
Efficient Synchronization: 
Let Them Eat QOLB

Matthew Moskewicz

CS258, UC Berkeley, 2002.04.19

Scope of Work
• Fine grained parallel shared memory 

programs running on distributed shared 
memory cache coherent multiprocessors.
– Bam.

• Locks and Barriers are the one true method 
of explicit synchronization.
– But Barriers are uninteresting.
– Message passing? Nope.

• So, this work is all about locks.

Breaking down the Lock
• We want to break down the time spent 

dealing with locks, from the cosmic 
perspective.

• Proposed breakdown of synch period into 
three phases: (all for one lock)
– Transfer

• Time from: A release complete � B acquire complete 

– Load/Compute
• Time from: B acquire complete � B compute complete

– Release
• Time from: B compute complete � B release complete

Their illustrative figure:



Optimization Frontier
– Local spinning

• Reduces network load

– Queue based locking
• No arbitration, quicker transfer

– Collocation
• Transfer data with locks 

– Synchronous Prefetch
• Get lock/data in advance

Please don’t upset the primitives
• Good ’ol Test and Set (TS)

– And his buddy, Test and Test and Set (TTS)

• The MCS lock
– And his uppity cousins, the LH and M locks
– Queue based locking primitives

• Reactive synchronization
– Watch level of contention, adjust lock type
– TS for low contention, MCS for high

• QOLB
– The queen of all locks. All hail QOLB. 
– Just hardware MCS? But apparently not quite.

Variants
• Exponential back off

– Applies to TS, TTS, does about what you’d think.

• Collocation
– Applies to all primitives (not used on LH, M, R(?))

– Transfer data with lock

• Prefetching
– Applies to all primitives (only used with QOLB)

Simulation Environment
• WWT

– Okay, sounds fine in general

– Fully connected constant delay p-p network? 
What the?

• But I guess it’s okay ’cause they try real hard to 
explain why it’s okay.

– 32 Processors, CC-NUMA, SCI CCP
• There they go with that SCI thing again.

– Release consistent
• Use two implementations: SC and ‘a more aggressive 

one’ which doesn’t say too much. But they add a 
confusing detail or two.



Microbenchmark
• Everybody grab the (one) lock, quick!
• Shows effect of contention, kills TS, TTS

– TS+E, TTS+E better, but still suck
– Queue locks are good (somebody’s always got it, 

but some queuing overhead unavoidable)

– Queue locks are even better if you magically set 
overhead to near 0. (QOLB)

Microbenchmark Graph

Marcobenchmark Results Macrobenchmark Discussion
• Unsurprising the QOLB wins, given 

methodology
• But TTS+C does almost as well, save mp3d

– And QOLB basically just wins because it 
assumes lower overhead due to extra hardware, 
and mp3d exploits this (one assumes)

– But so what? It still wins, so add the hardware, 
right? It’s easy, right?

• Probably not. Easy only wrt SCI …
• And one app is less than convincing



Low cost QOLB?
• Single microbenchmark, dubious result

– Winner is CQL, unless you add +C to QOLB
• But, uh, why didn’t we add +C to CQL again?

Summary
• If you compare the same operation in 

software to a faster hardware version, the 
faster hardware version is faster.

• I’d need to see (much) more impressive 
results to justify complex hardware locks.

• I’d especially want to see modified 
applications, message passing, sockets, and 
so on.


