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Abstract

The design challenge for large-scale multiprocessors is (1) to min-

imize communication overhead, (2) allow communication to over-

lap computation, and (3) coordinate the two without sacrificing

processor cost/performance. We show that existing message pass-

ing multiprocessors have unnecessarily high communication costs.

Research prototypes of message driven machines demonstrate low

communication overhead, but poor processor cost/performance.

We introduce a simple communication mechanism, Active Mes-

sages, show that it is intrinsic to both architectures, allows cost

effective use of the hardware, and offers tremendous flexibility.

Implementations on nCUBE/2 and CM-5 are described and eval-

uated using a split-phase shared-memory extension to C, Split-C.

We further show that active messages are sufficient to implement

the dynamically scheduled languages for which message driven

machines were designed. With this mechanism, latency tolerance

becomes a programming/compiling concern. Hardware support for

active messages is desirable and we outline a range of enhancements

to mainstream processors.

1 Introduction

With the lack of consensus on programming styles and usage pat-

terns of large parallel machines, hardware designers have tended

to optimize along specific dimensions rather than towards general

balance. Commercial multiprocessors invariably focus on raw pro-

cessor performance, with network performance in a secondary role,

and the interplay of processor and network largely neglected. Re-

search projects address specific issues, such as tolerating latency

in dataffow architectures and reducing latency in cache-coherent

architectures, accepting significant hardware complexity and mod-

est processor performance in the prototype solutions. This paper

draws on recent work in both arenas to demonstrate that the utility

of exotic message-driven processors can be boiled down to a simple

mechanism and that this mechanism can be implemented efficiently

on conventional message passing machines. The basic idea is that
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the control information at the head of a message is the address of a

user-level instruction sequence that will extract the message from

the network and integrate it into the on-going computation. We call

this Active Messages. Surprisingly, on commercial machines this

mechanism is an order of magnitude more efficient than the mes-

sage passing primitives that drove the original hmrdware designs.

There is considerable room for improvement whlh direct hardware

support, which can be addressed in an evolutionary manner. By

smoothly integrating communication with computation, the over-

head of communication is greatly reduced and an overlap of the

two is easily achieved. In this paradigm, the hardware designer can

meaningfully address what balance is required between processor

and network performance.

1.1 Algorithmic communication model

The most common cost model used in algorithm design for large-

scale multiprocessors assumes the program alternates between com-

putation and communication phases and that communication re-

quires time linear in the size of the message, plus a start-up cost[9].
Thus, the time to run a program is T = Tmmpute + Tcomrnunzcate
and TCOmmunZCate = N= (T, + LcTb), where T, is the start-up

cost, Tb is the time per byte, L. is the message length, and Nc is

the number of communications. To achieve 90% of the peak pro-

cessor performance, the programmer must tailor the algorithm to

achieve a sufficiently high ratio of computation to communication

that T..mpute > 9Tcorrsrn.nzcate.A high-performance network is

required to minimize the communication time, and it sits 90% idle!

If communication and computation are overlapped the situ-

ation is very different. The time to run a program becomes

T = max(Tco~Put, + N~T,, N.L~Tb). Thus, to achieve high

processor efficiency, the communication and connpute times need

only balance, and the compute time need only swamp the com-

munication overhead, i.e., TCOmput ~ >> N. T.. By examining

the average time between communication phases (T..~p.te /NJ
and the time for message transmission, one can easily compute the

per-processor bandwidth through the network required to sustain a

given level of processor utilization. The hardware can be designed

to reflect this balance. The essential properties of the communi-

cation mechanism are that the start-up cost must be low and that

it must facilitate the overlap and co-ordination of communication

with on-going computation.
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1.2 Active Messages

Active Messages is an asynchronous communication mechanism

intended to expose the full hardware flexibility and performance of

modem interconnection networks. The underlying idea is simple:

each message contains at its head the address of a user-level han-

dler which is executed on message arrival with the message body

as argument. The role of the handler is to get the message out of

the network and into the computation ongoing on the processing

node. The handler must execute quickly and to completion. As

discussed below, this corresponds closely to the hardware capabil-

ities in most message passing multiprocessors where a privileged

interrupt handler is executed on message arrival, and represents a

useful restriction on message driven processors.

Under Active Messages the network is viewed as a pipeline op-

erating at a rate determined by the communication overhead and

with a latency related to the message length and the network depth.

The sender launches the message into the network and continues

computing; the receiver is notified or interrupted on message arrival

and runs the handler. To keep the pipeline full, multiple commu-

nication operations can be initiated from a node, and computation

proceeds while the messages travel through the network. To keep
the communication overhead to a minimum, Active Messages are

not buffered except as required for network transport. Much like

a traditional pipeline, the sender blocks until the message can be

injected into the network and the handler executes immediately on

arrival.

Tolerating communication latency has been raised as a funda-

mental architectural issue[l]; this is not quite correct. The real

architectural issue is to provide the ability to overlap commu-

nication and computation, which, in-turn, requires low-overhead

asynchronous communication. Tolerating latency then becomes a

programming problem: a communication must be initiated suffi-

ciently in advance of the use of its result. In Sections 2 and 3 we

show two programming models where the programmer and com-
piler, respectively, have control over communication pipelining.

Active Messages is not a new parallel programming paradigm

on par with send/receive or shared-memory: it is a more primitive

communication mechanism which can be used to implement these

paradigms (among others) simply and efficiently. Concentrating

hardware design efforts on implementing fast Active Messages is

more versatile than supporting a single paradigm with special hard-

ware.

1.3 Contents

In this paper, we concentrate on message-based multiprocessors

and consider machines of similar base technology representing

the architectural extremes of processor/network integration. Mes-

sage passing machines, including the nCUBE/2, iPSC/2, iPSC/860

and others, treat the network essentially as a fast 1/0 device.

Message driven architectures, including Monsoon[17, 16] and the

J-Machine[5], integrate the network deeply into the processor. Mes-
sage reception is part of the basic instruction scheduling mechanism
and message send is supported directly in the execution unit.

Section 2 examines current message passing machines in detail.
We show that send/receive programming models make inefficient

use of the underlying hardware capabilities. The raw hardware sup-
ports a simple form of Active Messages. The utility of this form

of communication is demonstrated in terms of a fast, yet power-

ful asynchronous communication paradigm. Section 3 examines

current message driven architectures. We show that the power

of message driven processing, beyond that of Active Message$ is

costly to implement and not required to support the implicitly par-

allel programming languages for which these architectures were

designed. Section 4 surveys the range of hardware support that

could be devoted to accelerating Active Messages.

2 Message passing Architectures

In this section we examine message passing machines, the one

architecture that has been constructed and used on a scale of a

thousand high-performance processors. We use the nCUBE/2 and

the CM-5 as primary examples.

The nCUBE/2 has up to a few thousand nodes interconnected

in a binary hypercube network. Each node consims of a CPU-chip

and DRAM chips on a small double-sided printed-circuit board.

The CPU chip contains a 64-bit integer uni~ an IEEE floating-point

uni~ a DRAM memory interface, a network interface with 28 DMA

channels, and routers to support cut-through routing across a 13-

dimensional hypercube. The processor runs at 20 Mhz and delivers

roughly 5 MIPS or 1.5 MFLOPS.

The CM-5 has has up to a few thousand nodes interconnected

in a “hypertree” (an incomplete fat tree). Each node consists of
a 33 Mhz Spare RISC processor chip-set (including FPU, MMU

and cache), local DRAM memory and a network interface to the

hypertree and broadcast/scan/prefix control networks. In the future,

each node will be augmented with four vector units.

We first evaluate the machines using the traditional programming

models. Then we show that Active Messages are well-suited to the

machines and support more powerful programming models with

less overhead.

2.1 Traditional programming models

In the traditional programming model for message passing archi-

tectures, processes communicate by matching a send request on one

processor with a receive request on another. In the synchronous,

or crystalline[9] form, send and receive are blocking — the send

blocks until the corresponding receive is executed and only then is

data transferred. The main advantage of the blocking send/receive

model is its simplicity. Since data is only transfemed after both

its source and destination addresses are known, no buffering is

required at the source or destination processors.

Blocking send/receive communication exacerbates the effects of

network latency on communication latencyl: in order to match a

send with a receive a 3-phase protocol, shown in Figure 1, is re-

quired: the sender first transmits a request to the receiver which re-
turns an acknowledgement upon executing a matching receive oper-

ation and only then is data transfemed. With blocking send/receive,

it is impossible to overlap communication with computation and

thus the network bandwidth cannot be fully utilized.

To avoid the three-phase protocol and to allow overlap of com-

munication and computation, most message passing implementa-

tions offer non-blocking operation: send appears instantaneous to
the user program. The message layer buffers the message until

the network port is available, then the message is transmitted to

the recipient, where it is again buffered until a matching receive is

executed. As shown in the ring communication example in Fig-

ure 2, data can be exchanged while computing by executing ail
sends before the computation phase and all receives afterwards.

I we ca~ communication latencY the time from initiating a send in tie

user program on one processor to receiving the message in the user program

on another processor, i.e., the sum of software overhead, network interface

overhead and network latency,
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Node 1 I Node 2 I

Figure 1: Three-phase protocol for synchronous send and receive.

Note that the communication latency is at best three network trips

and that both send and receive bJock for at least one network round-

trip each.

Table 1 shows the performance of send/receive on several cur-
rent machines. The start-up costs are on the order of a thousand

instruction times. This is due primarily to buffer management. The

CM-5 is blocking and uses a three-phase protocol. The iPSC long

messages use a three-phase protocol to ensure that enough buffer

space is available at the receiving processor, However, the start-up
costs aIone prevent overlap of communication and computation,

except for very large messages. For example, on the nCUBE/2

by the time a second send is executed up to 130 bytes of the first

message will have reached the destination. Although the network

bandwidth on all these machines is limited, it is difficult to uti-

lize it fully, since this requires multiple simultaneous messages per

processor.

Machine

[ps/~esg] [jm%yte] [p?fl%p]
iPSC[8] 4100 2.8 25

nCUBE/10[8] 400 2.6 8.3

iPSC/2[8] 700 0.36 3.4

390t 0.2

nCUBE/2 160 0.45 0.50

iPSC/860[12] 160 0.36 0.033 [7]

60t 0.5

CM-5 $ 86 0.12 0.33 [7]

t: messages up to 100 bytes
~: blocking send/receive

Table 1: Asynchronous, send and receive overheads in existing

message passing machines. T. is the message start-up cost (as

described in Section 1.1), Tb is the per-byte cost and Tf ~ is the

average cost of a ff eating-point operation as reference point.

2.2 Active Messages

Although the hardware costs of message passing machines are rea-

sonable, the effectiveness of the machine is low under traditional

send/receive models due to poor overlap of communication and

node N 1 node N+ 1 1

Figure 2: Communication steps required for neighboring proces-

sors in a ring to exchange data using asynchrono ussend and receive.

Data can be exchanged while computing by executing all sends be-

fore the computation phase and all receives afterwards. Note that

buffer space for the entire volume of communication must be allo-

cated for the duration of the computation phase!

computation, and due to high communication overhead. Neither

of these shortcomings can be attributed to the base hardware: for

example, initiating a transmission on the nCUEIE/2 takes only two

instructions, namely to set-up the DMA2. The dkcrepancy between

the raw hardware message initiation cost and the observed cost can

be explained by a mismatch between the programming model and

the hardware functionality. Send and receive is not native to the

hardware: the hardware allows one processor to send a message

to another one and cause an interrupt to occur at arrival. In other
words the hardware model is really one of launching messages into

the network and causing a handler to be executed asynchronously

upon arrival. The only similarity between the hardware operation

and the programming model is in respect to memory address spaces:

the source address is determined by the sender while the destination

address is determined by the receive:.

Active Messages simply generalize the handware functionality

by allowing the sender to specify the address of the handler to be

invoked on message arrival. Note that this relies on a uniform code

image on all nodes, as is commonly used (the SPMD programming

model). The handler is specified by a user-level address and thus

traditional protection models apply. Active Messages differ from
general remote procedure call (RPC) mechanisms in that the role

of the Active Message handler is not to perform computation on

the data, but to extract the data from the network and integrate

it into the ongoing computation with a small amount of work.

Thus, concurrent communication and computation is fundamental

‘On the nCUBE/2, each of the 13 hypercube channels has independent
input and output DMAs with a base-address and a count register each.
Sending or receiving a messagerequires loading the addressand the count.

3Shared-memo~ multiprocessor advocates argrm that this is the major
cause of programming difficulty of these machines.
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to the message layer. Active Messages are not buffered, except

as required for network transport. Only primitive scheduling is

provided: the handlers interrupt the computation immediately upon

message arrival and execute to completion.

The key optimization in Active Messages compared to send/re-

ceive is the elimination of buffering. Eliminating buffering on

the receiving end is possible because either storage for arriving

data is pre-allocated in the user program or the message holds a

simple request to which the handler can immediately reply. Buffer-

ing on the sending side is required for the large messages typical

in high-overhead communication models. The low overhead of

Active Message makes small messages more attractive, which eases

program development and reduces network congestion. For small

messages, the buffering in the network itself is typically sufficient.

Deadlock avoidance is a rather tricky issue in the design of

Active Messages. Modern network designs are typically deadlock-

free provided that nodes continuously accept incoming messages.

This translates into the requirement that message handlers are not

allowed to block, in particular a reply (from within a handler) must
not busy-wait if the outgoing channel is backed-up.

2.2.1 Active Messages on the nCUBE/2

The simplicity of Active Messages and its closeness to hardware

functionaliV translate into fast execution. On the nCUBE/2 it

is possible to send a message containing one word of data in 21

instructions taking 11 ps. Receiving such a message requires 34

instructions taking 15 ps, which includes taking an interrupt on

message arrival and dispatching it to user-level. This near order of

magnitude reduction (Tc = 30ps, Tb = 0.45ps) in send overhead

is greater than that achieved by a hardware generation. Table 2

breaks the instruction counts down into the various tasks performed.

Instruction count

Task send receive

Compose/consume message 6 9

Trap to kernel 2 —

Protection 3 —

Buffer management 3 3

Address translation 1 1

Hardware set-up 6 2

Scheduling 7

Crawl-out to user-level — 12

Total 21 34

Table 2: Breakdown info tasks of the instructions required to send

and receive a message wifh one word of data on the nCUBE/2.

“Message composition” and “consumption “include overhead for a

function call and register saves in the handler. “Protection” checks

the destination node and limits message length. “Hardware sef-

up” includes output channel dispatch and channel ready check. “

Scheduling” accounts for ensw”ng handler afomici~ and dispatch.
“Crawling out to user-level” requires sefting up a stack frame and

saving state to simulate a return-from-interrupt at user-level.

The Active Message implementation reduces buffer manage-

ment to the minimum required for actual data transport. On the

nCUBE/2 where DMA is associated with each network channel,

one memory buffer per channel is required. Additionally, it is

convenient to associate two buffers with the user process: one

to compose the next outgoing message and one for handlers to

consume the arrived message and compose eventual replies. This

set-up reduces buffer management to swapping pointers for a chan-

nel buffer with a user buffer. Additional buffers must be used in

exceptional cases to prevent deadlock: if a reply from within a

handler blocks for “too long”, it must be buffered and retried later

so that further incoming messages can be dispatched. This reply

buffering is not performed by the message layer itself, rather REPLY

returns an error code and the user code must perform the buffering

and retry. Typically the reply (or the original request) is saved onto

the stack and the handlers for the incoming messages are nested
within the current handler.

The breakdown of the 55 instructions in Table 2 shows the

sources of communication costs on the nCUBE/2. A large fraction

of instructions (22%) are used to simulate user-level interrupt han-

dling. Hardware set-up (15’ZO) is substantial due to output channel

selection and channel-ready checks. Even the minimal schedul-

ing and buffer management of Active Messages is still significant

(13%). Note however, that the instruction counts on the nCUBE/2

are slightly misleading, in that the system call/return instructions

and the DMA instructions are far more expensive than average.
The instruction breakdown shows clearly that Active Messages

are very close to the absolute minimal message laye~ only the

crawl-out is Active Message specific and could potentially be re-

placed. Another observation is that most of the tasks performed

here in software could be done easily in hardware. Hardware sup-

port for active messages could significantly reduce the overhead

with a small investment in chip complexity.

2.2.2 Active Messages on the CM-5

The Active Messages implementation on the CM-5 differs tiom the

nCUBE/2 implementation for five reasons4:

1.

2.

3.

4.

5.

The CM-5 provides user-level access to the network interface

and the node kernel time-shares the network correctly among

multiple user processes.

The network interface only supports transfer of packets of up

to 24 byt,es (including 4 bytes for the destination node) and

the network routing does not guarantee any packet ordering.

The CM-5 has two identical, disjoint networks. The dead-

lock issues described above are simply solved by using one

network for requests and the other for replies. One-way com-

munication can use either.

The network interface does not have DMA. Instead, it con-

tains two memorymapped FIFOS per network, one for outgo-

ing messages and one for incoming ones. Status bits indicate

whether incoming FIFOS hold messages and whether the pre-

vious outgoing message has been successfully sent by the

network interface. The network interface discards outgoing

messages if the network is backed-up or if the process is time-

sliced during message composition. In these cases the send

has to be retried.

The network interface generally does not use interrupts in the

current version due to their prohibitive cost. (The hardware

and the kernel do support interrupts, but their usefulness is

limited due to the cost.) For comparison, on the nCUBE/2
the interrupt costs the same as the system call which would

have to be used instead since there is no user-level access to

the network interface.

4The actual network interface is somewhat more complicated than de-
scribed below, we only present the aspectsrelevant to this discussion.
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Sending a packet-sized Active Message amounts to stuffing the

outgoing FIFO with a message having a function pointer at its

head. Receiving such an Active Message requires polling, followed

by loading the packet data into argument registers, and calling

the handler function. Since the network interface status has to be

checked whenever a message is sent (to check the send-ok status

bit), servicing incoming messages at send time costs only two extra
cycles. Experience indicates that the program does not need to poll

explicitly unless it enters a long computation-only loop.

Sending multi-packet messages is complicated by the potential

reordering of packem in the network. For large messages, set-

UP k required on the receiving end. This involves a two-phase
protocol for GET, and a three-phase protocol for PUT (discussed

below). Intermediate-sized messages use a protocol where each

packet holds enough header information (at the expense of the

payload) that the arrival order is irrelevant.

The performance of Active Message on the CM-5 is very en-

couraging: sending a single-packet Active Message (function ad-

dress and 16 bytes of arguments) takes 1.6ps (X 50 cycles) and

the receiver dispatch costs 1.7ps. The largest fraction of time

is spent accessing the network interface across the memory bus.

A prototype implementation of blocking send/receive on top of

Active Messages compares favorably with the (not yet fully opti-

mized) vendor’s library: the star-up cost is Tc = 23 p.s (vs. 86ps)

and the per byte cost is Tb = O.12ps (identical). Note that due to

the three-phase protocol required by send/receive, T= is an order of

magnitude larger than the single packet send cost. Using different

programming models such as Split-C, the cost off communication

can be brought down to the Active Message packet cost.

2.3 Split-C: an experimental programming

model using Active Messages

To demonstrate the utility of Active Message\ we have developeda

simple programming model that provides split-phase remote mem-

ory operations in the C programming language. The two split-phase
operations provided are PUT and GET: as shown in Figure 3a, PUT

copies a local memory block into a remote memory at an address

specified by the sender. GET retrieves a block of remote memory

(address specified by sender) and makes a local copy. Both op-

erations are non-blocking and do not require explicit coordination

with the remote processor (the handler is executed asynchronously).

The most common versions of PUT and GET increment a separately

specified flag on the processor that receives the data. This allows

simple synchronization through checking the flag or busy-waiting.

Operating on blocks of memory can yield large messages which are

critical to performance on current hardware as seen below.

The implementations of PUT and GET consist of two parts each:

a message formatter and a message handler. Figure 3b shows the

message formats. PUT messages contain the instruction address

of the PUT handler, the destination address, the data length, the

completion-flag address, and the data itself. The F’trrhandler simply

reads the address and length, copies the data and increments the flag.

GET requests contain the information necessary for the GET handler

to reply with the appropriate PUT message. Note that it is possible

to provide versions of PUT and GET that copy data blocks with a

stride or any other form of gather/scatter5.

To demons~ate the simplicity and performance of Split-C, Fig-

ure 4 shows a matrix multiply example that achieves 95% of peak

3Split-C exposes the underlying RPC mechanism the programmer as

welt, so that specialized communication stmctures can be constmcted, e.g.,

enqueue record.

Node 1 Node 2

‘**.*.*.**.
g!

GET

:$%

a)

PUT message

F]

remote (node

put handler

remote itidr

data length

flag aid

data

.,,

b)

GET request

E

remote node

get hamfler

Iocd tir

data length

flag addr

Ioc,4 neck

remote addr

Figure 3: Splif-C PUT and GET perforrrt split-ph:ise copies of mem-

ory blocks to/from remote nodes. Ah-o shown are the message

formats.

performance on large nCUBE/2 configurations. In the example,

the matrices are partitioned in blocks of columns across the pro-

cessors. For the multiplication of C = A x B each processor

GETS one column of A after another and performs a rank-1 update

(DAXPY) with the corresponding elements of its own columns of

B into its columns of C. To balance the communication pattern,
each processor first computes with its own column(s) of A and then

proceeds by getting the columns of the next processor. Note that

this algorithm is independent of the network topology and has a

familiar shared-memory style. The remote memory access and its

completion are made explici~ however.

The key to obtaining high performance is to overlap communi-

cation and computation. This is achieved by GETting the column

for the next iteration while computing with the current column.

It is now necessary to balance the latency of the GET with the

time taken by the computation in the inner loops. Quantifying the

computational cost is relatively easy: for each GET the number of

multiply-adds executed is Nm (where m is the number of local

columns of B and C) and each multiply-add takes 1.13ps. To help

understand the latency of the GET, Figure 6 shows a diagram of all

operations and delays involved in the unloaded case.
The two top curves in Figure 5 show the performance predicted

by the model and measured on a 128 node nCUBE/2, respectively,

as the number of columns per processor of A k varied from 1 to

32. N is kept constant (N = 128) and R is adjusted to keep the

total number of arithmetic operations constant (R = 262144/M).

The matrix multiply in the example is computation bound if “each

processor holds more than two columns of A (i.e., m > 2). The two

bottom curves show the predicted and measured ]network utilization.

The discrepancy between the model and the me:ssurement is due to

the fact that network contention is not modeled. Note that while

computational performance is low for small valhres of m, the joint

processor and network utilization is relatively (constant across the

entire range, As the program changes from a communication to a

computation problem the “overall performance’” is stable.

2.4 Observations

Existing message passing machines have been criticized for their

high communication overhead and the inability to support global
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The mati”ces are partitioned in blocks of columns across the pro-

cessors. For the multiplication of CN ~M = AN ~ R x BR ~ M each

processor GETsone column of A afteranotherandper forms a rank-l

update (DAXPY) with its own columns of B into ii% columns of C.

To balance the communication pattern, each processor first com-

putes with its own column(s) of A and then proceeds by getting the

coJumns of the next processor. This network topology independent

algorithm achieves 95% of peak performance on large nCUBE/2

configurations.

int N, R, M; /’ matrix dimensions ‘/

double A[R/P] [N], B[M/P] [R], C[M/Pl [N];

int i, j, k; /* indices */

int jO, nj; /* initial j, next j */

int dj; /’ delta j (j=j O+dj) ‘/

int P, p; /’ num of procsr my proc ‘/

int Rp = R/P:

double VO IN], V1 [N]; /’ remote CO I bufs ‘/

double *V=VO; /* current column */

double *nV=VI; /’ next column ‘/

double *tV; /’ temp column */

static int flag = O; I* sync. flag */

extern void get (int proc, void *src, int size,

void *dst, int &flag) ;

jO = p * Rp; /’ starting column ‘/

get(p, &AIO] [O], N*sizeof(double) ,

nV, &flag); /’ get first CO1 of A ‘/

/’ loop over all columns of A ‘/

for(dj=O; dj<R; dj++) {

j = (jO+dj)%R; /* this column index */

nj = (jO+dj+l)%R; /* next column index */

/’ wait for previous get to complete ‘/

while(!check (l, &flag)) ;

tV=V; V=nV; nV=t-V;/* swap curr&next CO1 *I

/’ if not done, get next column ‘/

if(nj != jO) get(nj/Rp, &A[nj%Rp] [0],

N*sizeof(double), nV, &flag);

/’ accum. V into every column with scale ‘/

for(k=O; k<M/P; k++)

for(i=O; i<N; ++) /* unroll! */

C[i][k] = C[i][k] + V[il*B[jl[kl;

)

Figure4: Matrix multiply example in Split-C.

memory access. With Active Messages we have shown that the
hardware is capable ofdelivering close to anorder of magnitude

improvement today if the right communication mechanism is used,

andthat aglobal address space may well be implemented in soft-

ware. Split-C isanexample ofhow Active Messages can beincor-

porated into a coarse-grain SPMD (single-program multiple-data)
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Figure5: Performance of Split-C mati”xmultiply on128proces-

sors compared to predicted performance using the model sho wn in

Figure 6.

programming language. Itgeneralizes shared memory read/write

by providing access to blocks of memory including simple syn-

chronization. Itdoesno~however, address naming issues.

Using Active Messages to guide the design, it is possible to im-

prove current message passing machines in an evolutionary, rather

than revolutionary, fashion. In the next section, weexaminere-

sesrch efforts to build hardware which uses a different approach to

provide another magnitude of performance improvement.

3 Message driven architectures

Message driven architectures such as the J-Machine and Monsoon

expend asigniftcant amountofhardware to integrate communica-

tion into the processor. Although the communication performance

achieved by both machines is impressive, the processing perfor-

mance is not. At first glance this seems to come from the fact that

the processor design is intimately affected by the network design

and that the prototypes in existence could not utilize traditional pro-

cessor design know-how. In truth, however, the problem is deeper:

in message driven processors a context lasts only for the duration

of a message handler. This lack of locality prevents the processor
from using large register sets. In this section, we argue that the

hardware support forcommunication is partly counter-productive.

Simpler, more traditional, processors can be built without unduly

compromising either the communication or the processing perfor-
mance.

3.1 Intended programming model

The main driving force behind message driven architectures is

to support languages with dynamic parallelism, such as Id90[14],
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Figure 6: Performance model for GET. Compose accounts for the time to sef-up the requesf. Xmit is the time to injecf fhe message info fhe

nefwork and hops is fhe fime faken for the nefwork hops. Service includes for copying the data info the reply buffer and handle for the fime

fo copy the data into the desfinafion memory block.

Multilisp[lO], and CST[l 1]. Computation is driven by messages,

which contain the name of a handler and some data. On message

arrival, storage for the message is allocated in a scheduling queue.

When the message reaches the head of the queue, the handler is

executed with the data as arguments. The handler may perform U-

bitrary computation, in particular it may synchronize and suspend.

This ability to suspend requires general allocation and schedul-

ing on message arrival and is the key difference with respect to

Active Messages.

In the case of the J-Machine, the programming model is put for-

ward in object-oriented language terms[6]: the handler is a method,

the data holds the arguments for the method and usually one of them

names the object the method is to operate on. In a functional lan-

guage view, the message is a closure with a code pointer and all

arguments of the closure. Monsoon is usually described from the

dataflow perspective[17] and messages carry tokens formed of an

instruction pointer, a frame pointer and one piece of data. The data

value is one of the operands of the specified instruction, the other

is referenced relative to the frame pointer.

The fundamental difference between the message driven model

and Active Messages is where computation-proper is performed:

in the former, computation occurs in the message handlers whereas

in the latter it is in the “background” and handlers only remove

messages from the network transport buffers and integrate them into

the computation. This difference significantly affects the nature of

allocation and scheduling performed at message arrival.

Because a handler in the message driven model may suspend

waiting for an even~ the lifetime of the storage allocated in the

scheduling queue for messages varies considerably. In general,

it cannot be released in simple FIFO or LIFO order. Moreover,

the size of the scheduling queue does not depend on the rate at
which messages arrive or handlers are executed, but on the amount

of excess parallelism in the program[4]. Given that the excess

parallelism can grow arbitrarily (as can the conventional call stack)

it is impractical to set aside a fraction of memory for the message

queue, rather it must be able to grow to the size of available memory.

Active Message handlers, on the other hand, execute immedi-

ately upon message arrival, cannot suspend, and have the responsi-

bility to terminate quickly enough not to back-up the network. The
role of a handler is to get the message out of the network transport

buffers. This happens either by integrating the message into the

data structures of the ongoing computation or, in the case of remote

service requests, by immediately replying to the requester. Memory

allocation upon message arrival occurs only as far as is required

for network transport (e.g. if DMA is involved) and scheduling is

restricted to interruption of the ongoing computation by handlers.

Equivalently, the handlers could run in parallel with the computa-

tion on separate dedicated hardware.

3.2 Hardware Description

The Monsoon and J-Machine hardware is designed to support the

message driven model directly. The J-Machine Ihas a 3-D mesh of

processing nodes with a single-chip CPU and I)RAM each. The

CPU has a 32-bit integer unit with a closely integrated network unit,

a small static memory and a DRAM interface (but no floating-point

unit). The hardware manages the scheduling queue as a fixed-size

ring buffer in on-chip memory. Arriving messages are transferred

into the queue and serviced in FIFO order. The first word of each

message is interpreted as an instruction pointer and the message

is made available to the handler as one of the addressable data

segments. The J-Machine supports two levels of message priorities

in hardware and two independent queues are maintained. Each

message handler terminates by executing a SUSPEND instruction

that causes the next message to be scheduled.

In Monsoon, messages arrive into the token queue. The token

queue is kept in a separate memory proportional in size to the

frame store, It provides storage for roughly 16 tokens per frame on

averagec. The queuing policy allows both FIFO und LIFO schedul-

ing. The ALU pipeline is 8-way interleaved, so (eight handlers can

be active simultaneously. As soon as a handler terminates or sus-
pends by blocking on a synchronization event, a token is popped

from the queue and a new handler starts executing in the vacated
pipeline interleave.

A common characteristic of both machines is that the amount

of state available to an executing handler is very small: four data

and three address registers in the J-Machine, an accumulator and

three temporary registers in Monsoon. This reflects tfte fact that the

computation initiated by a single message is small, typically less

than ten arithmetic operations. This small amount of work cannot

6A token queue store of 64K tokens for 256K wordls of frame store and
an expected average frame size of 64 words.
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utilize many registers and since no locali~ is preserved from one

handler to the next, no useful values could be carried along.

It is interesting to note that the J-Machine hardware does not

actually support the message driven programming model fully in

that the hardware message queue is managed in FIFO order and of

fixed size. If a handler does not run to completion, its message must

be copied to an allocated region of non-buffer memory by software.

This happens for roughly 1/3 of all messages. The J-Machine

hardware does support Active Messages however, in which case

the message queue serves only as buffering. Close to 1/3 of the

messages hold a request to which the handler immediately replies

and general allocation and scheduling is not required.

In Monsoon, the fact that tokens are popped from the queue

means that the storage allocated for an arriving message is deal-

located upon message handler execution. If a handler suspends,

all relevant data is saved in pre-allocated storage in the activation

frame thus, unlike the J-Machine, Monsoon does implement the

message driven model, but at the cost of a large amount of high-

speed memory.

3.3 TAM: compiling to Active Messages

So far, we have argued that the message driven execution model

is tricky to implement correctly in hardware due to the fact that

general memory allocation and scheduling are required upon mes-

sage arrival. Using hardware that implements Active Messages, it

is easy to simulate the message driven model by performing the

allocation and scheduling in the message handler. Contrary to ex-

pectation this does not necessarily result in lower performance than

a direct hardware implementation because software handlers can

exploit and optimize special cases.

TAM[3] (Threaded Abstract Machine), a fine-grain parallel ex-

ecution model based on Active Messages goes one step further

and requires the compiler to help manage memory allocation and

scheduling. It is currently used as a compilation target for implic-

itly parallel languages such as Id90. When compiling for TAM, the

compiler produces sequences of instructions, called threads, per-

forming the computation proper. It also generates handlers, called

inlets, for all messages to be received by the computation. Inlets

are used to receive the arguments to a function, the results of called

(child) functions, and the responses of global memory accesses. All

accesses to global data structures are split-phase, allowing compu-

tation to proceed while requests travel through the network.

For each function call, an activation fiaww is allocated. When

an inlet receives a message it typically stores the data in the frame

and schedules a thread within the activation. Scheduling is handled

efficiently by maintaining the scheduling queue within the activa-

tion frame: each frame, in addition to holding all local variables,

contains counters used for synchronizing threads and inlets, and

provides space for the continuation vector — the addresses of all

currently enabled threads of the activation. Enabling a thread sim-

ply consists of pushing its instruction address into the continuation

vector and possibly linking the frame into the ready queue. Figure 7
shows the activation tree data structure.

Service requests, such as remote reads, can typically be replied-to
immediately and need no memory allocation or scheduling beyond

what Active Messages provides. However, in exceptional cases

requests must be delayed either for a lack of resources or because

servicing inside the handler is inadequate. To amortize memory al-
location, these requests are of fixed size and queue space is allocated

in chunks.

Maintaining thread addresses in frames provides a natural two-

level scheduling hierarchy. When a frame is scheduled (activated),

Activation tree

Ready
queue “--”%. D

A {vation fram&

?===4 ‘n

Local 1! u-mvariables

Synchronization
counters II At-t

link > {

J<u

LL
.................................

Continuation
vector I

Figure 7: TAM activation tree and embedded scheduling queue. For

each function call, an activation klame is allocated. Each frame,

in addition to holding all local vm”ables, contains counters used to

synchronize threads and inlets, and provides space for the continu-

ation vector — the addresses of all currently enabled threads of the

activation. On each processor, all frames holding enabled threads
are linked into a ready queue. Maintaining the scheduling queue

within the activation keeps costs 10w: enabling a thread simply con-

sists of pushing its instruction address into the continuation vector

and sometimes linking the frame into the ready queue. Scheduling

the next thread within the same activation is simpJy a pop-jump.

enabled threads are executed until the continuation vector is empty.

When a message is received, two types of behavior can be observed:
either the message is for the currently active frame and the inlet

simply feeds the data into the computation, or the message is for a

dormant frame in which case the frame may get added to the ready

queue, but the ongoing computation is otherwise undisturbed.

Using the TAM scheduling hierarchy, the compiler can improve

the locality of computation by synchronizing in message handlers

and enabling computation only when a group of messages has w-

nved (one example is when all prerequisite remote fetches for an

inner loop body have completed). This follows the realization that
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while the arrival of one message enables only a small amount of

computation, the arrival of several closely related messages can

enable a significant amount of computation. In cases beyond the

power of compile-time analysis, the run-time scheduling policy

dynamically enhances locality by servicing a frame until its contin-

uation vector is empty.

As a result of the TAM compilation model, typically no memory

allocation is required upon message arrival. Dynamic memory al-

location is only performed in large chunks for activation frames and

for global arrays and records. Locality of computation is enhanced

by the TAM scheduling hierarchy. It is possible to implement

TAM scheduling well even without any hardware suppor~ on a

uniprocessor7 the overall cost for dynamic scheduling amounts to

doublhrtg the number of control-flow instructions relative to lan-
guages such as C. However, the overall performance depends crit-

ically on the cost of Active Messages. Table 3 summarizes the

frequency of various kinds of messages in the current implementa-

tion. On average, a message is sent and received every eight TAM

instructions (equivalent to roughly 20 RISC instructions). Note that

these statistics are sensitive to optimization. For example, signif-

icant changes can be expected from a software cache for remote

arrays.

Message types data words frequency

Frame-frame o 1~o

1 1070
2 1v.

Store request 1 8%
Fetch request o 40~o

Fetch reply 1 bo~o

Table 3: Frequency of various message types and sizes (represented

by the number of data values transmitted) in the current implemen-

tation of TAM. On average, a message is sent and received every

8 TAM instructions. These statistics are sensitive to compiler opti-

mization and, in some sense, represent a worst case scenario.

4 Hardware support for Active Mes-

sages

Active messages provide a precise and simple communication

mechanism which is independent of any programming model. Eval-

uating new hardware features can be restricted to evaluating their

impact on Active Messages. The parameters feeding into the de-

sign are the size and frequency of messages, which depend on the

expected workload and programming models.

Hardware support for active messages falls into two categories:

improvements to network interfaces and modifications to the pro-

cessor to facilitate execution of message handlers. The following

subsections examine parts of the design space for each of these

points of view.

4.1 Network interface design issues

Improvements in the network interface can significantly reduce the

overhead of composing a message. Message reception benefits

7Id9(J r~~~ir~~ d~namic scheduling even on uniprocesscm.

from these improvements as well, but also requires initiation of the

handler.

Large messages: The support needed for large messages is a su-

perset of that for small messages. To overlap computation

with large message communication, some form of DMA trans-

fer must be used. To set-up the DMA on the receiving side,

large messages must have a header which is received first.

Thus, if small messages are well supporte[i, a large message

should be viewed as a small one with a DMA transfer tacked-

on.

Message registers: Composing small messages in memory

buffers is inefficien~ much of the information present in a

small message is related to the current processor state. It
comes from the instruction stream, processor registers and

sometimes from memory. At the receiving end, the mes-

sage header is typically moved into processor registers to

be used for dispatch and to address data. Direct communi-

cation between the processor and the network interface can

save instructions and bus transfers. In addition, managing the

memory buffers is expensive.

The J-Machine demonstrates an extreme alkemative for mes-

sage composition: in a single SEND instruction the contents

of two processor registers can be appended to a message.

Message reception, however, is tied to memory buffers (al-

beit on-chip). A less radical approach is to compose messages

in registers of a network coprocessor.

Reception can be handled similarly: when received, a mes-

sage appears in a set of registers. A (coprocessor) receive

instruction enables reception of the next message, In case a

coprocessor design is too complex, the network interface can

also be accessed as a memory mapped device (as is the case

in the CM-5).

Reuse of message data: Providing a large register set in the

network interface, as opposed to network FIFO registers, al-
lows a message to be composed using portions of other mes-

sages. For example, the destination for a reply is extracted

from the request message. Also, multiple requests are often

sent with mostly identical return addresses. Keeping addi-

tional context information such as the current frame pointer

and a code base pointer in the network interface can further

accelerate the formatting of requests.

Single network port: Multiple network channels connected to a

node should not be visible to the message layer. On the

nCUBE/2, for example, a message must be sent out on the cor-

rect hypercube link by the message layer, even though further

routing in the network is automatic. The network interface

should allow at least two messages to be composed simulta-

neously or message composition must be atomic. Otherwise,

replies within message handlers may interfere with normal
message composition.

Protection: User-level access to the network interface requires

that protection mechanisms be enforced by the hardware. This

typically includes checking the destination node, the destina-

tion process and, if applicable, the message length. For most

of these checks a simple range check is sufficient. On recep-
tion, the message head (i.e., the handler address and possibly

a process id) can be checked using the normal memory man-
agement system.
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Frequent message accelerators: A well-designed network inter-

face allows the most frequent message types to be issued

quickly. For example in the *T[15] proposal, issuing a

global memory fetch takes a single store double instruc-

tion (the network interface is memory mapped). The 64-bit

data value is interpreted as a global address and translated

in the network interface into a nodeflocal-address pair. For
the return address the current frame pointer is cached in the

network interface and the handler address is calculated from

the low-order bits of the store address.

4.2 Processor support for message handlers

Asynchronous message handler initiation is the one design issue

that cannot be addressed purely in the network interface: proces-

sor modifications are needed as well. The only way to signal an

asynchronous event on current microprocessors is to take an inter-

rupt. This not only flushes the pipeline, but enters the kernel. The

overhead in executing a user-level handler includes a crawl-out to

the handler, a trap back into the kernel, and finally the return to the
interrupted computation. Super-scalar designs tend to increase the

cost of interrupts.

Fast polling: Frequent asynchronous events can be avoided by

relying on software to poll for messages. In execution mod-

els such as TAM where the message frequency is very high,

polling instructions can be inserted automatically by the com-

piler as part of thread generation. This can be supported with

little or no change to the processor. For example, on Spare

or Mips a message-ready signal can be attached to the co-

processor condition code input and polled using a branch on

coprocessor condition instruction.

User-level interrupts: User-level traps have been proposed

to handle exceptions in dynamically typed program-

ming languages[ 13] and floating-point computations. For

Active Messages user-level interrupts need only occur be-
tween instructions. However, an incoming message may

not be for the currently running user process and the

network interface should interrupt to the kernel in this case.

PC injection: A minimal form of multithreading can be used to

switch between the main computational thread and a han-

dler thread. The two threads share all processor resources

except for the program counter (PC). Normally instructions

are fetched using the computation PC. On message arrival,

instruction fetch switches to use the handler PC. The handler

suspends with a swap instruction, which switches instruc-

tion fetch back to the computation PC. In the implementation

the two PCs are in fact symmetrical. Switching between the

two PCs can be performed without pipeline bubbles, although

fetching the swap instruction costs one cycle. Note, that in

this approach the format of the message is partially known
to the network interface, since it must extract the handler PC

from the message.

Dual processors: Instead of multiplexing the processor between
computation threads and handlers, the two can execute con-

currently on two processors, one tailored for the computation

and a very simple one for message handlers (e g., it may

have no floating-point). The crucial design aspect is how

‘It may be possible for the user-level handler to return directly to dre

computation.

communication is handled between the two processors. The

communication consists of the data received from the network

and written to memory, e.g., into activation frames, and the

scheduling queue.

A dual-processor design is proposed for the MIT *T project.

It uses an MC88110 for computation and a custom message
processor. k the *T design, the two processors are on sep-

arate die and communicate over a snooping bus. If the two

processors were integrated on a single die, they could share

the data cache and communication would be simpler. The

appealing aspect of this design is that normal uniprocessors
can be used quite successfully.

For coarse-grain models, such as Split-C, it is most important

to overlap computation with the transmission of messages into the

network. An efficient network interface allows high processor uti-

lization on smaller data sets. On the other extreme, implicitly paral-

lel language models that provide word-at-a-time access to globally

shared objects are extremely demanding of the network interface.

With modest hardware suppor~ the cost of handling a simple mes-

sage can be reduce to a handful of instructions, but not to one.

Unless remote references are infrequent, the amount of resources

consumed by message handling is significant. Whether dual pro-

cessors or a larger number of multiplexed processors is superior

depends on a variety of engineering issues, but neither involves

exotic architecture. The resources invested in message handling

serve to maintain the efficiency of the background computation.

5 Related work

The work presented in this paper is similar in character to the

recent development of optimized RPC mechanisms in the operating

system research community[l 8, 2]. Both attempt to reduce the

communication layer functionality to the minimum required and

carefully analyze and optimize the frequent case. However, the

time scales and the operating system involvement are radically

different in the. two arenas.

The RPC mechanisms in distributed systems operate on time-

scales of 100s of microseconds to milliseconds, and operating sys-

tem involvement in every communication operation is taken for

granted. The optimizations presented reduce the OS overhead for

moving data between user and system spaces, marshaling complex

RPC parameters, context switches and enforcing security. Further-

more, connecting applications with system services is a major use

of operating system RPCS, so the communication partners must be

protected from one another.

In contrast, the time scale of communication in parallel machines

is measured in tens of processor clock cycles (a few ps) and the

elimination of all OS intervention is a central issue. Security is less

of a concern given that the communication partners form a single

program.

Another difference is that in the distributed systems arena the
communication paradigm (RPC) is stable, whereas we propose a

new mechanism for parallel processing and show how it is more
primitive than and subsumes existing mechanisms.

6 Conclusions

Integrated communication and computation at low cost is the key

challenge in designing the basic building block for large-scale mul-

tiprocessors. Existing message passing machines devote most of
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their hardware resources to processing, little to communication and

none to bringing the two together. As a resul~ a significant fraction

of the processor is lost to the layers of operating system software

required to support message transmission. Message driven ma-

chines devote most of their hardware resources to message trans-

mission, reception and scheduling. The dynamic allocation re-

quired on message arrival precludes simpler network interfaces.

The message-by-message scheduling inherent in the model results

in short computation run-lengths, limiting the processing power

that can be utilized.

The fundamental issues in designing a balanced machine are

providing the ability to overlap communication and computation

and to reduce communication overhead. The active message model

presented in this paper minimizes the software overhead in message

passing machines and utilizes the full capability of the hardware.

This model captures the essential functionality of message driven
machines with simpler hardware mechanisms.

Under the active message model each node has an ongoing com-

putational task that is punctuated by asynchronous message ar-

rival. A message handler is specified in each message and serves

to extract the message data and integrate it into the computation.

The efficiency of this model is due to elimination of buffering

beyond network transport requirements, the simple scheduling of

non-suspensive message handlers, and arbitrary overlap of com-

putation and communication. By drawing the distinction between

message handlers and the primary computation, large grains of

computation can be enabled by the arrival of multiple messages.

Active messages are sufficient to support a wide range of pro-

gramming models and permit a variety of implementation tradeoffs.

The best implementation strategy for a particular programming

model depends on the usage patterns typical in the model such as

message frequency, message size and computation grain. Further

research is required to characterize these patterns in emerging par-

allel languages and compilation paradigms. The optimal hardware

support for active messages is an open question, but it is clear

that it is a matter of engendering tradeoffs rather than architectural

revolution.
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