
To appear in the Proceedings of the Fourth International Symposium on High-Performance Computer Architecture, February, 1998

Exploiting Two-Case Delivery for Fast Protected Messaging

Kenneth Mackenzie�, John Kubiatowiczy, Matthew Frank, Walter Lee,
Victor Leez, Anant Agarwal and M. Frans Kaashoek

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139
fkenmac,kubitron,mfrank,walt,wklee,agarwal,kaashoekg@cag.lcs.mit.edu

Abstract

We propose and evaluate two complementary techniques to protect
and virtualize a tightly-coupled network interface in a multicom-
puter. The techniques allow efficient, direct application access to
network hardware in a multiprogrammed environment while gain-
ing most of the benefits of a memory-based network interface. First,
two-case deliveryallows an application to receive a message di-
rectly from the network hardware in ordinary circumstances, but
provides buffering transparently when required for protection. Sec-
ond, virtual buffering stores messages in virtual memory on de-
mand, providing the convenience of effectively unlimited buffer ca-
pacity while keeping actual physical memory consumption low. The
evaluation is based on workloads of real and synthetic applications
running on a simulator and partly on emulated hardware. The re-
sults show that the direct path is also the common path, justifying
the use of software buffering. Further results show that physical
buffering requirements remain low in our applications despite the
use of unacknowledged messages and despite adverse scheduling
conditions.

1 Introduction

Research in the past decade has seen the speed of communication
mechanisms such as coherent shared memory and message passing
increase to the point that each can be engineered to within a small
factor of the speed of a local memory miss. Such fine-grain com-
munication mechanisms have in turn enabled a much larger class
of applications based on either shared memory or message passing
programming styles to benefit from parallel processing. Shared-
memory communication mechanisms extend naturally to multipro-
grammed environments, with virtual memory based isolation of
processes as the basis for protection. Protecting fast message in-
terfaces without sacrificing performance, however, is more chal-
lenging.

Message passing network interfaces (NIs) have taken two gen-
eral approaches: direct and memory-based. Direct interfaces al-
low the processor to handle messages directly out of the network.
Memory-based interfaces provide special hardware to extract mes-
sages out of the network and buffer them in memory; the processor
then accesses the message buffers in memory. Although a defini-
tive conclusion awaits further research, past research indicates that
direct interfaces tend to be more efficient than memory-based inter-
faces. Direct interfaces that can be accessed at cache speeds offer
even better performance [14]. For example, the CNI paper [24]

�Current affiliation: Georgia Institute of Technology, Atlanta, GA 30332
yCurrent affiliation: University of California at Berkeley, Berkeley CA 94720
zCurrent affiliation: Intel Corporation, Santa Clara, CA 95052

showed that a direct, cache-level interface exhibited 50% higher
bandwidth than their best interface placed on the memory bus. As
discussed further in Section 2, direct interfaces are challenging
to protect without sacrificing efficiency or seriously impairing the
multiprogramming model. One appeal of memory-based interfaces
is that they may be protected through standard memory mapping
mechanisms.

In this paper, we investigate how to provide protected mes-
sage passing with a low-overhead direct network interface. The
key challenge is to efficiently virtualize and protect both access to
network interface data and control over delivery of network events.
Specifically, for performance, an application receives a message
via polling or user interrupt and pulls the message directly from the
network fabric at cache speeds without traversing main memory. In
a multiprogrammed environment, the challenge is complicated by
cases where a message arrives when the target application is not
scheduled, where a message handler runs but takes a page fault and
where a message handler blocks the network for an extended pe-
riod. Our approach is to handle the common, direct-delivery case
with the efficiency of unprotected, kernel-level access while han-
dling the exceptional cases in a manner that at worst leads to grace-
ful degradation in performance. Our protected message reception
path allows reception of a null message at user level via interrupt in
87 cycles compared to 54 cycles at kernel level without protection.
Similarly, we receive a null message via polling in 9 cycles at both
user or kernel levels. These times are of the same order of magni-
tude as a cache refill time from DRAM in a modern processor.

We propose two techniques to address the problem of protect-
ing a tightly coupled interface. The techniques employ a combina-
tion of software with a small amount of hardware:

� First, two-case deliveryprovides a uniform mechanism for
dealing with an application that cannot immediately receive a
message. Two-case delivery switches transparently between
a direct mode and a software-buffered mode of message de-
livery. The interface resorts to the buffered mode when a
message cannot be delivered safely or in a timely manner to
the application. Thus, messages need not be dropped merely
for protection reasons.

� Second,virtual bufferingmaintains the software buffer in vir-
tual memory (of the communicating application) allocated
on demand. Virtual buffering, like virtual memory, allows
the operating system to manage and minimize physical re-
source consumption while giving the application the illusion
of a very large resource. Virtual buffering is applicable to
any message system that employs buffering.

The context in which we evaluate our techniques is that of an in-
terface that supports aUser Direct Messaging(UDM) model. Simi-

lar to Active Messages [35], UDM defines a lightweight messaging
discipline in which every incoming message invokes a user han-
dler. The UDM discipline differs from others bycodifyingexplicit
control over handler atomicity as part of the user model and thus
provides for a smooth integration of interrupt- and polling-driven
operation. User-level code thus enjoys the same level of control
over the interface as an in-kernel device driver.

We have implemented our techniques in theFUGU multiproces-
sor system [21, 22]. TheFUGU hardware is based on extensions to
the (single-user) Alewife machine [1]. We have constructed both a
fast simulator and emulated hardware platforms. The emulator ex-
tends the Alewife chipset with a modified Cache and Memory Man-
agement Controller (CMMU) gate array and an auxiliary FPGA
that implement protection and virtualization features for the direct
delivery case. TheFUGU operating system, called Glaze, is a cus-
tom, multiuser operating system based on the Exokernel [16] and
supports virtual buffering. The new hardware, with the modified
CMMU and the FPGA, has been implemented and currently runs
a subset of our applications on two nodes. Most of our results are
from the simulator.

We performed experiments using a multiprogrammed workload
of real and synthetic benchmarks. Our experiments show that the
fast case is indeed the common case and that application character-
istics tend to keep the real memory required for buffering low even
under adverse scheduling conditions.

The main contributions of this paper are: (a) the notion of two-
case delivery, (b) the notion of virtual buffering, (c) our specific
implementation of a virtualized interrupt disable mechanism and
(d) the UDM model itself. The paper also reports on an imple-
mentation of an operating system supporting protected direct mes-
sages, and provides early evidence using multiprogrammed work-
loads that (1) the fast case of direct delivery can indeed be the com-
mon case, (2) although virtual buffering provides the guarantee of
unlimited buffering, the physical memory requirements are com-
monly small.

The remainder of the paper is organized as follows. Section 2
puts our work in perspective by describing related work. Section 3
presents the UDM model which forms the framework in which we
evaluate our ideas. Section 4 lays out the architecture for our pro-
tected implementation of the model using two-case delivery with
virtual buffering and provides raw performance data for the two
delivery cases. Section 5 describes the results of experiments with
applications and our operating system running on a simulator that
give the performance of virtual buffering. Section 6 concludes.

2 Related Work

Recent architectures demonstrate emerging agreement that it is im-
portant to provide support for efficient, fine-grain message pass-
ing, even in conjunction with hardware support for shared mem-
ory [1, 2, 13, 18, 27, 30]. The trend in message interfaces has been
to reduce end-to-end overhead by providing user access to the in-
terface hardware. We build on previous work in messaging models
and mechanisms.

Model. The UDM model is similar to Active Messages [35] and re-
lated to Remote Queues (RQ) [6] as an efficient building-block for
messaging within a protection domain. UDM differs from Active
Messages in that it includes explicit control over message delivery
for efficiency. RQ provides a polling-based view of a network inter-
face with support for system interrupts in critical situations while
UDM offers a more general view in which the application freely
shifts between polling and user-interrupt modes. The RQ imple-
mentation on Alewife used a software version of user-controlled
atomicity and the RQ paper outlined a hardware design in progress.
We present the details of that hardware atomicity mechanism here

in the context ofFUGU. Like RQ, UDM depends on buffering to
avoid deadlock rather than on explicit request and reply networks.

The Polling Watchdog [23] integrates polling and interrupts for
performance improvement. The resulting programming model is
interrupt-based in that application code may receive an interrupt
at any point; the application cannot rely on atomicity implicit in
a polling model. A polling watchdog uses a timeout timer on
message handling to accelerate message handling if polling proves
sluggish. TheFUGU hardware includes an identical timer but uses
it only to let the operating system clear the network. A polling
watchdog mode could be implemented in theFUGU system.

Direct Network Interfaces. Several machines have provided di-
rect network interfaces. These include the CM-5, the J-machine,
iWarp, the *T interface, Alewife, and Wisconsin’s CNI [20, 8, 5,
26, 1, 24]. These interfaces feature low latency by allowing the
processor direct access to the network queue. Direct NIs can be
inefficient unless placed close to the processor. Anticipating con-
tinued system integration, we place our NI on the processor-cache
bus. The CNI work shows how to partly compensate for a more
distant NI by exploiting standard cache-coherence schemes.

Direct interface designs have mostly ignored issues of multipro-
gramming and demand paging. The CM-5 provides restricted mul-
tiprogramming by strict gang scheduling and by context-switching
the network with the processors. The *T NI [26] would have in-
cluded GID checks and a timeout on message handling for protec-
tion as inFUGU. The M-machine [12] receives messages with a
trusted handler that has the ability to quickly forward the message
body to a user thread.

Memory-Based Interfaces. Memory-based interfaces in multi-
computers [4, 7, 29, 30, 32] and workstations [9, 11, 33, 34] provide
easy protection for multiprogramming if the NI also demultiplexes
messages into per-process buffers. Automatic hardware buffering
also deals well with sinking bursts of messages and provides the
lowest overhead (by avoiding the processors) when messages are
not handled immediately.

Memory-based application interfaces provide low overhead
when access to the network hardware is relatively expensive (true
for most current systems) and when latency is not an issue. In-
creased integration of computer systems and the mainstreaming of
parallel processing challenges both of these assumptions: on-chip
network interfaces can have low overhead and parallel programs
frequently require coordinated scheduling for predictable, low la-
tencies [3]. FUGU provides low latency for applications where
latency matters while including low-cost and reasonably efficient
buffering as a fallback mode. Bulk data transfers are handled by a
separate direct memory access (DMA) mechanism inFUGU [21].

Hybrids. Our UDM implementation employs both a direct in-
terface for speed and provides buffering for convenience. Other
projects share the same goals. Figure 1 gives a schematic view
of the different approaches to message delivery. Parts (a) and (b)
show direct and memory-based delivery, respectively. Parts (c) and
(d) depict hybrid schemes with different approaches. The memory
based CNI interface (CNI16Qm) [24, 25] provides both a fast path
and a (potentially virtual) buffered path by using the network in-
terface to buffer messages. This approach is hardware-intensive,
for instance requiring a duplicate translation cache in the network
interface. The UDM implementation uses operating system soft-
ware to initiate buffering and uses a DMA engine shared with its
bulk transfer mechanism to move the message data. The hard-
ware requirements are kept minimal for on-chip implementation
and amount to a small, single message queue and a simple DMA
engine.

The *T-Voyager system [2] represents an intermediate hybrid.
In *T-Voyager, the network interface demultiplexes incoming mes-
sages into several moderate-sized hardware queues. The multi-

2

P

M NI

hi
lo

P

M NI

1

lo

P

M NI
1

P

M NI

1

DMA

Faults

b. Memory−based:
 always buffers
 (e.g. SP−2, T3E)

16 m

d. Hybrid:
 mostly software
 UDM in FUGU

a. Direct:
 no buffering
 (e.g. CM−5)

c. Hybrid:
 mostly hardware
 CNI Q in [24,25]

Figure 1:Approaches to buffering. The annotations on the arcs represent relative frequencies along each path

ple queues allow multiple applications to be active simultaneously.
Like UDM, *T-Voyager overflows its queues to memory if neces-
sary.

Techniques used in our virtual buffering system are related
to several other systems. The Active Message implementation in
SUNMOS [28] on the Intel Paragon uses kernel code to unload the
message interface and to queue messages to be handled by a user
thread. The SUNMOS approach corresponds to using the software-
buffered path in UDM continuously. Fbufs [10] are an operating-
system construct used to efficiently feed streams of data across pro-
tection domains. The UDM virtual buffering system employs simi-
lar techniques in a specialized implementation to manage its buffer
memory.

3 UDM Model

This section describes the UDM model in abstract terms. The
model has two goals. First, it is an efficient target for a program-
mer, for a compiler or as a building block for other protocols (e.g.,
send/receive, RPC) in a library. Second, although it could be im-
plemented on other primitives, UDM is sufficiently low-level to be
implemented efficiently in hardware.

UDM provides all of the facilities commonly desired from fast
message interfaces within a multiprocessor: low-overhead mes-
sage construction and launch, as well as reception via interrupts
or polling. Part of its simplicity with respect to multiuser environ-
ments is that UDM allows the programmer to view the network
hardware as a dedicated, user-level resource with infinite buffering.
It is up to the hardware and runtime system to maintain this illusion.

UDM has two major components: First, the UDM model has
a notion ofmessages, which are the unit of communication, along
with operations toinject messages into the network at the source
andextractthem from the network at the destination. Second, and
uniquely, UDM provides an explicitatomicitymechanism, which
is a low-overhead, virtualized interrupt disable. This mechanism
grants user code explicit control over the arrival of message inter-
rupts, allowing a smooth integration of both polling and interrupts
as mechanisms for notification of message arrival.

Messaging Model. A message is a variable-length sequence
of words. Two of these words are specialized: the first is an
implementation-dependent routing header which specifies the des-
tination of the message; the second is an optional handler address,
as used in Active Messages. Remaining words represent the data
payload and are unconstrained.

The semantics of messaging areasynchronousandunacknowl-
edged. At the source, messages are injected into the network at any
rate up to and including the rate at which the network will accept
them. The injection operation isatomicin that messages are com-
mitted to the network in their entirety; no “partial packets” are ever
seen by the communication substrate [17]. Message injection can
thus be viewed in the following fashion:

inject(header, handler, word0, word1, . . .)

If resource contention prevents the network from accepting a given
message, the correspondinginject operation blocks until suc-
cessful. Alternatively, blocking can be avoided by using a condi-
tional, non-blocking version ofinject , calledinjectc . Once a
message has been injected into the network, the UDM model guar-
antees that it will eventually be delivered to the destination speci-
fied in its routing header.

At a destination, messages are presented sequentially for ex-
traction. A message is extracted from the network with an atomic
operation that reads the contents of the message and frees it from
the network:

extract()) (header, handler, word0, word1, . . .)

Implicit in this syntax is that the message contents are placed di-
rectly in user variables without a redundant copy operation. The
network provides a message available flag which can be examined
to see if anextract operation will succeed. It is an error to at-
tempt anextract operation when no message is available. Note
that, in addition to theextract operation stated above, UDM pro-
vides a similar operation calledpeek which permits examination
of the next message without dequeuing it.

By wrapping user-level network operations ininject and
extract abstractions, UDM virtualizes these operations, permit-
ting the underlying system to switch transparently between physi-
cal and virtual network access as needed. This is one of the central
features of UDM which we exploit for buffering in later sections.
In this sense, UDM is a generalization of Remote Queues.

Atomicity Model. UDM assumes an execution model in which
one or morethreadsrun on each processor. Further, UDM defines
a message notification interface consisting of a message available
flag, readable by the application, a message available interrupt, de-
scribed below, and an interrupt disable flag, writable by the appli-
cation. The interrupt disable flag permits an application to request
atomicitywith respect to message available interrupts. Periods of
execution in which interrupts are disabled are calledatomic sec-
tions. When interrupts are disabled, notification is entirely through
the message available flag. In this mode, the currently running
thread must poll the message available flag and extract messages
with extract as they arrive.

In contrast, when interrupts are enabled, the existence of an
input message causes the current thread to be suspended and an
independenthandler, to be initiated. The sequence of events is il-
lustrated in Figure 2. The handler begins execution in an atomic
section (i.e.,with interrupts disabled), at the handler address spec-
ified in the message. A handler is required to extract at least one
message from the network before exiting or re-enabling interrupts.
When a handler exits, some runnable thread is resumed. This thread
might be a thread awakened by the handler, a thread created by the
handler, or the interrupted thread; the exact scheduling policy is de-
fined by a user-level thread scheduler, not by the UDM model. In

3

notify

Sender:

Network:

Receiver:

...network blocked...

...

...

optional
 thread

end
atomic
section

transit
 time

notify
ignored

 receive
 occupancy

Events:

describe

 inject
(launch instruction)

 extract
(dispose instruction)

message−available
interrupt
(begins handler
 atomic section)

Figure 2:Message time line for interrupt delivery on the fast path.

GID register

user visible

kernel visible

descriptor−
 length

 space−
available

message−
available

UAC register
(see Table 3)

atomicity−
timeout
divert−mode

Send Receive

 Output
 message
 buffer
(16 words)

Input
message
buffer
(16 words)

Figure 3:FUGU network interface registers.

particular, UDM is compatible with extremely lightweight thread
systems in which message handlers are occasionally or routinely
converted to threads after executing only the minimal code required
to communicate with the network interface.

User-level atomic sections permit user code to construct inter-
rupt handlers, to poll, and to construct critical sections that are
atomic with respect to interrupts. This level of control over inter-
rupts is typical, if ad hoc, in kernel-level device drivers. Providing
this control at user level allows application code to interact with the
network interface with the same efficiency and flexibility as kernel
code. As withinject andextract , the atomicity mechanism is
anabstractionfor interrupt disable: in the common case, the user’s
requests for atomicity interact directly with the network interface
to defer interrupts. During page faults or other unexpected events,
however, these requests are virtualized to free up the physical in-
terface while maintaining the illusion of atomicity to the user. The
next section describes how this illusion is implemented.

4 Implementing Two-Case Delivery

This section details the design of theFUGU implementation of the
UDM model, showing how it uses two-case delivery to provide
user-level access to data and user-level atomicity control as well
as support for virtual buffering. The UDM model provides an ab-
straction of communication. The send-side of the UDM abstraction
is implemented in hardware inFUGU. The receive-side is imple-
mented two ways, in hardware and in software, corresponding to
the two cases in two-case delivery. The runtime system then choses
between the two cases according to system conditions.

This section is organized around the parts of two-case delivery.

Operation Description
launch(N) If header== kernel messagethen

cause aprotection-violationtrap.
elseifdescriptor-length> 0 then

Commit anN-word message to
the network and
setdescriptor-length:= 0

dispose If divert-modesetthen
cause adispose-extendtrap,

elseif message-availablenot setthen
cause abad-disposetrap,

else delete current incoming message.
beginatom(MASK) UAC := (UAC _ MASK).
endatom(MASK) If dispose-pendingis setthen

cause adispose-failuretrap.
elseif atomicity-extendis setthen

cause anatomicity-extendtrap.
else UAC := (UAC ^ (�MASK))

Table 1:FUGU operations

First, we describe the fast case by giving an ISA-level description of
the memory-mapped network interface hardware and its use. The
fast case includes hardware protection to support multiprogram-
ming. The central feature of the fast path is the revocable inter-
rupt disable mechanism that permits protected control over atom-
icity for user interrupts and direct polling. Second, we describe the
virtual buffering delivery case, we show how it provides seman-
tics identical to the fast case and we introduce an overflow control
mechanism used to limit buffer usage of unruly programs. Third,
we put the two cases together by describing how the interface to the
two modes is kept transparent and how transition is invoked.

4.1 Direct Access Path

The FUGU network interface consists of a set of memory mapped
registers shown in Figure 3, a set of atomic operations listed in
Table 1 and a set of interrupts and traps listed in Table 2. The op-
erations are implemented as instructions inFUGU but might be en-
coded as writes to additional memory-mapped registers. The user-
level registers, operations and themessage-availableinterrupt are
manipulated directly by user code when the fast mode is enabled,
i.e., under ordinary conditions. The kernel registers and the rest
of the interrupts and traps both control the transition from fast to
buffered mode in response to exceptional conditions and support
operation in buffered mode. Further discussion of buffering is de-
ferred to Section 4.2.

Send and Receive.The inject operation of the abstract model
is decomposed into a two-phase process ofdescribeandlaunch, as
in [17]. To send a message, an application first writes all of the

4

Interrupt/Trap Event Signaled
message-available User interrupt: raised when a message

is available for reading
mismatch-available Interrupt: message available with

mismatched GID (or all messages
whendivert-modeis set)

atomicity-timeout Interrupt: atomic section timer expired
atomicity-extend Trap: optional at end of atomic section
dispose-extend Trap: optionally triggered bydispose
dispose-failure Trap: triggered bydispose when

application fails to free message
bad-dispose Trap: triggered bydispose with

no pending message.
protection-violation Trap: user access to kernel registers

or userlaunch with kernel message

Table 2:FUGU Interrupts and traps

message data into the output message buffer starting at zero off-
set from the beginning of this buffer. The send buffer is special
in that store operations at a given offset will block if the network
is currently unable to accept a message as large as one that is im-
plied by the offset. Thespace-availableregister, used to implement
injectc , reflects the number of send buffer words that may be
written without blocking. The buffer in our implementation is lim-
ited to 16 words; larger messages utilize an associated user-level
DMA mechanism [21] which is beyond the scope of this paper.

Once the message has been completely described, it is guar-
anteed that the network will accept it. At that point, the message
is injected into the network with an atomiclaunch instruction
whose operand reflects the length of the message. Theinject
operation remains atomic becauselaunch is atomic: at any point
before launch, the contents of the output buffer may be transpar-
ently unloaded and later reloaded if necessary for a context switch.
The descriptor-lengthregister reflects the number of words in the
buffer that would need to be swapped at any given time. After a
launch , data in the send buffer may be altered immediately with-
out affecting any previously injected messages.

Theextract operation is decomposed in an analogous way.
The contents of the next pending message are made available be-
ginning at offset zero from the input message buffer. Access to data
within the message is performed by reading data from the buffer,
then executing adispose instruction. Thedispose operation
then exposes the next message, if available, for extraction. Atom-
icity of extract is maintained becausedispose is atomic.

The application is notified of the arrival of a new message either
by a message-availableinterrupt (converted to a user-level inter-
rupt) or by explicitly polling themessage-availableflag in the net-
work interface. The selection between the two modes is performed
by the revocable interrupt disable mechanism described below.

Protection. The network interface hardware includes protection
mechanisms sufficient to enable multiprogramming. The emphasis
is on keeping the common case fast while reflecting all other cases
to software. There are three hardware facilities used:

1. Isolation between users is maintained by labeling all mes-
sages with a Group Identifier (GID) stamped by hardware at
the sender and checked by hardware at the receiver.

2. The duration of a user interrupt or upcall handler is bounded
by a timeout timer (discussed below).

3. A reserved, second network exists for occasional use by the
operating system in situations otherwise subject to deadlock
(see Section 4.2).

User Controls Description
interrupt-disable When set, preventsmessage-available

interrupts. In addition, if a message is
pending, enables atomicity timer;dispose
operation briefly disables (i.e.,presets) timer.

timer-force When set, enables atomicity timer
unconditionally.

Kernel Controls Description
dispose-pending Set by OS in themessage-available

stub, reset bydispose .
Seeendatom in Table 1.

atomicity-extend Requests anatomicity-extendtrap.
Seeendatom in Table 1.

Table 3: Detail of individual flags in the User Atomicity Control (UAC)
register.

The GID labels a group of processes (virtual processors) oper-
ating together,e.g.,the processes corresponding to the processors
in a parallel application. UDM provides the simplest GID-based
demultiplexing system in hardware: at the receiver, if the GID in
the header matches the GID of the current application, the appli-
cation is notified of message arrival via themessage-availablein-
terrupt or via themessage-availablebit for polling. Otherwise, a
mismatch-availableinterrupt is generated, allowing operating sys-
tem software to perform the rest of the demultiplexing in this un-
common case.

FUGU applies all protection at the receiver. The sender is con-
trolled only indirectly by the global scheduler. Messages directed
to incorrect destinations are detected because they causemismatch-
available interrupts. The operating system handler then uses the
global scheduler to find and to perform the appropriate action
against the offending sending application.

Revocable Interrupt Disable. As was discussed in Section 3,
UDM includes an explicit notion ofatomicity, i.e., the ability to
disable message interrupts. The atomicity mechanism is an abstrac-
tion. Although the user is presented with the illusion of a dedicated
network interface, there are several reasons not to allow the user to
directly block the network interface by disabling interrupts:

� Malicious or poorly written code could block the network for
long periods of time, preventing timely processing of mes-
sages destined for the operating system or for other users,
even on other nodes.

� When the user is polling, the system as a whole may still
need to receive messages on the local node via interrupts to
ensure forward progress.

� The operating system must demultiplex messages destined
for different users. This process should be neither visible to
nor impeded by any particular user.

At the same time, we would like the user to enjoy similar efficiency
in the common case to the operating system, extracting messages
directly from the network interface.

We solve these problems by implementing atomicity through
a revocable interrupt disablemechanism. The main idea behind
this mechanism is that we allow the user totemporarily disable
hardware message interrupts. As long as the network continues
to make forward progress, we allow the user to continue disabling
interrupts. Should a message stay blocked at the input queue for
too long, werevokethe interrupt disable privileges, switching from
physical atomicity (i.e., disabling of the actual queue) to virtual
atomicity (i.e., buffering messages in memory and hiding them

5

0000

normal

timeoutbeginatom

critical
section

0000

normal

dispose

handler

handler

dispose

kernel upcall

upcall

interrrupt−disable

timer−force

dispose−pending

atomicity−extend

upcall

Enter
buffer
mode

ERROR

Enter
buffer
mode

timeout

timeout

ERROR

Enter
buffer
mode

timeout

timeout

1111

message−available
interrupt

endatom

1101

1000

1010

1000

RETI or endatom

RETI or endatom

(via atomicity−

 extend trap)

(via dispose−
 pending trap)

(via dispose−
 pending trap)

RETI or endatom

RETI or endatom

(C) User−level interrupt in a priority inversion situation

(B) User−level interrupt

(A) Critical section / polling

Figure 4: Three revocable interrupt disable examples. User-level nodes
are labeled with theUAC state at the top. Kernel-level nodes are shaded.

from the user until the atomic section is exited). Thus, the revo-
cable interrupt disable mechanism can trigger an explicit entry into
buffering mode.

The central feature of the revocable interrupt disable mecha-
nism is a dedicated atomicity timer which can be used to detect lack
of forward progress. By dedicating this timer we can provide low-
cost “instructions” which reset the timer and which enable the timer
when the network is blocked. In addition, the atomicity mechanism
is designed to affect messages destined for the currently scheduled
user: when messages destined for other users (or the operating sys-
tem) arrive at the head of the queue, they cause interrupts to the
operating system, even if the user has requested atomicity. Further,
when the buffered path is in use, all messages interrupt the operat-
ing system, regardless of whether the user has requested atomicity.

Control over user-level interrupts is implemented with four
atomicity control bits in the User Atomicity Control (UAC) reg-
ister which are manipulated via thebeginatom andendatom
operations. Table 3 details the individual flags in theUAC register.
Two of the bits are modifiable only in kernel mode and are config-
ured by the hardware or kernel code before giving control of the
processor to the user. The other two bits can be set and reset by
the user viabeginatom andendatom , respectively. Under cer-
tain conditions, noted in Table 1 (but generally whenever either of
the kernel bits is set),endatom executed in user mode will trap to
return control to the operating system.

The atomicity timer mechanism is comprised of a decrement-
ing counter and a preset value,atomicity-timeout. While the timer
is disabled, the counter is preset to theatomicity-timeoutvalue.
When the timer isenabled, the counter decrements for eachuser

FUGU FUGU FUGU

Item kernel hard soft
mode atomicity atomicity

(cycles) (cycles) (cycles)

Message Send
Descriptor construction 6 6 6
launch 1 1 1

send total: 7 7 7

Message Receive (interrupt)
Interrupt overhead 6 6 6
Register save 16 16 16
GID check – 10 10
Timer setup – 1 13
Virtual buffering overhead – 8 8
Dispatch (+ upcall) 10 13 13

subtotal: 32 54 66
Null handler (w/dispose) 5 5 5
Upcall cleanup – 10 10
Timer cleanup – 1 17
Register restore 17 17 17

interrupt total: 54 87 115

Message Receive (polling)
Poll 3 3
Dispatch 5 5
Null handler (w/dispose) 1 1

polling total: 9 9 n.a.

Table 4:Cycle counts to send and receive a null message. Add 3 cycles per
argument to the send cost and 2 cycles per argument to the receive handler
cost for non-null messages. The “soft atomicity” numbers include overhead
to emulate the atomicity mechanism on the first silicon CMMU and the
current simulation system.

cycle, flagging anatomicity-timeoutinterrupt if it reaches zero. The
counter is enabled during atomic sections by the userUAC bits, as
described in Table 3.

The use of the revocable interrupt disable mechanism is best
illustrated by example. Figure 4 illustrates several different uses
of the atomicity mechanism: for polling, user-level message inter-
rupts, and for user-level message interrupts during priority inver-
sion. The timeout timer provides a bound on the user control over
the processor and the network. Note that the exact timeout value is
a free parameter that may be changed without affecting correctness.
Paths through this figure which exit to the left represent fast-path
usages of atomicity, while exits to the right represent entry into
buffer mode (or errors).

Fast Path Performance. Table 4 details the cost of sending and
receiving messages inFUGU at kernel level and at user level using
two different atomicity mechanisms. The cycle counts are made
from simulator traces of a simple ping-pong benchmark and the
timings have been verified against the hardware. The send cost is
for a blockinginject operation. The interrupt-based receive cost
represents the basic fast path cost. The polling cost represents a
polling loop that receives exactly one type of message. The loop
checks the message type by testing the handler address. This sort
of polling loop is useful in applications that orchestrate communi-
cation closely.

The atomicity mechanism and GID manipulations are per-
formed in software in the current system (“soft atomicity” in Ta-
ble 4), but we also predict the performance we expect using the
revocable interrupt disable mechanism by eliminating the appro-
priate categories. The result is that the overhead of the fast path for
user-to-user communication inFUGU is comparable to the overhead
for unprotected, kernel-to-kernel communication.

6

Sender:

Network:

Receiver:

...

...

end
atomic
section

 compose receive
occupancy

launch dispose

transit

buffer
insert
(O/S)

buffer
extract
(user)

"notify"mismatch
interrupt

dispose
(traps)

Figure 5:Message timeline for the buffered path.

4.2 Virtual Buffering Path

Virtual buffering allows messages to be buffered in order to pre-
serve the semantics of the UDM model in the face of uncommon
but unpredictable cases. The objectives of virtual buffering are to
provide:

1. Identical semantics to the fast case using memory for data
access and user thread manipulations for atomicity control.

2. Automatic management of physical memory resources.

3. Guaranteed delivery, which helps to avoid application dead-
lock and allows the fast case to avoid all buffer management
overhead.

We address the objectives as follows. First, hardware and soft-
ware mechanisms and software conventions provide UDM seman-
tics. Second, the software buffer itself is virtualized, allowing es-
sentially unlimited buffering while avoiding dedicating physical
memory to what is in practice an infrequent case. Finally, deliv-
ery is guaranteed within the limits of swap space by providing a
deadlock-free path to backing store. An overflow control mecha-
nism makes unlimited virtual buffering practical by providing feed-
back from the buffering system to the system scheduler. The design
details are discussed below along with low-level performance. The
interaction of buffering with application characteristics is discussed
in Section 5.

Buffering Mechanics. Switching to the buffered case serves as a
uniform response to all situations where fast case delivery is not
possible or not sufficiently timely. Buffering is a per-processmode.
In the buffered-mode steady state, the operating system stores mes-
sages in a software buffer in the virtual memory of the application
performing the communication and the application reads the mes-
sages from the software buffer as if from the network interface. A
process remains in buffered mode until the last buffered message is
handled. On exit from buffered mode, the operating system reverts
to allowing user messages to be received directly from the network
interface.

In the steady state, illustrated as a timeline in Figure 5, buffered
mode is supported by thedivert-modebit in the network interface
(Figure 3). Whendivert-modeis set, all incoming messages cause
kernelmismatch-availableinterrupts. Themismatch-availablein-
terrupt handler in the operating system demultiplexes incoming
messages into the software buffer of the application indicated by
the GID in the message header.1 In addition, divert-modeset
causes the user-modedispose instruction to take thedispose-
extendtrap. Thedispose-extendtrap handler then emulates the dis-
posal of a message in the software buffer of the current application.

1We don’t actually use the processor to copy the message into memory; there is a
DMA mechanism that can be optionally invoked as part of thedispose operation.

In our current implementation, queued messages are always pro-
cessed in order.

The buffered delivery mode presents the user with the same
atomicity semantics as the fast path hardware by a combination of
buffer management and thread priority manipulation. First, if soft-
ware buffering was invoked because of a timeout or page fault in an
atomic section, the thread scheduler defers handling subsequently
buffered messages until the suspended atomic section completes,
preserving atomicity. Second, handler execution is made atomic in
buffered mode by elevating the priority of the message-handling
thread so that it always runs in preference to other background
threads. If the application was in the midst of a handler or polling
for messages at the time buffering was invoked, then that handler or
polling thread becomes the high-priority, message-handling thread
and can continue to run, reading messages from the software buffer,
as long as it keeps atomicity on. Alternatively, if there is no such
existing thread or the existing thread exits its atomic section (as de-
tected byatomicity-extend), then a new message-handling thread is
created to run the handlers of the messages remaining in the buffer.

Guaranteed Delivery. The buffering system needs to be able to
provide buffer space to absorb incoming messages rapidly. How-
ever, it is inconvenient to pin down physical pages in order to serve
what we expect to be an infrequent case. Virtual buffering stores
messages in virtual memory and allocates physical page frames to
back that virtual memory only on demand.

The interrupt/trap handler that inserts messages into a virtual
buffer usually just adds the message to several already buffered on
an existing physical page. If necessary, the handler invokes the op-
erating system to quickly allocate a fresh physical page to extend
its buffer. The buffer insertion code only stalls when there are ab-
solutely no page frames available on the node. Without additional
mechanism, this stall situation would lead to deadlock. We pro-
pose to rely on an extra logical network to avoid deadlock in the
worst cases and to use scheduling techniques to preserve efficiency
in most cases. We have only partially implemented the deadlock
avoidance and scheduler feedback techniques at this time, but fore-
see no fundamental problems with the following approach:

� We avoid deadlock at the lowest level by arranging for key
services to rely on a second logical network reserved to the
operating system as a guaranteed path to backing store. The
second network is used infrequently for this purpose so its
performance is not critical. The network might be shared
with some other use, such as supporting shared memory. An
extra virtual channel [8] in the main network, a LAN or a ser-
vice network would serve the purpose. Our emulator hard-
ware provides a very simple, bit-serial network.

� The second network provides a guarantee of deadlock avoid-
ance, but performance would degrade severely if we were to
routinely block the main network while paging. In practice,
high consumption of virtual buffering space corresponds to

7

severe misscheduling of an otherwise reasonable application
or to an application that is maliciously or erroneously out
of control. Excessive demand for virtual buffering in our
system is analogous to thrashing of virtual memory. Ac-
cordingly, we employ a technique reminiscent of the anti-
thrashing strategy in Unix: we identify the offending applica-
tion and take gross control of its scheduling. First, an appli-
cation on the verge of exhausting physical memory is glob-
ally suspended while paging clears out space on the node.
Second, a well-behaved application will recover from buffer-
ing if gang scheduled (Section 5.2), so the buffering system
advises the scheduler to gang schedule the application.

Buffering Performance. The existence of the buffered path with
guaranteed delivery improves performance by enabling the fast
path to avoid all buffer management overhead. Avoiding buffer
management shaves a few instructions off the send and receive
overheads and avoids the need for acknowledgement messages.
More intangibly, virtual buffering removes the need for the user to
reason about limited buffer resources and correctness, although it
may still be desirable to limit buffer consumption for performance.

Virtual buffering improves memory performance by reducing
the amount of physical buffer space required versus a system that
pins its buffer pages in memory. The pool of physical page frames
available on a node are effectively shared with other dynamic con-
sumers of memory such as the demand paging system and the file
cache. Section 5 presents evidence that the amount of buffer space
required can be kept low.

Implementing virtual buffering in software keeps the size and
complexity of the network interface low. Using virtual memory is
particularly natural when the processor initiates all the buffering
because existing support for virtual memory (e.g. the processor’s
TLB) is reused. It requires a relatively complex DMA engine or
coprocessor to manipulate virtual memory independently [13, 25,
29].

Buffering adds a performance cost when used. The buffered
path introduces two components of overhead over the fast path.
First, there is an extra copy operation: an operating system han-
dler must copy the message from the network interface to mem-
ory. Second, the user handler must now retrieve the message from
main memory DRAM rather than from the faster network interface
SRAM. For message handlers that run for a long time, the extra
overhead of buffering will be insignificant. For short handlers or for
messages with large amounts of data, the extra overhead can dra-
matically increase the total processor (or DMA) cycles consumed
by the message. Any extra overhead is important, even to appli-
cations where message latency is not a concern, because the cost
of copying represents wasted cycles, and total handler overhead
strictly limits the maximum observable messaging rate, as observed
in Section 5.2.

We evaluate our implementation of the buffered path with a mi-
crobenchmark that causes many messages to be buffered. The over-
heads, including allocation of virtual memory on demand, are tabu-
lated in Table 5, listing the minimum and maximum buffer insertion
times and the buffer extraction overhead. The minimum overhead
per message is 232 (= 180 + 52) cycles, or about 2.7 times the fast
path overhead of 87 cycles, for null messages. For non-null mes-
sages, the difference increases due to the extra cost of pulling the
messages from DRAM of 2 cycles per word plus 10 cycles per 4
words for cache misses.2 The null handler time already includes the
cost of one expected cache miss for fetching the message header.
The virtual buffering scheme allocates page frames from the oper-
ating system on demand. These allocations are expensive (3,162
cycles), but occur so rarely as to be negligible in our simulations.

2The buffer insertion handler uses DMA to copy the message so there is no direct
overhead to the processor for extra words inserted into the buffer.

Item Cycles
Minimum buffer-insert handler 180
Maximum handler (w/vmalloc) 3,162

Execute null handler from buffer 52

Table 5:Cycle counts for overhead to insert and extract messages from the
software buffer. Add roughly 4.5 cycles per argument word to the extraction
cost for non-null messages.

4.3 Transparent Access

The key to two-case delivery is that the direct and buffered modes
of operation must appear identical to user software. We call this
principletransparent access, and it must apply to both the messag-
ing and atomicity primitives of the UDM model. Given transparent
access, the runtime system is free to switch to and from buffered
mode at any time. As a consequence, the buffered mode provides
a unified means of dealing with all exceptional circumstances that
prevent a user-level application from proceeding immediately.

Transparency Mechanisms.Transparency of the messaging prim-
itives is achieved through a combination of hardware mechanisms
and software conventions. First,inject operations are always di-
rected at hardware queues. As a consequence, only theextract
and atomicity manipulation operations must be virtualized.

As discussed in Section 4.1, anextract operation is decom-
posed into memory-mapped reads from the network interface, fol-
lowed by adispose instruction. Access to receive data is made
transparent by employing a software convention of using a known
base register to point to the input message buffer. In the fast case,
this register points at the hardware queue. When delivery must be
shifted from fast to buffered mode, the base register is altered to
point to the buffered copy of the message (if any) in main memory.
Thedispose instruction is made transparent by causing it to be
trapped and emulated whenever the the user is in buffered mode.

Atomicity control is made transparent by switching seamlessly
between modes. In the fast mode, the atomicity bits control mes-
sage interrupts directly. In the buffered mode (divert-modeset),
all interrupts are diverted to the operating system and atomicity is
emulated by manipulating user threads as described in Section 4.2.

Mode Transition. Transitions to buffered mode take place when
the user cannot or will not make forward progress. We have iden-
tified three reasons to switch the active task from fast to buffered
mode (these are demanded for protection and context-switching):
page faults in the handler, atomicity timeouts, and scheduler quan-
tum expirations. All three of these events are “soft” in that they
merely cause a transparent switch to buffered mode. The user ob-
serves an increase in the cost of messaging, but no change in pro-
gram semantics.

Transparency is important at the beginning of a scheduler quan-
tum, since it allows the scheduler to start a user thread in buffered
mode, letting the thread process messages that were received while
other threads were scheduled. When the buffered messages have
been exhausted, transparency can again be invoked to switch back
to the fast mode of reception.

The next section will explore the extent to which the unbuffered
path is the common case of operation.

5 Experiments and Results

This section details experiments that show the performance of our
implementation of UDM on a simulatedFUGU system using real
and synthetic applications. The results make three points. First,
we show that applications naturally avoid buffered mode and that

8

App. Description Data set Model Measured Cycles Tot. msgs Tbetw Thand
Barnes N-body simulation 2048 bodies, 3 iterations CRL 3rd iter. 45.7M 107,849 3390 337
Water Particle-in-cell 512 molecules, 3 iterations CRL 3rd iter. 47.6M 36,303 10,500 419
LU Blocked matrix decomp. 250x250 matrix, 10x10 blocks CRL all 13.4M 7,564 14,200 478
Barrier 10000 barriers – UDM all 18.5M 240,177 615 149
Enum Triangle puzzle 6 pegs/side UDM all 72.7M 610,148 953 320

Table 6: Application characteristics including runtime and messages sent for the measured part of each application running standalone on eight nodes.
Programming models are native UDM messages and CRL, a software shared-memory system built on top of UDM.

Figure 6:PrototypeFUGU node board (25� 12cm).

physical memory requirements tend to be low even under adverse
scheduling conditions. Virtual buffering thus improves memory
performance because it avoids consuming physical memory unless
the application requires it. Second, buffered versus direct delivery
becomes a tradeoff against scheduling flexibility for applications
that can tolerate buffering. Two-case delivery improves applica-
tion performance by incurring buffering overhead only when the
application is actually using the buffering to gain scheduling flexi-
bility. Finally, we explore the limits to asynchronous messaging to
determine the worst cases for our system. We show that although
reasonable applications limit their demand for buffering, the buffer-
ing overhead should still be kept low because the throughput of the
buffered case sets a limit for certain programming styles that syn-
chronize infrequently.

Experimental Environment. The FUGU system is an experimen-
tal multiuser multiprocessor under construction. FUGU extends
the MIT Alewife multiprocessor with the addition of aUser Com-
munication Unit(UCU) IC which implements the TLB, the GID
stamp/check and a rudimentary second network. Our initial imple-
mentation of the UCU is based on a Xilinx 4025 FPGA.

A single node of aFUGU machine is depicted in Figure 6. The
hardware currently runs most of the operating system and a few of
our applications. The experimental platform used for the results
in this section is a fast simulator used in advance of the prototype.
The simulator models Sparcle instruction timing and the cache in
the emulator: a single 64KB, unified cache with 16-byte lines and
a 10-cycle miss penalty. The simulator design emphasizes speed
over timing accuracy3, but we believe the distortions introduced
do not qualitatively affect our results. The current software system
differs from the design presented in Section 4 in that the atomicity
mechanisms are implemented in software (much like the RQ im-
plementation on Alewife) instead of hardware. The GID stamp and
check and thedivert-modebit are also currently implemented in
software.

The FUGU operating system, Glaze, is a custom multiuser op-
erating system based on the Aegis Exokernel [16]. The operating
system supports multiprogramming, virtual memory, messages and

3Compared to measurements on the hardware, the simulator reports cycle counts
within +/-20%.

user-level threads. Glaze implements the UDM model including
virtual buffering used in response to GID mismatches and page
faults4, although message timeouts are currently fatal. The sys-
tem scheduler, implemented as a user-level server, supports loose
gang scheduling with synchronized clocks [19]. Overflow control
is implemented partly cooperatively in a user library. Glaze, the
scheduler and the benchmarks and synthetic applications described
in the next section are all functional on the fast simulator.

The simulated system includes eight processors. The scheduler
timeslice is set at 500,000 cycles. All numbers represent the aver-
age of three trials.

5.1 Application Performance

We evaluate the performance of our implementation by examin-
ing the effects of buffering in several applications tabulated in Ta-
ble 6. Three applications, LU, Water and Barnes come from the
SPLASH [31] suite and are slightly modified to make use of the
CRL all-software shared-memory system [15]. CRL presents a
message-passing load that is representative of coherence protocols
such as Stache [24] and can be considered operating-system-like:
many low-latency request-reply packets mixed with fewer larger
data packets. A fourth application,enum, is a fine-grain, data-
parallel application that exchanges numerous unacknowledged
short messages and synchronizes only infrequently. At the other
extreme, a synthetic application,barrier , included for illustra-
tion, consists entirely of barriers and thus synchronizes constantly.

Table 6 also shows the characteristics of the benchmarks run-
ning standalone on an eight-processor system. The table shows the
number of cycles, the total number of messages, the average cy-
cles between communication events (Tbetw) and the average cycles
spent per handler (Thand) for each of the applications.

For our experiments we multiprogram each application, one at
a time in separate runs, against a “null” application with schedules
of varying quality. The scheduler gang-schedules the pair of appli-
cations using the local cycle count register on each node as a cue to
perform a gang switch. The schedule quality is varied by skewing
the cycle count register on each node to produce artificially poor
schedules in a controlled manner. This skew creates a window
at the beginning and end of each timeslice during which arriving
messages will generate amismatch-availableinterrupt, forcing the
application into buffered mode.

The runtime represents either the third iteration for the iter-
ative applications (water and barnes) or the whole program.
The runtime represents all the cycles used on behalf of the applica-
tion, including the cost of buffer insertion handlers that actually run
while “null” is scheduled. We use a null application rather than two
copies of a real application because the experiment is more easily
controlled.

Figure 7 makes the main point of the experiment: that the de-
mand for buffering is relatively small and increases gracefully. Fig-
ure 7 plots the fraction of messages that take the buffered path ver-

4Glaze does not support paging to disk, but does support faults to pages that are
allocated and zero-filled on demand.

9

� enum
� water
� lu

 barnes

 barrier

|

0
|

30
|

60
|

90

|0

|10

|20

|30

|40

|50

 Percent skew across machine

 P
er

ce
nt

 o
f m

es
sa

ge
s

bu
ffe

re
d

�

�

�

�

�

�

�

� � �
�

�
�

�

�
�

�
� �

�

�

Figure 7:Percentage of messages traversing the buffered path for appli-
cations multiprogrammed with a null application versus decreasing sched-
ule quality.

� enum
� water
� lu

 barnes

 barrier

|

0
|

30
|

60
|

90

|0

|1

|2

|3

|4

|5

 Percent skew across machine

 S
lo

w
do

w
n

re
la

tiv
e

to
 z

er
o

sk
ew

� � � � � � �
� � � �

�
�

�

� � �
�

�

�

�

Figure 8:Relative runtimes of applications multiprogrammed with a null
application versus decreasing schedule quality. Runtimes are normalized
to the runtime of the application running alone.

sus decreasing scheduler quality. The applications with intrinsic
synchronization exhibit essentially a constant fraction of messages
buffered corresponding to the maximum number of messages that
can be outstanding simultaneously in the application.Enum ex-
hibits buffering linearly with skew as expected for an application
with many messages and little synchronization: the likelihood of a
message arriving when a process is not scheduled is proportional to
the skew between processors.

The maximum number of physical pages required during any
run is low, less than seven pages/node, in all cases. The total is
small in each case either because the number of messages outstand-
ing is limited or because (in the case ofenum) the messages are
small and are accumulated at only a moderate rate compared to the
length of a timeslice. Because the required buffer space is small in
the common case, the virtual buffering system will only rarely need
to page to disk or invoke the overflow control system.

The applications in the experiment slow down with increased
skew largely because of the skew itself and to a small extent be-
cause of the cost of buffering. Figure 8 lists the relative runtime
of each application normalized to the runtime of the application
run with zero skew, which is within 1% of 2X the runtime stan-
dalone. Thebarrier application is very sensitive to skew be-
cause it makes progress only when all processes in the job are si-
multaneously scheduled: its slowdown is almost exactly the inverse
of the skew. Because theenum application tolerates latency well
it is relatively insensitive to poor schedule quality. The runtime in-
crease inenum is due only to the added cost of message buffering.
Although the Barnes, Water and LU applications are sensitive to la-
tency, they communicate less frequently thanbarrier andenum
and so observe intermediate slowdowns.

We conclude that the demand for buffering remains low in our
applications despite the use of unacknowledged messages and de-
spite (artificially) adverse conditions. In general, we expect appli-
cations to suffer buffering overhead only rarely because buffered
mode is entered only under unusual conditions and because ordi-
nary applications will clear buffered messages quickly. The second
of these expectations is not immediately obvious, so we explore the
incidence of buffering with a synthetic application, below.

5.2 Buffering Behavior

If a node must start buffering, two factors help guarantee that the
buffer will clear relatively quickly. The first is that any applica-
tion that requires a reply after a message send inherently limits its
own communication rate and limits the number of messages that

can possibly be buffered at a given moment. The second is that an
application that consumes messages faster than it produces them
tends to clear the buffer even without synchronization. There re-
main applications that launch messages at very high rates for ex-
tended periods. At some point, however, an application written
this way must simply be considered poorly behaved because it will
perform poorly on any machine. OnFUGU, an application that
uses excessive buffering will eventually invoke the overflow con-
trol mechanism. We use a synthetic application to find the bounds
on application behavior.

Our synthetic application, synth-N , performs producer-
consumer communication between four processors with various
amounts of synchronization. At the consumer node, each incoming
message from the producer invokes a request handler that stalls for
a short period, and then sends a reply message. The time to process
one of these request messages (Thand) is fixed in our experiment
at 290 cycles, including interrupt and kernel overhead. Each node
iteratively generates groups ofN messages, directed randomly to
the other nodes, and then waits for all the acknowledgements from
that group of requests, effectively creating a synchronization point
and limiting the maximum number of outstanding requests toN .
The interval between individual message sends is a uniformly dis-
tributed random variable with an average ofTbetw cycles.

We tested three cases of synth-N with N set to 10, 100 and
1000 messages. The scheduler skew for this experiment was held
constant at a small value, 1%, that is sufficient to force the applica-
tion to enter buffered mode periodically. Figure 9 presents the re-
sults, giving the percentage of messages buffered on the consumer
node versusTbetw. There are two features to observe in the results.
First, all versions of synth-N show a small percentage of messages
buffered whenTbetw > (Thand+ Tbuffering overhead). In this re-
gion, the application is well-behaved by virtue of having a low send
rate so that the consumer’s buffer is guaranteed to eventually drain.
Second, buffering is reduced as the frequency of synchronization
increases (smallerN). In this application, synchronizing has the
effect of “manually” clearing the software buffer, so the node is in
buffered mode only from the time buffered mode is triggered un-
til the next synchronization. The synchronization in synth-100 and
synth-10 occurs more often than timeslices, so these versions are
subject to buffering proportionately less often.

On the other hand, Figure 10 demonstrates the importance of
keeping the cost of the buffered path relatively small. In this ex-
perimentTbetw is held constant at 275 cycles, but we artificially
added latency to the buffer handler. Again, synth-10 buffers only
a small percentage of its messages because the benchmark’s inter-

10

� synth-1000
� synth-100
� synth-10

|

0
|

500
|

1000
|

1500
|

2000

|0

|10

|20

 Instructions between message sends

 P
er

ce
nt

 o
f m

es
sa

ge
s

bu
ffe

re
d �

�

� � � � � � �

�

�

� � � � � � �
�� � � � � � � �

Figure 9:Percentage of messages buffered versus send interval withN

messages (for synth-N) sent per synchronization point at 1% scheduler
skew

� synth-1000
� synth-100
� synth-10

|

200
|

300
|

400
|

500
|

600
|

700
|

800
|

900

|0

|10

|20

|30

|40

|50

|60

|70

|80

 Buffered path latency (cycles)

 P
er

ce
nt

 o
f m

es
sa

ge
s

bu
ffe

re
d

� � �
�

�

�

�

� �

�
�

� �

� �

�

� � � � � �
�

�

�

�
� �

� �
� �

� � � � � � � � � � � � � � � �

Figure 10:Percentage of messages buffered versus cost of the buffered
path

nal synchronization balances the send rate with the receive rate.
For the synth-100 and synth-1000 applications, the number of mes-
sages buffered remains small as long as the cost of the buffered path
remains below the send rate.

The send rate we used in this experiment is very high compared
to the benchmarks listed in Table 6, which communicate only once
every 615 cycles (forbarrier) to 14,200 cycles (forLU). If the
cost of the buffered path is too large to support the average com-
munication rate, then applications with few synchronization points
will tend to buffer a large percentage of their messages. Because
the cost of the buffered path underFUGU and Glaze is only 232 cy-
cles, the system is able to handle very high sustained message rates
while buffering only a small fraction of the total messages.

6 Conclusion

This paper describes how to efficiently protect and virtualize a
tightly-coupled direct network interface. The key challenge is to
provide native hardware performance in the face of multiprogram-
ming and demand paging. The implementation meets this chal-
lenge using two-case delivery and virtual buffering. In the com-
mon, fast case, a process can read a message directly from the net-
work interface. In cases where messages cannot be delivered im-
mediately, the system transparently switches to buffering messages
in virtual memory via software. Two-case delivery allows aggre-
gate performance near the speed of the fast case. Virtual buffer-
ing allows automatic management of physical buffering resources
for low physical memory requirements while providing effectively
guaranteed delivery.

We have implemented the hardware portion of two-case deliv-
ery in a simulatedFUGU multiprocessor. We also have fabricated
a hardware emulator forFUGU. On top ofFUGU we have imple-
mented a multi-user operating system which provides the software
parts of two-case delivery and virtual buffering. Results from ex-
periments with microbenchmarks and applications running on top
of Glaze andFUGU make three points:

� Message delivery in the fast case is fast: it is 87 cycles or
about 60% more than unprotected message delivery (an esti-
mated difference in runtime of 1-4% for the real applications
in Table 6).

� Few physical memory pages are needed to support virtual
buffering. Even if applications are artificially forced into vir-
tual buffered mode, only relatively few physical pages are

needed. Application synchronization characteristics tend to
keep the real memory required for buffering low.

� The slow case, the virtual buffered case, needs to be reason-
ably fast. OnFUGU and Glaze we have implemented a vir-
tual buffering path which costs only 232 cycles. This is good
enough to keep up with very high sustained message rates.

Acknowledgements

We would like to thank Robert Bedichek for the fast simulator, Jon
Michelson for his work in the design and implementation of the
UCU FPGA and Kirk Johnson for the CRL andenumbenchmarks.
The FUGU project has been funded in part by NSF grant # MIP-
9504399, in part by ARPA contract # N00014-94-1-0985, in part
by a NSF Presidential Young Investigator Award to Anant Agarwal
and in part by a NSF National Young Investigator Award to M.
Frans Kaashoek.

References

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk Johnson,
David Kranz, John Kubiatowicz, Beng-Hong Lim, Kenneth Macken-
zie, and Donald Yeung. The MIT Alewife Machine: Architecture and
Performance. InProceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pages 2–13, June 1995.

[2] Boon S. Ang, Derek Chiou, Larry Rudolph, and Arvind. Message
Passing Support on StartT-Voyager. CSG Memo 387, MIT, Computa-
tion Structures Group, Cambridge, MA, July 1996.

[3] R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, and D. Patter-
son. The Interaction of Parallel and Sequential Workloads on a Net-
work of Workstations. InProceedings of the Joint International Con-
ference on Measurement and Modeling of Computer Systems, pages
267–278, May 1995.

[4] Matthias A. Blumrich, Kai Li, Richard Alpert, Cezary Dubnicki, Ed-
ward W. Felten, and Jonathan Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. InProceed-
ings 21st Annual International Symposium on Computer Architecture,
pages 142–153, April 1994.

[5] S. Borkar, R. Cohn, G. Cox, T. Gross, H.T. Kung, M. Lam, M. Levine,
B. Moore, W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski,
and J. Webb. Supporting Systolic and Memory Communication in
iWarp. In Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 70–81, June 1990.

11

[6] Eric Brewer, Fred Chong, Lok Liu, Shamik Sharma, and John Kubia-
towicz. Remote Queues: Exposing Message Queues for Optimization
and Atomicity. InProceedings of the Symposium on Parallel Algo-
rithms and Architectures, 1995.

[7] Greg Buzzard, David Jacobson, Milon Mackey, Scott Marovich, and
John Wilkes. An Implementation of the Hamlyn Sender-Managed
Interface Architecture. InProceedings of the Second Symposium on
Operating System Design and Implementation, pages 245–259, 1996.

[8] William J. Dally et al. The J-Machine: A Fine-Grain Concurrent Com-
puter. InProceedings of the IFIP (International Federation for In-
formation Processing), 11th World Congress, pages 1147–1153, New
York, 1989. Elsevier Science Publishing.

[9] Chris Dalton, Greg Watson, David Banks, Costas Calamvokis, Aled
Edwards, and John Lumley. Afterburner.IEEE Network, pages 36–
43, July 1993.

[10] Peter Druschel and Larry L. Peterson. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. InProceedings of the Fourteenth
ACM Symposium on Operating System Principles, pages 189–202,
December 1993.

[11] Peter Druschel, Larry L. Peterson, and Bruce S. Davie. Experiences
with a High-Speed Network Adaptor: A Software Perspective. InPro-
ceedings of the Conference on Communication Architectures, Proto-
cols and Applications, pages 2–13, 1994.

[12] Marco Fillo, Stephen W. Keckler, W.J. Dally, Nicholas P. Carter, An-
drew Chang, Yevgeny Gurevich, and Whay S. Lee. The M-Machine
Multicomputer. InProceedings of the 28th Annual International Sym-
posium on Microarchitecture, pages 146–156. IEEE Computer Soci-
ety, November 1995.

[13] John Heinlein, Kourosh Gharachorloo, Scott Dresser, and Anoop
Gupta. Integration of Message Passing and Shared Memory in the
Stanford FLASH Multiprocessor. InSixth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 38–50, October 1994.

[14] Dana S. Henry and Christopher F. Joerg. A Tightly-Coupled
Processor-Network Interface. InFifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, October 1992.

[15] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL:
High-Performance All-Software Distributed Shared Memory. InPro-
ceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, December 1995.

[16] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger,
Héctor M. Briceño, Russell Hunt, David Mazi`eres, Thomas Pinckney,
Robert Grimm, John Jannotti, and Kenneth Mackenzie. Application
Performance and Flexibility on Exokernel Systems. InProceedings
of the Sixteenth ACM Symposium on Operating Systems Principles,
pages 52–65, December 1997.

[17] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the
Alewife Multiprocessor. InProceedings of the International Super-
computing Conference, July 1993.

[18] John D. Kubiatowicz. Integrated Message-Passing and Shared-
Memory Communication in the Alewife Multiprocessor. PhD thesis,
Massachusetts Institute of Technology, Department of Electrical En-
gineering and Computer Science, February 1998.

[19] Walter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and
Larry Rudolph. Implications of I/O for Gang Scheduled Workloads.
In Workshop on Parallel Job Scheduling, IPPS ’97. Springer Verlag,
1997.

[20] Charles E. Leiserson, Aahil S. Abuhamdeh, and David C. Douglas
et al. The Network Architecture of the Connection Machine CM-
5. In Proceedings of the Fourth Annual ACM Symposium on Parallel
Algorithms and Architectures, 1992.

[21] Kenneth Mackenzie, John Kubiatowicz, Anant Agarwal, and M. Frans
Kaashoek. FUGU: Implementing Protection and Virtual Mem-
ory in a Multiuser, Multimodel Multiprocessor. Technical Memo
MIT/LCS/TM-503, October 1994.

[22] Kenneth M. Mackenzie.TheFUGU Scalable Workstation: Architec-
ture and Performance. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Electrical Engineering and Computer Science,
February 1998.

[23] Olivier Maquelin, Guang R. Gao, Herbert H. J. Hum, Kevin Theobald,
and Xin-Min Tian. Polling Watchdog: Combining Polling and Inter-
rupts for Efficient Message Handling. InProceedings of the 23rd An-
nual International Symposium on Computer Architecture, pages 179–
188, May 1996.

[24] Shubhendu S. Mukherjee, Babak Falsafi, Mark D. Hill, and David A.
Wood. Coherent Network Interfaces for Fine-Grain Communication.
In Proceedings of the 23rd International Symposium on Computer Ar-
chitecture, pages 247–258, May 1996.

[25] Shubhendu S. Mukherjee and Mark D. Hill. A Survey of User-Level
Network Interfaces for System Area Networks. Technical Report
1340, Computer Sciences Dept., University of Wisconsin, February
1997.

[26] Gregory M. Papadopoulos, G. Andy Boughton, Robert Greiner, and
Michael J. Beckerle. *T: Integrated Building Blocks for Parallel Com-
puting. InSupercomputing ’93, pages 624–635, November 1993.

[27] Steve K. Reinhardt, James R. Larus, and David A. Wood. Tempest and
Typhoon: User-Level Shared Memory. InProceedings of the 21st An-
nual International Symposium on Computer Architecture, April 1994.

[28] Rolf Riesen, Arthur B. Maccabe, and Stephen R. Wheat. Split-C and
Active Messages under SUNMOS on the Intel Paragon. Unpublished,
April 1994.

[29] Klaus E. Schauser and Chris J. Scheiman. Experience with Active
Messages on the Meiko CS-2. InProceedings of the 9th International
Symposium on Parallel Processing, 1995.

[30] Steven L. Scott. Synchronization and Communication in the T3E
Multiprocessor. InSeventh International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
26–36, October 1996.

[31] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel
Applications for Shared-Memory. Technical Report CSL-TR-92-526,
Stanford University, June 1992.

[32] Marc Snir and Peter Hochschild. The Communication Software and
Parallel Environment of the IBM SP-2. Technical Report IBM-RC-
19812, IBM, IBM Research Center, Yorktown Heights, NY, January
1995.

[33] Chandramohan A. Thekkath, Henry M. Levy, and Edward D. La-
zowska. Efficient Support for Multicomputing on ATM Networks.
UW-CSE 93-04-03, University of Washington, Seattle, WA, April
1993.

[34] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vo-
gels. U-Net: A User-Level Network Interface for Parallel and Dis-
tributed Computing. InProceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, December 1995.

[35] Thorsten von Eicken, David Culler, Seth Goldstein, and Klaus
Schauser. Active Messages: A Mechanism for Integrated Commu-
nication and Computation. InProceedings of the 19th Annual Inter-
national Symposium on Computer Architecture, May 1992.

12

