally impact the cycle time of the machine. Our
preliminary hardware designs indicate that the cycle time of a
superscalar machine with boosting past one conditional branch is
nearly identical to the cycle time of a simple (VLIW-like) super-
scalar machine, By making these hardware mechanisms visible to
the software, a sophisticated static instruction scheduler can take
full advantage of speculative execution with very little cost.

We have developed a global scheduling algorithm that is useful for
machines with and without boosting. Our algorithm is applicable
to a wide range of machines, from deeply -pipelined RISC proce-
ssorsto dynamically-scheduled superscaku machines. Our algo-
rithm uses a trace-based approach to efficiently exploit the ILP in
non-numerical applications. Like other trace-based approaches,
our algorithm concentrates on those code motions that are most
beneficial to improving performance. Unlike other trace-based

approaches, our algorithm tempers the global movements so as to
not adversely affect the performance of the off-trace schedules.

machines built today, our statically-scheduled approach achieves
cycle count speedups which are comparable to those found in the
aggressive dynamically-scheduled approaches.

Acknowledgments

We wish to thank all the reviewers for their helpful comments. We
also wish to thank Peter Davies and Earl Killian for their help in
understanding pixie and UniMable; these programs formed the
foundation for some of our simulators. The simulator for the
dynamically-scheduled superscalar machmes was originally writ-
ten by Mike Johnson. Tom Chansk, John Maneatis, Don Ramsey,
and Drew Wirtgard participated in the hardware design of our
superscalar processor with boosting, and they wrote the first hard-
ware simulator. Phil Lacroute helped out on our software systems,
and because of Phil, we were able to have a chance at debugging
our globally-scheduled programs. We would also like to acknowl-
edge the support of the members of the SUIF compiler group at
Stanford. This research was supported by DARPA contract
NOO039-91-C-0138.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A.V. Aho, R. Sethi, and J.D. Unman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1986.

D. Bernstein and M. Rodeh. Global Instruction Scheduling
for Superscalar Machines. In Proc. ACM SIGPLAN ’91
Conf. on Programming Language Design and Implementa-
tion, pp. 241–255, June 1991.

D. Bernstein, D. Cohen, and H. Krawczyk, Code Duplica-
tion An Assist for Global Instruction Scheduling. In Pro-

ceedings of MICRO-24, pp. 103-113, November 1991.

D.G. Bradlee, S. J. Eggers, and R.R. Henry. Integrating
Register Allocation and Instruction Scheduling for RISCS.
In the Proc. Fourth Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 122–
131, April, 1991.

B. Case. Superscalar Techniques: SuperSPARC vs. 88110.
Microprocessor Reporf, 5(22): 1–11, December 1991.

P.P.Chang, S.A. Mahlke, W.Y. Che~ N.J. Warter, and
W.W. Hwu. IMPACT An Architectural Framework for
Multiple-Instruction-Issue Processors. In the Proc. 18th
Int. Symp. on Computer Architecture, pp. 266-275, May
1991.

R.P. Colwell, R.P,Nix, J.J,O’Domtell, D.B. Papworth, P.K.
Rodmam A VLIW Architecture for a Trace Scheduling
Compiler. In the Proc. Second Int. Corf on Architectural
Support for Programming Languages and Operating Sys-
tems, pp. 180-192, October, 1987,

K. Ebcio~lu and A. Nicolau. A Global Resource-Con-
strained Parallelization Technique. In Proc. 3rd Int. Co@.
on Supercomputing, pp. 154-163, June 1989.

J. Ferrante, K. Ottenstein, and J, Warren, The Program
Dependence Graph and Its Use in Optimization. ACM

Trans. Program. Lang. Syst., 9(3):319-349, July 1987.
As a result of our compiler implementation and in-depth hardware
design, we have been able to evahrate our ideas and study a range
of cost/performance tradeoffs. For the limited superscalw

258

[10] J.A. Fisher, Trace Scheduling: A Technique for Global
Microcode Compaction. IEEE Trans. on Computers,
C-30(7):478-490, JUIY 1981.

[11] J.R. Goodman and W.C. Hsu. Code Scheduling and Regis-
ter Allocation in Large B asic Blocks. In Proc. 1988 Znt.
Corf on Supercomputing, pp. 442452, July 1988.

[12] T. Gross and M. Ward. The Suppression of Compensation
Code. In Advances in Languages and Compilers for Paral-
lelProcessing, The MIT Press, Cambridge, MA, pp. 260-
273, 1991.

[13] R. Gupta and M.L. Soffa. Region Scheduling: An
Approach for Detecting and Redistributing Parallelism.
IEEE Trans. on Software Engineering, 16(4):421-431,
April 1990.

[14] P.Y.T. Hsu and E.S. Davidson. Highly Concurrent Scalar
Processing. In Proc. 13th Int. Symp. on Computer Architec-
ture, pp. 386–395, June 1986.

[15] W.W. Hwu and Y.N. Patt. Checkpoint Repair for Out-of-
order Execution Machines. In Proc. 14th Int. Symp. on
Computer Architecture, pp. 18-26, June 1987.

[16] N.P. Jouppi rmd D.W. Wall. Available Instruction-Level
Parallelism for Superscalar and Superpipeliied Machines.
In Proc. Third Int. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 272–
282, April 1989.

[17] G. Kane. MZPS R2000 RISC Architecture. Prentice Hall,
Englewood Cliffs, New Jersey, 1987.

[18] R.M. Keller. Look-Ahead Processors. Compu/ing Surveys,
7(4): 177-195, December 1975.

[19] S. Melvin and Y. Patt. Exploiting Fine-Grained Parallelism
Through a Combination of Hardware and Softwme Tech-
niques. In Proc. 18th Int. Symp. on Computer Architecture,
pp. 287-296, May 1991.

[20] A. Nicolau. Percolation Scheduling: A Parallel Compila-
tion Technique. Computer SciencesTechnical Report 85-
678, Cornell UniversiY, May 1985.

[21] J.E. Smith and A.R. Pleszkun. Implementation of Precise
Interrupts in Pipelined Processors. In Proc. 12th Int. Symp.
on Computer Architecture, pp. 36-44, June 1985.

[22] M.D. Smith, M. Johnson, and M.A. Horowitz. Limbs on
Multiple Instruction Issue. In Proc. Third Int. Conf. on
Architectural Support for Programing Languages and

Operating Systems, pp. 290-302, April 1989.

[23] M.D. Smith, M.S. Lam, and M.A. Horowitz. Boosting
Beyond Static Scheduling in a Supcrscalar Processor.In
the Proc. 17th Int. Symp. on Comptier Architecture, pp.
344-354, May 1990.

[24] M.D. Smith. Tracing with pixie. Technical Report CSL-
TR-91-497, Stanford University, November 1991.

[25] M.D. Smith. Ph.D. thesis, Stanford Univ., in preparation.

[26] S,W.K. Tjiang and J.L. Hennessy. Sharlit-A Tool for
Building Optimizers. In Proc ACM SIGPLAN ’92 Con~ on

Programming Language Design and Implementation, pp.
82-93, June 1992.

[27] M. Tokoro, E. Tamura, and T. Takizuka. Optimization of
Microprograms. IEEE Trans. of Compurers, C-30(7):491-
504, July 1981.

[28] R.M. Tomasulo. An Efficient Algorithm for Exploiting
Multiple Arithmetic Units. IBM Journal, 11(1):25–33, Jrm-
ll~y 1967.

[29] D.W. Wall. Lnits of Instruction-Level Parallelism. In
Proc. Fourth Int. Cor$ on Architectural Support for Pro-

graming Languages and Operating Systems, PP. 176-
188, April 1991.

259

