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Abstract

eWallpaper is a smart wallpaper containing thou-
sands of embedded, low-power processors and radio
transceivers. An important application of the wall-
paper is to use the radio transceivers to perform 3D
radar imaging. The major obstacles in implementing
the imaging algorithm on the wallpaper are the distribu-
tion of the data amongst the large number of processors,
the restrictive 2D mesh topology, and the limited local
memory available to each processor. Our major contri-
bution is a distributed and memory efficient implemen-
tation of the 3D range migration algorithm that operates
in realtime and achieves video framerates. A hardware
simulator was built to allow rapid development and ver-
ification of eWallpaper applications. This simulator was
parallelized using MPI and Pthreads, enabling fast em-
ulation on a high-performance computing cluster. We
developed a performance model and network traffic sim-
ulator to verify that our distributed algorithm will meet
the framerate and memory requirements while running
on the actual eWallpaper hardware.

1 Introduction

eWallpaper is a smart wallpaper with thousands of
low-power, RISC-V [1] processors embedded within the
paper. These processors are connected in a 2D mesh
network, spaced 25mm apart. Each processor has its
own radio transceiver and antenna. One of the main ob-
jectives of eWallpaper is to use the radio transceivers to
image the room. The radios attached to each of the pro-
cessors transmit microwave pulses. These pulses reflect
off the objects in the room and the echoes are recorded
back at the transmitting antennas. The echoes are com-
bined using an adapted version of the range migration
algorithm [2] to form a single three-dimensional image
of the room.

1.1 Applications of the eWallpaper Imag-
ing System

The ability to form 3D images of the room enables
a number of useful applications, such as:

• gesture recognition, enabling users to control home
appliances, lighting, and multimedia systems via an
intuitive interface.

• pervasive monitoring of human vital signs and au-
tomatic notification of medical personnel in case of
emergencies.

• human recognition and tracking throughout the
house for security purposes. Gurbuz et al. [3] de-
scribe a technique for identifying people using radar
signals.

• creation of immersive audio fields for teleconferenc-
ing [4] that track the positions of human speakers
and listeners.

1.2 Challenges with Performing Realtime
Imaging

The proposed design for eWallpaper consists of an
array of 128 × 128 processors, each with an attached
radio transceiver and antenna. Each processor records
the responses detected at its antenna. These responses
are combined to form a three-dimensional image of the
room using the 3D range migration algorithm (RMA).
There are three key challenges to implementing 3D RMA
on eWallpaper:

1. The antenna responses are distributed amongst the
128×128 processors. Therefore, to achieve high per-
formance, the algorithm must also be distributed.

2. In order to achieve high performance on the low-
dimensional 2D mesh network, interprocessor com-
munication requiring many network hops must be
minimized.

3. The amount of local memory on each processor is
extremely limited, on the order of 100KB. Further-
more, there is no global memory storage. This
means that no single processor can store all the an-
tenna responses.

Taking these limitations into account, we developed
a distributed implementation of the 3D range migra-
tion algorithm that is both memory efficient and able to
achieve video framerates.



2 The 3D Range Migration Algorithm

The algorithm presented in [2] for 3D microwave
imaging was adapted for implementation on eWallpa-
per. Here we present the underlying theory and physical
model.

During the scanning procedure, a single radio an-
tenna will emit a continuous sinusoidal wave. The wave
will reflect off the objects in the room and is received
by a radio transceiver. The transmit and receive anten-
nas are sufficiently close that they can be assumed to
be colocated, as in the case of a quasi-monostatic radar.
The amplitude of the received sine wave and the phase
difference between the transmitted and received wave
are recorded. For each antenna in turn, this procedure
is repeated over a range of evenly spaced frequencies.

In our setup, we have 128×128 antennas, each of
which step through 256 frequencies. Thus the input to
the imaging algorithm is a 3D array of 128×128×256
amplitudes and phase differences.

We will assume, in the development of the algo-
rithm, that the speed of light is known and constant for
all points in the scene. We also do not consider any re-
fraction or attenuation effects. We will model the scene
as a collection of discrete point targets distributed uni-
formly throughout the imaged region. Each point tar-
get, at position (x, y, z), is fully described by a single
real number, 0 ≤ r ≤ 1, which represents its reflectivity.
A unit-amplitude sine wave emitted by a radio antenna
is assumed to travel, unimpeded, to all points in the
scene. It reflects off the targets and arrives back at the
radio transceiver with amplitude r. The superposition
of the reflected waves from each target is recorded by
the radio transceiver. This physical model is minimal
but is sufficient for the purposes of imaging.

Figure 1: Geometric layout of antenna plane and a single
point target

Formally, consider a single antenna at position
(x′, y′, 0). Let d =

√
(x′ − x)2 + (y′ − y)2 + z2 be the

distance from the antenna to a target at position (x, y, z)
(Figure 1). The time taken for the sine wave, emitted
by the antenna, to travel to the target and back again
is t = 2d

c , where c is the speed of light. In that time,

the phase of the transmitted sine wave has advanced by
φ = ωt, where ω is the angular frequency. The ampli-
tude of the sine wave received by the transceiver and the
phase difference between the transmitted and received
sine waves can be represented as a single complex num-
ber, re−jφ, where the amplitude of the wave is repre-
sented by the magnitude, and the phase difference is
represented by the angle. Thus, the final received sig-
nal at the transceiver, which is the superposition of the
reflected waves from each point target, is given by

s(x′, y′, z = 0, ω) =

∫ ∫ ∫
r(x, y, z)e−jφ(x,y,z)dxdydz

=

∫ ∫ ∫
r(x, y, z)e−j

2ω
c

√
(x′−x)2+(y′−y)2+z2dxdydz.

(1)

The received signal has, thus far, been described
as the superposition of the reflections from each point
target. Alternatively, we can equivalently interpret the
point targets to be, themselves, emitting sine waves
which travel at half the speed of light, c

2 , towards the
transceiver. Under this interpretation, the scene gen-
erates a wavefield, s(x, y, z, ω), and the transceivers
sample the wavefield on the plane z = 0 to obtain
s(x, y, z = 0, ω). Our goal is to recover the full wavefield,
s(x, y, z, ω) given only s(x, y, z = 0, ω).

The wavefield at depth z can be recovered by back
propagating the recorded wavefield, s(x, y, z = 0, ω),
from the antenna to the target. This can be achieved
by simply swapping the sign of the phase delay term,
thus representing propagation backwards in time, and
summing over the contribution from each antenna.

s(x, y, z, ω) =

∫ ∫
s(x′, y′, z = 0, ω)·

ejω
2
c

√
(x′−x)2+(y′−y)2+z2dx′dy′ (2)

After back propagation, the final 3D image can be recon-
structed by integrating the wavefield over all frequencies.

s(x, y, z) =

∫
s(x, y, z, ω)dω (3)

While the above algorithm is intuitive, integrat-
ing over all frequencies and antenna positions, for each
point in the scene, makes computation prohibitively ex-
pensive. For 128×128 antennas and 256 frequencies, it
took over two and a half hours on a 24 core cluster to
image a room.

To make computation tractable, we rewrite equa-
tion 2 by expressing the complex exponential term as a



summation of plane waves

s(x, y, z, ω) =

∫ ∫
s(x′, y′, z = 0, ω)·∫ ∫

ejkx(x−x
′)+jky(y−y′)+jkz(z−z0)dkxdkydx

′dy′

=

∫ ∫ {∫ ∫
s(x′, y′, z = 0, ω)e−jkxx

′−jkyy′dx′dy′
}
·

e−jkzz0ejkxx+jkyy+jkzzdkxdky. (4)

The z0 in the above expression allows the antenna array
to be at any position. The inner double integral can be
recognized as the 2D Fourier transform of s(x′, y′, z =
0, ω) with respect to x′, y′. Therefore, we can rewrite
equation 4 as

s(x, y, z, ω) =

∫ ∫
S(kx, ky, ω)e−jkzz0 ·

ejkxx+jkyy+jkzzdkxdky, (5)

where

S(kx, ky, ω) = FT2D {s(x′, y′, z = 0, ω)} . (6)

As before, the final image can be reconstructed by
integrating over all frequencies

s(x, y, z) =

∫ ∫ ∫
S(kx, ky, ω)·

e−jkzz0ejkxx+jkyy+jkzzdkxdkydω. (7)

We now do a change of variables from ω to kz using the
dispersion relation for plane waves

kz =

√
4(
ω

c
)2 − k2x − k2y (8)

Therefore equation 7 can be expressed in terms of
kz.

s(x, y, z) =

∫ ∫ ∫
S(kx, ky, kz)·

e−j
√

4(ω
c )2−k2x−k2yz0ejkxx+jkyy+jkzzdkxdkydkz. (9)

Recognizing the triple integral as a 3D IFFT, we can
express it as

s(x, y, z) = IFT3D{S(kx, ky, kz)e
−j
√

4(ω
c )2−k2x−k2yz0}.

(10)

where S(kx, ky, kz) is a linear interpolation of the 2D
Fourier transform of the received antenna responses.
This is known as Stolt interpolation.

The whole algorithm is then given as follows:
1. Pre-transform the received signal to the spatial fre-
quency domain using a 2D FFT.

S(kx, ky, z = 0, ω) = FTx,y{s(x, y, z = 0, ω)} (11)

2. Perform Stolt interpolation and back propagation in
the spatial frequency domain.

S(kx, ky, z) =

IFTkz{Stolt{S(kx, ky, z = 0, ω)}ejkzz0} (12)

3. Transform the reconstructed image back to the spa-
tial domain using a 2D IFFT.

s(x, y, z) = IFTkx,ky{S(kx, ky, z)} (13)

The reconstructed image, s(x, y, z), is a 3D array whose
values represent the reflectivity at each point the room.

3 Implementation on a 2D Mesh Net-
work

A single sheet of eWallpaper contains 16384 low-
power Rocket processors, arranged in a 128× 128 array.
The interprocessor network on eWallpaper is formed
from a single layer of printed wires, and thus is restricted
to low-dimensional topologies. Thus, bi-directional links
connect each eWallpaper processor to only its four im-
mediate neighbors resulting in a 2D mesh network.

The Rocket processor is a 6-stage, in-order proces-
sor, based on the RISC-V [1] ISA, with a clock speed
of 1GHz. It has a 64KB L1 cache, 100KB of on-chip
main memory, and a floating-point unit capable of ap-
proximately 200 MFlops/s. There is no additional off-
processor memory in eWallpaper.

The implementation of the imaging algorithm de-
scribed in Section 2 on eWallpaper relies upon two fun-
damental operations: the row-wise transpose and the
column-wise transpose.

3.1 The Row-wise Transpose

Assuming there are N processors in each row of the
mesh network, with each processor containing M data
values, the values stored on processor n ∈ {1 . . . N} can
be expressed as:

Dn = {dn1, dn2, dn3, ..., dnM}.

After performing the row-wise transpose, the values
stored on processor n are:

Dn = {d1n, d2n, d3n, ..., dMn}.

Therefore, after the transpose, the nth processor in the
row contains the nth value stored by each processor be-
fore the transpose.

Figure 2 shows an example of a row-wise transpose
on a 3× 3 processor array. The array before the trans-
pose is shown on the left of the figure, with each pro-
cessor storing the antenna responses for 3 frequencies



(represented by 3 circles at each processor). In order
to perform the row-wise transpose, every processor first
sends its locally stored data to its left and right neigh-
bors. Once its own data has been sent, each processor
waits to receive the complete packet from its left neigh-
bor. The processor extracts the required value from this
packet and forwards the packet onto its right neighbor.
Processor n will extract the nth value from the packet.
Similarly, the processor will receive a packet from its
right neighbor, extract the required value, and forward
the packet onto its left neighbor. In this way, a full row-
wise transpose can be performed in N−1 hops for a row
of N processors.
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C

X Y Z 1 
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  3
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X Y Z 1 
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  3

A[X:Z]1 A[X:Z]2 A[X:Z]3

B[X:Z]1 B[X:Z]2 B[X:Z]3

C[X:Z]1 C[X:Z]2 C[X:Z]3

Figure 2: A 3x3 processor array, before (left) and after
(right) the row-wise transpose

The array on the right of Figure 2 shows the data
stored in each processor after the transpose. The proces-
sors in the first column store the first frequency values,
the processors in the second column store the second
frequency values, etc. Note that during the row-wise
transpose operation, interprocessor communication oc-
curs only between processors in the same row. This
allows all rows to be transposed at the same time.

This is similar to the Ring Exchange Algorithm de-
scribed by Christara et al. [5] for ring networks. Chris-
tara et al. argue that store and forward is better than
wormhole routing for the transposition operation on a
ring network, as each processor requires data from all
other processors. Furthermore, they prove that this ap-
proach is optimal for ring networks, as it performs the
transpose inN−1 hops, whereN is the number of nodes.

Note that in our row-wise transpose, each proces-
sor forwards the entire original packet after extracting
the required values. In the Ring Exchange Algorithm,
each processor removes the values it requires from the
packet before forwarding. The result is that our ap-
proach incurs twice the total bandwidth cost as the Ring
Exchange Algorithm.

3.2 The Column-wise Transpose

The column-wise transpose, shown in Figure 3, op-
erates in a similar fashion to the row-wise transpose, ex-
cept that each processor communicates with the other
processors in the same column, instead of the same row.
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Figure 3: A 3x3 processor array, before and after the
column-wise transpose

3.3 The Distributed 3D Imaging Algorithm

With the row-wise and column-wise transpose op-
erations defined, the imaging algorithm described in Sec-
tion 2 can be expressed as a sequence of computation
and communication steps, as shown in Figure 4. These
operations run on each processor in the network. The
shaded boxes in the diagram represent computational
operations, while the white boxes represent communica-
tion.

Row-wise Transpose

1D FFT (2x 128 point)

Column-wise Transpose

1D FFT (2x 128 point)

Row-wise Transpose

Point-wise vector 

multiply (256 elements)

Stolt Interpolation

(256 elements)

1D IFFT (256 point)

Column-wise Transpose

1D IFFT (2x 128 point)

Row-wise Transpose

1D IFFT (2x 128 point)

Column-wise Transpose

07/05/2012 - 14/05/2012

07/05/2012 - 14/05/2012

07/05/2012 - 14/05/2012

2D FFT

Backward 

propagation 

and Stolt 

Interpolation

3D IFFT

Input Data: Echoes at 128 

Frequencies

Output Data: Reflectivity at 

128 depths

Figure 4: The distributed 3D range migration algorithm
that runs on each processor

At the start of the algorithm, each processor con-
tains the responses recorded at its own antenna, for each
of the 256 frequency steps. The 2D FFT across the en-
tire dataset, with respect to x and y, is computed as
a set of 1D FFTs along the x-axis, followed by a set
of 1D FFTs along the y-axis. The first step in the 2D
FFT is a row-wise transpose, resulting in each proces-
sor storing the responses at all 128 x positions for two
frequencies. The processor then performs two 128-point
1D FFTs on the locally stored data. This is followed
by a column-wise transpose, resulting in each processor



now containing the responses at all 128 y positions, for
a particular kx value and two frequencies. Finally, each
processor once again performs two 128-point 1D FFTs
on locally stored data, completing the 2D FFT.

After the 2D FFT, a row-wise transpose is per-
formed, placing all 256 frequency values for a particu-
lar kx and ky at each processor. The processor is now
able to perform back propagation and Stolt interpola-
tion on locally stored data, without further communica-
tion. Back propagation involves multiplying each stored
value by a unique complex number. Stolt interpolation
is achieved using linear interpolation. Both the back
propagation coefficients and the linear interpolation in-
dices are precomputed to accelerate computation.

The final 3D inverse FFT is implemented using
three separate 1D inverse FFTs, with interleaving row
and column transposes. At the end of the algorithm,
each processor contains the reflectivity at all 256 depths,
z, at a particular (x, y) position.

4 High Performance Functional Simula-
tor

To aid the development of the imaging algorithm,
we created a functional simulator for fast prototyping
and debugging of eWallpaper applications. eWallpa-
per applications are written in Single Program Multi-
ple Data (SPMD) style, and one program instance is
launched per simulated processor. Each simulated pro-
cessor knows its own coordinates on the eWallpaper pro-
cessor grid, and has access to a minimal set of communi-
cation functions for sending and receiving data packets
from its immediate neighbors. In order to achieve fast
emulation of a large number of processors, the simula-
tor was parallelized to run on an MPI cluster. Within
an MPI node, multiple virtual processors are simulated
using Pthreads (see Figure 5).

The following basic functions are provided for in-
terprocessor communication:

• send message(direction, message, mes-
sage size) sends a message, of the specified
message size, to one of the four neighboring
processors.

• receive message(direction) receives a message
from one of the four neighboring processors. A
pointer to the start of the message buffer is re-
turned.

• set receive buffer(direction, buffer) instructs
the network router to place incoming packets in the
provided buffer.

send message blocks until the network router is free
to send and the receiving processor has space available

MPI Node

MPI Node

Virtual CPUs simulated 
using Pthreads

Virtual Channels simulated
across MPI channel

Figure 5: Structural overview of MPI-based functional
simulator

to hold the message. Note that send message returns as
soon as message transmission begins, not when message
transmission is completed. receive message blocks un-
til there is a complete message waiting in the network
buffer.

Network functions for communication between vir-
tual processors on the same MPI node are implemented
using shared memory and mutexes. Across MPI node
boundaries, eWallpaper network functions are imple-
mented on top of MPI Isend and Irecv operations.
These MPI node boundaries are invisible to the eWall-
paper application.

For computationally intensive applications, the
simulator can be configured to run on more MPI nodes,
with a smaller number of virtual processors per node.
For faster prototyping and debugging, we can configure
the simulator to emulate all the virtual processors on
a single node. This allows the entire simulation to be
run on a single laptop, hence avoiding the lengthy job-
queue system on NERSC and enabling a shorter edit-
test-debug cycle.

5 Simulated Imaging Results

Our distributed algorithm was tested on the func-
tional simulator running on a 64 core cluster. Antenna
responses were artificially generated for three different
input scenes. Figure 6a shows an input scene consist-
ing of three points of varying reflectivities. The top-left
point is the least reflective and the bottom-right point
is the most reflective. Figure 6b shows the scene that
our algorithm reconstructed. The brightest object in the
recovered image corresponds to the point with highest
reflectivity.

Figure 7a shows an input scene consisting of a



(a) Input Scene (b) Reconstructed Scene

Figure 6: Scene with three points of different reflectivi-
ties

(a) Input Scene (b) Reconstructed Scene

Figure 7: Scene with points distributed along a spherical
surface

collection of points distributed along the surface of a
sphere. Figure 7b shows that the sphere is correctly re-
constructed by our algorithm. For Figure 8a and 8b, the
antenna responses are artificially generated from a set of
points taken from the Stanford volume data archive [6],
which was obtained from a CT scan of a human head.
The recovered 3D image of the head is shown from two
different angles.

6 Investigation of Design Parameters

While the functional simulator allowed us to verify
the correctness of our distributed algorithm, it gave no
measure of the projected performance of the algorithm
on eWallpaper. To predict the performance, we devel-
oped a timing model of the application code running on
the functional simulator. This model, which is described
below, shows that the code spends more than 90% of its
time communicating. A network simulator was therefore
also developed to aid investigation into the effects of dif-
ferent communication patterns and network parameters
on performance.

(a) Reconstructed Scene (b) Reconstructed Scene

Figure 8: Two angles of the reconstructed scene from a
CT scan

6.1 Timing Model

We assume that there are Nant × Nant antennas
arranged in a square array, and that each antenna steps
through Nf frequencies.

Let B be the network bandwidth, L, the network
latency from one processor to a neighbor, TM , the time
to load or store a complex floating point number, and
TF , the time to perform a floating-point arithmetic oper-
ation. Table 1 shows the time taken by each of the main
steps in the distributed imaging algorithm described in
Section 3.

Table 1: Time for Individual Operations

Operation Time
send neighbours Nf × TM + 4L

receive and forward (Nant − 1)×
(
Nf×8
B + L

)
fft Nf × log2Nf × (8TF + 3TM )
ptwise vector mult Nf × (6TF + 3TM )
stolt interpolation Nf × (10TF + 4TM )

By combining the times for individual operations
with the complete algorithm, as depicted in Figure 4,
the time to compute a complete image can be expressed
as:

T = 6 × (send neighbours + receive and forward)+
5 × fft + ptwise vector mult + stolt interpolation

= Nf

(
TF (16 + 40 log2 Nf ) + TM (15 log2 Nf + 13)

)
+

6 (Nant − 1)
(

8Nf

B
+ L

)
+ 24L

6.2 Network Simulator

A discrete-event simulator was developed to help
analyze the effect of interprocessor communication on al-
gorithm performance. The simulator maintains an event
queue for each processor in the network. Whenever com-
munication occurs between two neighboring processors,



one or more of the following events are enqueued at both
processors:

1. Transmission of the packet head at the sender

2. Transmission of the packet tail at the sender

3. Reception of the packet head at the receiver

4. Reception of the packet tail at the receiver

5. Transmission and reception of acknowledgement
messages

6. Buffer overflows and underflows

To accurately predict the performance of the algorithm
on the actual eWallpaper hardware, the expected wall-
paper bandwidth and latency parameters were used in
modeling the events.

Using the network simulator, we can determine the
effect that bandwidth, latency, and antenna array size
have on framerate, CPU utilization, and memory us-
age. The network simulator was also used to investigate
the performance of different communication patterns, as
shown in Figure 9. In this diagram, the arrows indicate
the migration of data to the processors that are actively
involved in the computation (the red-shaded blocks).

Single Node Single Column

Cluster Fully Distributed

Figure 9: Possible communication patterns for the imag-
ing algorithm

The single-node pattern is the simplest. All pro-
cessors forward their local data to a single node, which
then processes all the data sequentially. Once all the
data is on the processing node, no more communication
occurs, and all other processors are idle.

Under the single-column pattern, each processor
sends its data left until it reaches the left-most proces-
sor in its row. All computation is then done by the
processors in the first column. These processors only

need to communicate with each other when performing
a column-wise transpose. Row-wise transposes can be
done without communication.

In the cluster pattern, all data is sent to a small
cluster of processors in the center of the array. All the
computation is then performed by this cluster. Since the
cluster is small, row-wise and column-wise transposes
can be performed with fewer network hops.

The fully-distributed pattern represents communi-
cation for the algorithm described in Section 3. All data
and computation is evenly distributed amongst the pro-
cessors. The row-wise and column-wise transpose oper-
ations involve all the processors in the row or column.

7 Performance Results

The time taken to reconstruct a single frame for
each communication pattern, as determined by the net-
work simulator, is shown in Figure 10. The lower half
of each bar (shown in blue) represents the time that
each processor spends communicating with its neigh-
bors, while the upper half (shown in red) represents the
average time spent computing. The fully distributed
pattern is the fastest, requiring just 13 milliseconds per
frame. The only other pattern able to deliver video
framerates is the 16× 16 cluster.

The graph highlights the communication versus
computation tradeoff inherent to each communication
pattern. The communication patterns that have large
numbers of processors actively involved in the computa-
tion are dominated by communication time, such as the
Fully Distributed pattern, which spends 96% of its time
communicating. In contrast, the communication pat-
terns with small numbers of processors are dominated
by computation time, such as the Single Node pattern,
which spends 97% of its time computing.
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Figure 10: Time vs. communication pattern

Figure 11 shows the peak required memory per
node for the different communication patterns. The
larger the number of active processors in the pattern,



the less the required memory per active node. Since
each processor has only 100KB of local memory avail-
able, the only viable patterns are the Fully Distributed
and 16x16 Cluster.

Since the fully distributed pattern is the fastest and
requires the least memory, it shall be selected as the
pattern of choice for our distributed range migration
algorithm. All further analysis therefore assumes the
use of this pattern.
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Figure 12 shows that as we increase the width of the
antenna array, and hence distribute the data amongst
more processors, the framerate decreases due to the
increased communication. Note that in all the exper-
iments we constrain the number of frequencies to be
twice the antenna array width. At our planned resolu-
tion of 128 antennas × 128 antennas × 256 frequencies,
we achieve 75 frames per second. Video framerates can
still be achieved up to an array width of 256 antennas,
corresponding to an image resolution of 256× 256× 512
voxels. Furthermore, the results from the network simu-
lator very closely match the predictions from the timing
model.
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Figure 13 shows the speedup of the fully distributed
pattern over the single node pattern, for a range of

antenna array widths. As previously discussed, the
fully distributed pattern is dominated by communica-
tion costs, while the single node pattern is dominated
by computation costs. The communication costs for the
fully distributed pattern is O(N2) as the amount of data
stored in each row of processors is proportional to N2,
where N is the antenna array width. The computation
costs for the single node pattern is O(N3 log(N)), as
O(N2) 1D FFTs must be performed, each with a com-
putation cost of O(N log(N)). Therefore as N increases,
the computational costs for the single node pattern in-
creases at a faster rate than the communication costs
for the fully distributed pattern, resulting in the up-
ward curve. At the planned antenna array width of 128,
the fully distributed algorithm is 600 times faster than
the single node serial implementation.
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Figure 13: Parallel speedup vs. resolution

Figure 14 shows the ratio of communication to com-
putation time for each processor, at different antenna
array widths. As the array width increases, the execu-
tion time becomes increasingly dominated by communi-
cation costs. This is because the communication time is
O(N2), as explained above, while the time per node to
compute the 1D FFT is O(N log(N)).
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Figure 14: Breakdown of CPU time vs. resolution

Figure 15 shows the achievable framerate at dif-
ferent link bandwidths, as well as the resulting CPU



utilization. The achievable framerate is shown by the
top curve, and resulting CPU utilization, by the bottom
curve. As the bandwidth increases, the communication
time decreases, resulting in higher framerates and CPU
utilization. A minimum bandwidth of 250 Mbps is re-
quired to achieve 25 frames per second, which we regard
as the minimum framerate required for video imaging.

At our proposed link bandwidth of 1Gbps, the
achieved framerate of 75 fps results in a CPU utilization
of 0.03. The low CPU utilization factor allows other
compute-bound processes, such as image analysis and
operating system tasks, to run during the communica-
tion phases of the algorithm.
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Figure 15: Framerate and CPU load vs. bandwidth

The memory requirements per node for the fully
distributed algorithm is detailed in Figure 16. 52% of
the memory is used for network buffers, 18% for storing
antenna responses and intermediate results, and 30% for
storing precomputed FFT, Stolt, and back propagation
coefficients.
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Figure 16: Memory breakdown per node

If the FFT, Stolt, and back propagation coefficients
are no longer precomputed, but rather calculated as re-
quired, Figure 17 shows that the memory usage can be
decreased to 16KB per node. The added computation
causes only a small decrease in framerate.
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8 Related Work

2D arrays of controlled transmitters and receivers
were first used for imaging in the field of seismic data
processing. Controlled explosions were used to emit a
pulse from the surface of the earth. The reflected pulses
were recorded and processed to form detailed images of
subterranean structures.

The range migration algorithm (RMA) and Stolt
interpolation were two imaging techniques that were de-
veloped in this field (see [7] for an in-depth survey). In
recent years, the explosives were replaced with stepped-
frequency oscillators, commonly known as controlled
sources, for emitting the imaging pulses. The radio
transceivers on eWallpaper perform a similar function
as these sources.

For operation in an isotropic medium such as air, a
number of assumptions can be made to simplify the orig-
inal range migration algorithm. Cafforio et al. [8] were
first to adapt RMA to the field of synthetic aperture
radar (SAR). Although their algorithm uses the linear
motion of a satellite to produce 2D images of the Earth,
the simplifying assumptions are identical to ours. Fur-
thermore, the algorithm is equivalent to ours, except for
the lack of an additional spatial axis.

Both [2] and [9] extend Cafforio’s adaptation of
RMA to three dimensions. They use the extended algo-
rithm to process the received responses from a stepped-
frequency, linear array of antennas. However, neither of
the presented algorithms are parallelized. [2] computes
one frame, of 61 × 61 × 61 voxels, in 1 minute, and [9]
computes a frame, of 127 × 512 × 64 voxels, in 10 sec-
onds. Our achieved framerate of 75 frames per second is
due to a combination of the electronically-switched 2D
array of antennas, which eliminates the need for moving
antennas, and a fully distributed algorithm running on
a massively parallel system.

Liang et al. [10] also extended Cafforio’s adapta-
tion of RMA and built a near-field radar using a single
moving antenna. It took 8 hours to image the scene and



the algorithm was not parallelized. They do, however,
propose an alternative to traditional Stolt interpolation,
called cell averaging, that they claim provides better in-
terpolation accuracy.

Ralston, Charvat and Peabody [11] built an imag-
ing radar for looking through walls, based on Cafforio’s
2D algorithm. Although their algorithm was accelerated
using GPUs to deliver 70 frames per second, it used only
a linear array of antennas, and hence was only able to
produce 2D images.

An alternative approach to the row-wise and
column-wise transposes described in our paper is pre-
sented by O’Leary [12], who proposes the use of systolic
arrays for performing a matrix transpose on a linear ar-
ray of processors.

On the applications side, it has been shown that a
human’s heartrate and respiration can be detected wire-
lessly at a range of 0.5m, using a 2.4GHz radar with a
low-gain antenna [13]. While the computational algo-
rithm is very different to RMA, the hardware is identi-
cal, making the addition of such functionality to eWall-
paper appear promising.

9 Conclusion

We developed a distributed implementation of the
range migration algorithm for 3D radar imaging. The
implementation was optimized for the 2D mesh network
present on eWallpaper. A general-purpose functional
simulator for eWallpaper applications was developed for
testing the imaging algorithm. From these simulations,
a timing model and network simulator were created that
can accurately predict the performance of eWallpaper
applications. The timing model and network simulator
showed that our distributed imaging algorithm achieves
video framerates with feasible memory and bandwidth
requirements.

A remaining optimization is to halve the interpro-
cessor traffic using the technique outlined in the Ring
Exchange Algorithm [5]. We are also currently in the
process of building an FPGA-based hardware prototype
of eWallpaper. This will allow our imaging algorithm to
be tested in realtime with actual radio transceivers.
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