

Foreword

It has indeed been an honor to put together this volume of selected papers from the Interna-
tional Symposia on Computer Architecture (ISCA). 1998 marks the 25th anniversary of the sym-
posium. During this time the symposium has been the forum for presentation of a significant
number of research ideas and results that have had a significant impact on how computing
machines are built. This volume is an attempt to bring forth a selection of such papers, along
with retrospectives written by the authors of the papers describing, among other things, the his-
tory and background of the research reported in the paper.

The papers in this volume were selected by a committee of program chairs/vice-chairs of
recent ISCA conferences: Doug DeGroot and Yale Patt (ISCA-15), Arvind (ISCA-16), Jim Good-
man (ISCA-17), Allan Gottlieb (ISCA-19), John Hennessy (ISCA-20), Jim Smith (ISCA-22), Norm
Jouppi (ISCA-23), and Trevor Mudge (ISCA-24); Janak Patel (ISCA-21) participated for part of
the process. We started the process with a list of about 140 papers that were nominated by mem-
bers of this committee. This list was pruned to about 70 papers with one round of voting, and to
the final 41 with further rounds of voting. (The main selection criterion was the impact of the
paper. Papers in ISCA-23 and ISCA-24 were considered to be too recent by most committee
members, and therefore this collection does not include papers from these symposia.)

This volume would not have been possible without a considerable effort on the part of sev-
eral individuals, and I would like to thank them for their efforts. The authors of the retrospec-
tives put in a lot of effort into their writeups; without them this volume would not have been
possible. Avinash Sodani and Doug Burger did most of the formatting (with help from Jim
Goodman) and Eric Rotenberg helped with proofreading. Milo Martin and Harit Modi did the
cover design. (The cover pictures a partially-built pyramid with 41 building blocks, correspond-
ing to the papers in this volume, and lots of blue sky for future ISCA papers.) Finally, John Hen-
nessy and Mateo Valero not only shared my enthusiasm for this project but also provided
constant encouragement.

List of Selected Papers

ISCA 1 (1974)

1 Banyan Networks for Partitioning Multiprocessor Systems
RopNEY GOKE AND G.]. LIPOVSKI

ISCA 2 (1975):

2 A Preliminary Architecture for a Basic Data Flow Processor
Jack B. DENNIS AND DAviD P. Misunas

ISCA 3 (1976):

3 Improving the Throughput of a Pipeline by Insertion of Delays
Janak H. PATEL AND EDWARD S. DAVIDSON

4 Computer Structures: What Have We Learned from the PDP-11?
GORrDON BELL AND WILLIAM D. STRECKER

ISCA 4 (1977):

5 An Instruction Timing Model of CPU Performance
BERNARD L. PEUTO AND LEONARD J. SHUSTEK

ISCA 7 (1980):

6 Retrospective on High-Level Language Computer Architecture
Davip R. DitzeL AND DAVID A. PATTERSON

7 Architecture of a Massively Parallel Processor
KeNNETH E. BATCHER

8 A Processor for a High-Performance Personal Computer
BuTLER W. LAMPSON AND KENNETH A. PIER

ISCA 8 (1981):

9 Lockup-Free Instruction Fetch/Prefetch Cache Organization
DAvIiD KrROFT

10 A Study of Branch Prediction Strategies
JaMEs E. SMITH

11 RISC I: A Reduced Instruction Set VLSI Computer
Davip A. PATTERSON AND CARLO H. SEQUIN

ISCA 9 (1982):

12 Decoupled Access/Execute Computer Architecture
James E. SMiTH

13 The NYU Ultracomputer — Designing a MIMD, Shared-Memory Parallel Machine
ALLAN GoOTTLIEB, RALPH GRIisHAM, CLYDE P. KRUSKAL,
KeviN P. MCAULIFFE, LARRY RUDOLPH AND MARC SNIR

ISCA 10 (1983):

14 Using Cache Memory to Reduce Processor-Memory Traffic
JamEes R. GoobpmMAN

15 Very Long Instruction Word Architectures and the ELI-512
JosePH A. FISHER

ISCA 11 (1984):

16 A Characterization of Processor Performance in the VAX-11/780
JOoeL S. EMER AND DoucrAas W. CLARK

17 A Low-Overhead Coherence Solution for Multiprocessors with Private Cache Memories
MARK S. PAPAMARCOS AND JANAK H. PATEL

ISCA 12 (1985):

18 Implementation of Precise Interrupts in Pipelined Processors
JAMES E. SMITH AND ANDREW R. PLESZKUN

ISCA 13 (1986):

19 HPSm, a High Performance Restricted Data Flow Architecture Having Minimal
Functionality
WEN-MEI HWU AND YALE N. PATT

20 Warp Architecture and Implementation
MARCO ANNARATONE, EMMANUEL ARNOULD, THOMAS GROSS,
H.T. KuNnGg, MonNicaA S. LaMm, ONAT MENZILCIOGLU, KEN SAROCKY
AND JoN A. WEBB

21 Memory Access Buffering in Multiprocessors
MicHEL DuBois, CHRISTOPH SCHEURICH AND FAYE BRiGGs

ISCA 14 (1987):

22 Instruction Issue Logic for High-Performance, Interruptable Pipelined Processors
GURINDAR S. SOHI AND SRIRAM VAJAPEYAM

23 Architecture of a Message-Driven Processor
WiLLiAaM J. DALLY, LINDA CHAO, ANDREW CHIEN, SOHA HASSOUN,
WALDEMAR HORWAT, JON KAPLAN, PAUL SONG, BRIAN TOTTY AND
Scort WILLS

ISCA 15 (1988):

24 On the Inclusion Properties for Multi-Level Cache Hierarchies
JEaN-Loupr BAER AND WEN-HANN WANG

25 An Evaluation of Directory Schemes for Cache Coherence
ANANT AGARWAL, RICHARD SIMONTI, JOHN HENNESSY AND
MArk HoroOwITZ

ISCA 17 (1990):

26 Weak Ordering— A New Definition
SARITA V. ADVE AND MARK D. HILL

27 Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors
KourosH GHARACHORLOO, DANIEL LENOSKI, JAMES LAUDON,
PaiLLiP GiBBONS, ANOOP GUPTA AND JOHN HENNESSY

28 Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers
NorMAN P. Jourrt

29 Monsoon: An Explicit Token-Store Architecture
GREGORY M. PAPADOPOULOS AND DAvID E. CULLER

ISCA 18 (1991):

30 IMPACT: An Architectural Framework for Multiple-Instruction-Issue Processors
Ponua P. CHANG, ScoTT A. MAHLKE, WiLLiAM Y. CHEN,
NANcY J. WARTER AND WEN-MET W. Hwu

ISCA 19 (1992):

31 The DASH Prototype: Implementation and Performance
DANIEL LENOSKI, JAMES LAUDON, TRUMAN JOE, DAVID NAKAHIRA,
Luis STEVENS, ANOOP GUPTA AND JOHN HENNESSY

32 Active Messages: A Mechanism for Integrated Communication and Computation
THORSTEN VON EICKEN, DAVID E. CULLER, SETH COPEN GOLDSTEIN
AND KLAUS ERIK SCHAUSER

33 The Turn Model for Adaptive Routing
CHRISTOPHER J. GLASS AND L1ONEL M. N1

34 Alternative Implementations of Two-Level Adaptive Branch Prediction
TsE-YU YEH AND YALE N. PATT

ISCA 20 (1993):

35 The Cedar System and an Initial Performance Study
D. Kuck, E. DavipsonN, D. LAwWRIE, A. SAMEH, C. -Q. ZHU,
A. VEIDENBAUM, J. KONICEK, P. YEw, K. GALLIVAN, W. JALBY,
H. WiysHOFF, R. BRAMLEY, U. M. YANG, P. EMRATH, D. PADpuA,
R. EIGENMANN, J. HOEFLINGER, G. JAXON, Z. L1, T. MURPHY,
J. ANDREWS AND S. TURNER

ISCA 21 (1994):

36 Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer
MATTHIAS A. BLUMRICH, KAT LI, RICHARD ALPERT,
CezARrY DusnNicki, EDWARD W. FELTEN AND JONATHAN SANDBERG

37 The Stanford FLASH Multiprocessor
JEFFREY KUskIN, DAvVID OFELT, MARK HEINRICH, JOHN HEINLEIN,
RicHARD SimonNI1, KOuUROSH GHARACHORLOO, JOHN CHAPIN,
DAvID NAKAHIRA, JOEL BAXTER, MARK HOROWITZ, ANOOP GUPTA,
MENDEL ROSENBLUM AND JOHN HENNESSY

38 Tempest and Typhoon: User-Level Shared Memory
STEVEN K. REINHARDT, JAMES R. LARUS AND DAviD A. WooOD

ISCA 22 (1995):

39 The MIT Alewife Machine: Architecture and Performance
ANANT AGARWAL, RiCARDO BraANCHINI, DAVID CHAIKEN,
Kirk L. Jounson, Davip Kranz, Joun KusiaTowicz,
BeEnG-HonNG LiMm, KENNETH MACKENZIE AND DONALD YEUNG

40 Multiscalar Processors
GURINDAR S. SoHI1, ScoTT E. BREACH AND T.N. VIJAYKUMAR

41 Simultaneous Multithreading: Maximizing On-Chip Parallelism
DEAN M. TULLSEN, SUSAN J. EGGERS AND HENRY M. LEvY

10

11

Table of Retrospectives

Banyan Networks for Partitioning Multiprocessor SYStems............cccvvevvvevevevevivevivinnnnn, 1
JACK LIPOVSKI
A Preliminary Architecture for a Basic Data FIow Processorcccccevecvneceiecnnnes 2

Jack B. DENNIS

Improving the Throughput of a Pipeline by Insertion of Delaysccoccvvvvivinicinnnns 5
JaANAK H. PATEL

What We Have Learned from the PDP-11...........cccccoiciiiiniiiciciiiiiiiiccciiicecccia 6
GORDEN BELL AND W.D. STRECKER

An Instruction Timing Model of CPU Performance...............ccveceenccineenecniencnnes 11
LEONARD]J. SHUSTEK AND BERNARD L. PEUTO

High-Level Language Computer ArchiteCtire........covvvvivcvirivininininicinisiinisicisisiininnn, 13
DAvID R. DitzeL AND DAVID A. PATTERSON

Architecture of a Massively Parallel Processor..............coccccciciuiiiciiccciccccnnans 15

KEN BATCHER

A Processor for a High-Performance Personal COMPULEr...........cccoeeevvecineenirinieicnnnes 17
KEN PIEr
Lockup-Free Instruction Fetch/Prefetch Cache Organizationc..ovevvvcivnnennnn. 20

DAviDp KROFT

A Study of Branch Prediction Strategiescececiuiecciiiiciiicccccccanans 22
JaMEs E. SMITH

RISC I: A Reduced Instruction Set COMPULETcuvweuevinueinieiiinieieiciinieiceieeieeeene, 24

DaviDp A. PATTERSON AND CARLO H. SEQUIN

12

13

14

15

16

17

18

19

20

21

22

Decoupled Access/Exectite ArCHItECEUTESc.ooveuevivuccinieiiniiiiieiciiieiieciseceeesieaas
James E. SmiTH

The NYU UIFACOMPULETvvvviciicicicicieietcteieieie ettt
ALLAN GOTTLIEB

Using Cache Memory to Reduce Processor-Memory Traffic............cccvvccvinininncnne.
JamEes R. GoopmanN

Very Long Instruction Word Architectures and the ELI-512cccccovvvevniviniencnnnnes
JosePH A. FISHER

Characterization of Processor Performance in the VAX-11/780cccccccvuvuvuvueueucunee.
JoeL EMER AND DoucLAas W. CLARK

A Low-Overhead Coherence Solution for Multiprocessors with
Private CAche MEIMOTIEScccvevvuvucuciiiiiciciciiiiccctt e

JaNAK H. PATEL
Implementing Precise Interrupts in Pipelined Processors..............cccccvvcucceinicicicucan.
JaMmEs E. SMITH

HPSm, a High Performance Restricted Data Flow Architecture
Having Minimal FUNCHONAITEYccoovviviiirieiiinicinieiisicteeeteeteeeseceeee

WEN-MEI W. Hwu AND YALE N. PATT

The Warp MAacHINes ccceucueueieicicicicicictcicieiciciete ettt
THOMAS GROSS AND MONICA LAM

Memory Access Buffering in MultiproCess0rscccccviviviviciciiiiiiiiciciiicicciccicisna
MicHEL DuBois AND CHRISTOPH SCHEURICH

Instruction Issue Logic for High-Performance, Interruptable
Pipelined PrOCESSOTSccccucucuiiiiiiciciiiiiisisiccii ettt

GURINDAR S. SoHI

23

24

25

26

27

28

29

30

31

32

The] IVIACHITIC vvvevvveivveceieieieesteette et etae ettt et et ettt e st e e etb e e bt st e et e e etbeeabseresaateeres 54

WiLLIAM J. DALLY, ANDREW CHANG, ANDREW CHIEN, STUART FISKE,
WALDEMAR HORWAT, JOHN KEEN, RICHARD LETHIN, MICHAEL NOAKES,
PETER NUTH, ELLEN SPERTUS, DEBORAH WALLACH, D. ScorT WILLS

On the Inclusion Properties for Multi-Level Cache Hierarchiesccoccevivivnnennn. 59
JEAN-LOUP BAER AND WEN-HANN WANG

Evaluation of Directory Schemes for Cache COREYenceccouvevevevvvcvivevcveveverinnan, 61
JoHN HENNESSY

Weak Ordering — A New Definitionccoveereinieinieiiinicinieieiinccieieesieesieieenes 63
Sarita V. ADVE AND MARK D. HiLL

Memory Consistency and Event Ordering in Scalable
Shared-Memory MUltiproCeSSOTSccueueueueie s 67

KourosH GHARACHORLOO

Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Bufferscccocvvvvvcvinviinnisiniciinnnnnnn, 71

NoRrRMAN P. Jourrl

Monsoon: An Explicit Token-Store ArchiteCturecoccvvvvviccciicccccciaes 74
GREGORY M. PApADOPOULOS AND DAvID E. CULLER

IMPACT: An Architectural Framework for Multiple-Instruction Issue 77
WEN-MEI W. Hwu

The DASH Prototype: Implementation and Performanceccouvovvvvvvvninciinnnnnnn, 80
DANIEL E. LENOSKI AND JAMES P. LAUDON

Active Messages: A Mechanism for Integrating Computation
ANd COMMUNICALION ..o 83

THORSTEN VON EICKEN, DAVID E. CULLER, KLAUS ERIK SCHAUSER
AND SETH COPEN GOLDSTEIN

33

34

35

36

37

38

39

40

41

The Turn Model for Adaptive ROULINGccccvvvivviiniiiininiiiiniiiniiiiiiiisiciniscisieissenes 85
LioNEL N1

Alternative Implementations of Two-Level Adaptive
Training Branch PrediCtionc.ccoeiniinineinieinieicisicieeeeeeteeeseeeeesees 87

YALE N. PATT AND TSE-YU YEH
The Cedar SYSEEML.....cuuuiviviviiiiiiiniiiiiiiiiisicinisieis e 89

A. VEIDENBAUM, P.C. YEw, D. J. Kuck, C. D. POLYCHRONOPOULOS,
D. H. PApua AND K. GALLIVAN

Virtual Memory Mapped Network Interface for the SHRIMP Multicomputer 92

MATTHIAS A. BLUMRICH, KA1 LI, RicHARD D. ALPERT, CEZARY DUBNICKI,
EDWARD W. FELTEN AND JONATHAN SANDBERG

The Stanford FLASH MUItiprOCESSOTcucueveveueie e 95
JEFFREY S. KUSKIN

Tempest and Typhoon: User-Level Shared Memoryccoccceeeeneeinievnnceinieinneann 98
STEVEN K. REINHARDT, JAMES R. LARUS, AND DAvID A. WooD

The MIT Alewife Machine: Architecture and Performanceccovevvvvinivciinnes 103
ANANT AGARWAL

MUTEISCALAT PTOCESSOTS ...ttt 111
GURINDAR S. SOHI

Simultaneous Multithreading: Maximizing On-Chip Parallelismcccc.c.... 115

DEeAN M. TUuLLSEN, SUSAN J. EGGERs, AND HENRY M. LEvY

Xii

RETROSPECTIVE:

Banyan Networks for Partitioning Multiprocessor Systems

Jack Lipovski

Electrical and Computer Engineering
University of Texas at Austin
lipovski@ece.utexas.edu

This paper consolidated apparently different areas of research and application involving multistage
interconnection networks. It showed that the previously implemented barrel shifter (Illiac IV) and flip net-
work (Staran) were special cases of a general case of interconnection network, and that the general case
covered a wide range of other interconnection networks. The class of graphs describing these networks
has been studied in Graph Theory, and several practical interconnection networks in this family have been
built. Nevertheless, considerable work is yet to be done in both the theoretical and the practical explora-
tion of “Banyan Graphs” and “Banyan Interconnection Networks.” I remain optimistic that further
research into both the theoretical and practical aspects of this research will someday lead to superior paral-
lel computers.

RETROSPECTIVE:

A Preliminary Architecture for a Basic Data Flow Processor

Jack B. Dennis

Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139
dennis@aj.lcs.mit.edu

J[n 1964 MIT’s Project MAC selected the General
Electric Model 635 computer system as the basis
for building the Multics time sharing utility com-
puter system [7]. I had participated in the work of
the four-person committee that visited computer
manufacturers to evaluate the potential of each for
achieving the goals of Multics. The basis for this
evaluation was the report of the “Long Range
Computer Study Group” completed in 1961 [21], to
which I contributed.

Part of my contribution to this effort was my
work on segmentation [11] which was motivated
by the issues of making computer systems more
compatible with the needs of programming in a
human interactive environment: the ability to
write programs without attention to the details of
storage management; and the ability to dynami-
cally share use of system resources. Our experience
with CTSS [6] and the PDP-1 time-sharing system
[10] had brought these issues to the fore. We were
also concerned with parallelism in computing, ini-
tially because we had argued that multiple proces-
sors could make more effective use of the large
memory systems we saw the need for. We insisted
that Multics be a multiprocessor system, but the
primary argument eventually became one of fault
tolerance, the capability of the system to survive
the loss of any single module.

In 1964, I formed the “Computation Structures
Group” within Project MAC. From the beginning
we adopted the principle that the programming
interface supported by the hardware and operating
system should be one that matches the semantics
of the programming language used to write appli-
cations [17]. We insisted that the user program-
ming language be expanded to incorporate
facilities for expressing concurrency, file handling,
and input/output so that the programmer need
never go outside the application language to write

complete programs of any size. Moreover, we
aimed to do this in a fashion that would be consis-
tent with the requirements of modular program-
ming. (We were influenced by the symposium on
Modular Programming organized by Larry Con-
stantine in Cambridge, MA in 1968 [5].)

A major benefit at this time was the attitude of
DARPA, the sponsor of Project MAC and the Mul-
tics development, toward graduate education: the
“umbrella” grant under which Project MAC oper-
ated allowed faculty and graduate students to pur-
sue ideas independently without hassles with
proposals and sponsor reports (other than the
Project MAC Annual Report).

One area that attracted my attention was the
theoretical area of program schemata. The work of
the Russian scientist lanov was brought to my
attention by Joseph Rutledge of IBM [24]. The
work of Michael Patterson, at MIT at that time, was
also influential. The outcome of this was the for-
malism of Data Flow Program Schemes written up
together with my graduate students, John Linder-
man and John Fosseen in 1972 [15]. Dataflow
schemes, as a model of programming, had many of
the qualities we desired for expressing parallelism
with modularity. However, they lacked models for
the important concepts of functions and data struc-
tures. (The addition of data structures to the pro-
gram schema model was explored in my 1968 IFIP
paper [12], and an essentially complete semantic
model based on dataflow concepts was published
in 1975 [13].)

We learned of the work of Karp and Miller at
the IBM Watson Laboratory [19], and of Duane
Adams at Stanford [1] later and were delighted
and encouraged to find that other computer scien-
tists were working with similar ideas. However, I
felt that our model was better aligned to the
requirements of modular software. In addition, it

was consistent with Edsger Dijkstra’s principles of
structured programming [8], and could be used as
a semantic model for functional programming [4].

About this time Professor Barry Vercoe of the
MIT Humanities Department was actively
involved in the art of computer-aided music sound
synthesis, and was frustrated by the lack of suffi-
cient performance from available computers to cre-
ate true symphonic sound wusing computer
programs. I took this as a challenge and used this
application as an attractive area in which to try out
our concepts.

Our first concept of a dataflow architecture
was based on a very simple class of Dataflow Sche-
mata: those that would operate continuously with-
out decisions. (Al Davis built an interesting early
data flow machine at the University of Utah [9].) A
paper on the implementation of this simple archi-
tecture would win a best paper prize for my co-
author, David Misunas [20]. The paper for the 1975
ISCA arose from our efforts at extending our con-
cepts to overcome limitations of earlier architec-
tures. As we discussed in Project MAC Progress
Report XI [22], we had in mind a succession of
extensions to encompass the full semantic model
we had developed. In particular the 1975 paper
incorporated mechanisms for handling loops and
conditionals, and the thesis of James Rumbaugh
[25] detailed a proposed architecture that would
implement the complete semantic model.

Soon after publication of the ISCA paper, we
realized that building enough instruction cells to
accommodate really large programs would be
impractical for a general purpose processor. As a
result several variations were explored. The event
that spread interest in the ideas, however, was the
1975 Sagamore Conference where I held a long
extemporaneous seminar on dataflow ideas. This, I
believe, led directly to the dataflow projects in
Manchester, England, in Japan, and to the begin-
ning of Arvind’s work at the University of Califor-
nia at Irvine [3].

We also soon realized that scheduling each
dataflow instruction independently was too ineffi-
cient, not because of the scheduling overhead,
however, but because we were not able to exploit
the advantage of transferring values between
instructions through processor registers. This prob-
lem can be addressed by some means for grouping
instructions together, as discussed in [14], and
advocated by Robert Iannucci [18]. The ideas of
fine grain multithreading [16], as introduced in the
Tera computer [2], are the legacy of this idea, and
Arvind’s group at MIT implemented a prototype

in the Monsoon system [23]. Nevertheless, the full
advantages of having a complete semantic model
consistent with the requirements of modular pro-
gramming have yet to be achieved. My optimism
leads me to believe that the next decade will finally
see these ideas reach fruition.

A key ingredient in a satisfactory semantic
model for general purpose computing is the ability
to share any kind of memory object among any
number of independent applications. It is only
gradually becoming appreciated that this calls for
systems that implement a global address space. At
present there exists a single commercial example of
such an architecture: the IBM AS/400 [26], and
interest in this aspect of computer architecture in
university research is at a nadir. The AS/400 is
inefficient and does not address the issues of soft-
ware modularity raised by parallel processing, and
is inadequate in its support of dynamic memory
management. There remain many significant
opportunities in computer architecture. The excite-
ment continues!

References

[1] Duane A. Adams. A Computation Model with
Data-Sequenced Control. Technical Report CGTM
45, Stanford University, May 1968.

[2] Robert Alverson, David Callahan, Daniel
Cummings, Brian Koblenz, Allan Porterfield, and
Burton Smith. The Tera computer system. In
Proceedings of the 1990 International Conference on
Supercomputing, IEEE, 1990, pages 1-6.

[3] Arvind, K. Gostelow and W. Plouffe. The
(preliminary) Id report: An asynchronous programming
language and computing machine. Technical Report
114, Department of Information and Computer
Science, University of California, Irvine, September
1978.

[4] John Backus. Can programming be liberated from
the von Neumann style? A functional style and its
algebra of programs. Communications of the ACM
21, 8:613-641. August 1978.

[5] Larry Constantine, Editor. Modular Programming:
Proceedings of a National Symposium. Cambridge,
MA: Information and Systems Press, 1968.

[6] Fernando J. Corbato, et al. The Compatible Time-
Sharing System: A Programmer’s Guide. Cambridge,
MA: M.I.T. Press, 1963.

[7] Fernando]. Corbato and Jerome H. Saltzer.
Multics: The first seven years. In AFIPS Conference
Proceedings 40: Spring Joint Computer Conference,
1972. pages 571-583.

[8] Ole-Johan Dahl, Edsger W. Dijkstra, and C. A. R.
Hoare. Structured Programming. New York:
Academic Press, 1972.

[0l

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Al Davis. The architecture and system method of
DDM1: A recursively structured data driven
machine. In Proceedings of the Fifth Annual
Symposium on Computer Architecture. 1EEE, 1978,
pages 210-215.

Jack B. Dennis. A multi-user computer facility for
education and research. Communications of the ACM
7,9 (September 1964).

Jack B. Dennis. Segmentation and the design of
multi-programmed computer systems. Journal of
the ACM 12, 4 (October 1965).

Jack B. Dennis. Programming generality,
parallelism, and computer architecture. In
Information Processing 68. Amsterdam: North-
Holland, 1969, pages 484-492.

Jack B. Dennis. First version of a data flow
procedure language. In Lecture Notes in Computer
Science, Volume 19: Programming Symposium. B.
Robinet, Ed. Berlin: Springer-Verlag, 1974, pages
362-376.

Jack B. Dennis. The evolution of ‘static’ data-flow
architecture. In J.-L. Gaudiot and L. Bic, editors,
Advanced Topics in Data-Flow Computing, chapter 2.
Prentice-Hall, 1991.

Jack B. Dennis, John Fosseen, and John P.
Linderman. Data flow schemas. In International
Symposium on Theoretical Programming. Lecture Notes
in Computer Science, No. 5. Berlin: Springer-Verlag,
1972, pages 187-216.

Jack B. Dennis and Guang R. Gao. Multithreaded
architectures: principles, projects, and issues. In
Robert A. Ianucci, editor, Advances in Multithreaded
Computer Architecture. Kluwer, 1994.

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

Jack B. Dennis and Earl C. Van Horn. Programming
semantics for multi-programmed computations.
Communications of the ACM 9, 2 (February 1966).
Robert A. Iannucci. Toward a dataflow/von
Neumann hybrid architecture. In Proceedings of the
15th Annual International Symposium on Computer
Architecture, IEEE Computer Society, 1988.

Richard M. Karp and Raymond Miller. Properties
of a model for parallel computation: determinacy,
termination, queueing. SIAM Journal of Applied
Mathematics 14, 6:1390--1411, November 1966.
David P. Misunas. Petri nets and speed
independent design. Communications of the ACM
16, 8:474-481, August 1973.

M.IT Computation Center. Report of the Long
Range Computer Study Group. April, 1961.

M.LT Laboratory for computer Science. Progress
Report XI. 1974, pages 84-90.

Gregory M. Papadopoulos and David E. Culler.
Monsoon: an explicit token-store architecture. In
Proceedings of the 17th Annual International
Symposium on Computer Architecture. 1EEE
Computer Society, 1990, pages 82-91.

Joseph D. Rutledge. On lanov’s program schemata.
Journal of the ACM 11, 1:1-9, January 1964.

James Rumbaugh. A Parallel Asynchronous
Computer Architecture for Data Flow Programs.
Technical ~Report MIT/LCS/TR-150, M.LT.
Laboratory for Computer Science, Cambridge, MA,
May 1975.

Frank Soltis. Inside the AS/400. Loveland, CO: Duke
Communications, 1996.

RETROSPECTIVE:

Improving the Throughput of a Pipeline by Insertion of Delays

Janak H. Patel

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign, Urbana, IL 61801
patel@crhc.uiuc.edu

Origins of this Paper

Present times are the best of times for the com-
puter and electronics industry. It was not always
that way. In 1971 the computer and electronics
industry was in one of its worst years. As a young
graduate from Stanford University with a fresh
M.S. in Electrical Engineering, I could not find a
suitable job. So I decided to go back to Stanford to
continue graduate studies beyond a Masters, still
not sure if I wanted to do a Ph.D. I talked to one of
the Stanford professors for doing some project for
the Engineer degree which is a terminal degree for
doing more than Masters but not doing thesis
research. The professor I talked to was Edward S.
Davidson. I told him that I am just an engineer, I
don’t want to do Ph.D. research. In reality I had no
idea what Ph.D. research involved since my M.S.
degree did not require a thesis. In that summer of
1971, Davidson gave me some papers on pipelin-
ing. In about a month or two, I wrote down some
simple ideas extending the elegant reservation
table and scheduling method that Davidson had
devised. I handed him the hand written paper
explaining how one can modify the reservation
tables to get a desired schedule. This is when he
asked me, “do you know what research is?” I was
still not sure what it was, and I told him so. In fact,
I told him this is why I was doing an Engineer
degree, and not a Ph.D. degree. That is when he
pointed to my papers and told that what I was
doing was in fact research! He told me if I contin-
ued along the same path, I could have a Ph.D. the-
sis. I was finally convinced. And so I had a Ph.D.
thesis topic and an advisor. Now that I am a Pro-
fessor myself, I do occasionally use this method to
convince a reluctant young engineer to pursue
Ph.D.

Job Shop and Machine Shop Scheduling

This paper is one part of my Ph.D. thesis at
Stanford. It builds on the work of Davidson on

pipeline scheduling. My goal was to maximize the
throughput by modifying the schedule and/or the
pipeline. Most of the research work in this area is
either in Machine Shop/Job Shop Scheduling and
Processor Scheduling. After all a pipeline is like an
assembly line. However, a job shop is not like an
assembly line. The big difference is, job shop
schedules a very small number of jobs each of
which execute only once, while an assembly line
has thousands of jobs and they are repetitive. To
my surprise, the research literature was all about
job shop and almost none on assembly line sched-
uling! And so I had to do this research from scratch
without any extensive literature. In fact the end
result is that this research could be useful to mod-
ern assembly lines! Even today I get an occasional
enquiry from a Business school or Industrial Engi-
neering colleague asking me if they could apply
this work to industrial production lines. I am not
sure if any of them have found a direct application
of this work, however, I am very sure that this
work has found application in all sorts of com-
puter architecture problems that involve some
form of resource sharing and scheduling.

Modern Applications of this Work

If one is not put off by the math of the paper,
which only involves very basic number theory, one
will find that it is quite easy to understand and use
the results in a variety of applications which
involve resource sharing among several tasks. Sev-
eral researchers have used the techniques of this
paper in their work. Bab Rau and Dave Yen
applied this to scheduling in the PolyCyclic archi-
tecture CYDRA. Peter Kogge has applied it to
microcode optimization. Bab Rau, Wen-Mei Hwu
and Ed Davidson have found its use in Software
Pipelining. Vijay Madisetti has found it useful in
Digital Signal Processor design. Others have found
its use in high level synthesis.

RETROSPECTIVE:

What Have We Learned from the PDP-11 —
What We Have Learned from VAX and Alpha

Gorden Bell

Senior Researcher
Microsoft Corp., Bay Area Research Center
San Francisco, CA

Introduction

The PDP-11, VAX-11 (usually just VAX), and
Alpha have been the strategic computer hardware
architectures of Digital Equipment Corporation
(DEC) from the early 1970’s to the present.
Although it would be a stretch to consider them
variants of a single computer architecture, there
are enough common properties in the architectures
themselves and in the major software systems sup-
porting the architectures to consider them mem-
bers of an architecture family.

Our paper “Computer Structures: What Have
We Learned from the PDP-11" [1] was written at
the time the VAX architecture was being devel-
oped, and the learning reported in that paper
would strongly influence the design of the VAX
architecture.

In this retrospective, we will review how the
PDP-11 learning influenced VAX. Next we will dis-
cuss what we learned from the VAX architecture.
Finally we will discuss the design of the Alpha
architecture and how its design and entry into the
market resulted not only from VAX learning, but
also from environmental factors inside DEC.

PDP-11

The PDP-11 is a CISC architecture with a 16-bit
virtual address. The first PDP-11 implementation —
the PDP-11/20 — was introduced in 1969. In [2]
there is a detailed discussion of the goals and con-
straints for the design of the PDP-11. Deliberately
oversimplifying, these include: (1) provide the
ability to build processors with a wide range of
performance and function, (2) provide efficient (8-
bit) byte processing, (3) provide a flexible, compiler
friendly programming model, and (4) provide a
flexible I/ O structure.

The PDP-11 architecture is a general register
design (8 16-bit registers) with the program
counter and stack pointer located in the general
registers. An elegant set of register-based memory
addressing modes combined with the general reg-

W.D. Strecker

Sr. VP and Chief Technology Officer
Digital Equipment Corporation,
Maynard, MA

ister structure to produce an architecture that can
be programmed as a stack machine, a general reg-
ister machine, or a memory-to-memory machine.
Memory is addressable to the (8-bit) byte and the
conditional branch mechanism is based on condi-
tion codes. I/O is handled by providing 1/0
device registers with memory addresses: the regis-
ters can then be manipulated by ordinary instruc-
tions.

The PDP-11 was a major commercial success,
providing the majority of DEC’s growth, revenues
and profits from the early 1970’s to the early 1980’s.
Also, the PDP-11 significantly influenced computer
architecture with its elegant addressing modes and
its I/O structure.

The PDP-11 architecture proved to have two
real limitations. The first was the 16-bit virtual
address space. This will be discussed in the next
section. The second was the instruction set and the
instruction set encoding. The original PDP-11 had
operations to move, add, subtract, compare, and
conditional branch on 8- and 16-bit integers. These
operations together with the addressing modes
were encoded in such a way to effectively exhaust
the code space of the PDP-11 instruction format.

This situation made it impossible to compati-
bly extend the PDP-11 with any consistency or effi-
ciency. The addressing modes could not
reasonably be extended or redefined to support a
greater than 16-bit virtual address. It was impossi-
ble to efficiently add additional instructions in a
manner architecturally consistent with the basic
instruction set. When certain additional instruc-
tions and other capabilities were needed to meet
market requirements (e.g. extended integer arith-
metic, floating point, and memory management)
they were added as implementation specific
options and often weren’t compatible across imple-
mentations. The result of all this was that the PDP-
11 was not compiler friendly (given the state of
DEC and industry compiler technology in the
1970’s). Most PDP-11 language processors were

either (1) interpreters or (2) compilers that com-
piled to an intermediate form that was interpreted
at run time.

Far surpassing the lack of architectural control
and consistency in PDP-11 hardware implementa-
tions was the state of PDP-11 software. Depending
on how one counts, there were about 4 operating
system families with about 10 named variants.
These operating systems supported an arbitrary
variety of sometimes incompatible language pro-
cessor, data management, and transaction process-
ing software. It was understood that this situation
would be completely unmanageable and could not
be afforded for the future.

From the PDP-11 to VAX

The Bell and Strecker paper [1] has often been
quoted because of this statement:

“There is only one mistake that can be made in a
computer design that is difficult to recover from — not
providing enough address bits for memory addressing
and memory management. The PDP-11 followed the
unbroken tradition of nearly every known computer. Of
course, there is a fundamental rule of computer (and
perhaps other) designs that helps to alleviate this prob-
lem: any well-designed machine can be evolved through
at least one major change. It is extremely embarrassing
that the PDP-11 had to be evolved with memory man-
agement only two years after the paper was written out-
lining the goal of providing increased address space. All
predecessor DEC designs have suffered the same prob-
lem and only the PDP-10 evolved over a ten year period
before a change was made to increase its address space.”

By 1975, the PDP-11's 16-bit virtual address
had become a real limit for applications. (Various
approaches had been used in the PDP-11 imple-
mentations to extend the physical address space to
beyond 216 bytes, but they did not solve the appli-
cation problem.)

Moore’s Law [3] predicts that DRAM chip
capacity increases 4 times every 3 years. Thus, if
memory chip prices are constant, and if users pay a
constant amount for computers, then the number
of address bits needed to address a constant price
memory will grow by one address bit every 18
months.

If a 16-bit address was reaching its limit in
1975, then one could determine the likely lifetime
of any address size expansion. We defined the
PDP-11"s successor — VAX — to have a virtual
address of 32 bits. Thus we concluded that the VAX
architecture — based upon the above model that the
only fundamental limitation on architecture life-
time is addressing — should comfortably last about
24 years: until 1999. It would turn out that the limit
on the VAX architecture lifetime wasn't the size of
the virtual address.

VAX

The VAX is a CISC architecture with a 32-bit
virtual address. The first VAX implementation —
the VAX-11/780 — was introduced in 1978 [4]. The
design of VAX was started in 1975. The overarch-
ing goal was to produce a ‘compatible’ extension of
the PDP-11 that would solve the virtual address
space limitation of the PDP-11 (the name VAX-11 is
derived from ‘Virtual Address eXtension of the
PDP-11). The principal constraint on the design of
VAX was that - despite the doubled virtual
address size — VAX code would be no bigger than
equivalent PDP-11 code.

A strong goal was to eliminate the chaos of the
PDP-11 software. This was approached in three
ways. (1) VAX was to have a single strategic oper-
ating system — VMS — with real-time, time-shar-
ing, and transaction processing capabilities. (2) To
make the VAX compiler friendly (again in the con-
text of DEC’s mid-1970’s compiler technology), an
extreme focus was placed on instruction set com-
pleteness and regularity. (3) The VAX software
environment was to be based on the model that
any software can ‘call’ any other software. To
strongly motivate software developers to follow
this model, VAX defined a number of ‘software’
data types (i.e. subroutine stack frames, queues,
variable length bit fields, character strings, and
decimal strings) and provided instruction support
for these data types. ‘Software’ is used in the sense
that most applications would see little perfor-
mance degradation if the data types were imple-
mented in software.

Given the code size constraint and the limita-
tions discussed above on extending the PDP-11
instruction set, the VAX instruction format is not a
superset of the PDP-11 instruction format. Instead
a new instruction format was designed for VAX
and formal PDP-11 compatibility was provided by
a tightly integrated PDP-11 compatibility mode
that allowed execution of PDP-11 instructions in
the VAX virtual address space.

The VAX architecture has the same general
structure as the PDP-11 - general registers
(extended to 16 32-bit registers), with the program
counter and stack pointer located in the register
set, a rich set of register-based addressing modes
(extended to include scaled indexing and an effi-
cient encoding of literals). VAX also has the same
data types, condition codes, and byte addressing
as the PDP-11.

As introduced above, VAX extended the PDP-
11 by defining new data types — queues, variable
length bit fields, subroutine stack frames, character
strings, and decimal strings — and a complete set of
instructions to operate on these data types.

To achieve the code size constraint, VAX
defined an extremely space efficient method of
encoding instructions. Instructions are provided in
multiple forms with implicit and explicit operands.
For example, the 32-bit integer ADD instruction is
provided in the following forms:

increment A ;add1to A
add A,B ;add AtoB
add A,B,C ;add A to B and

store the sum in C

Every explicit instruction operand (A, B, and C
in the previous example) is specified in a general
way using any of the VAX addressing modes. This
leads to the VAX instruction format of

[opcode, operand-1-specifier, ..., operand-n-specifier]

where 7 is the number of explicit operands.
VAX instructions were defined with 0-6 explicit
operands.

VAX was a huge commercial success. VAX pro-
vided the majority of DEC’s growth, revenues and
profits from the early 1980’s to the early 1990’s. The
success of VAX was clearly inseparable from the
VMS operating system. VMS was a true 32-bit vir-
tual memory operating system that performed
well from its first release. VMS embedded DECnet
such that it was transparent to applications
whether any file or other I/O operation was local
or over the network. On top of VMS was a highly
integrated (and network-transparent) software set
including multiple language compilers, a database
(RDB), transaction processing (ACMS), and an
‘integrated office” environment (ALL-IN-1). VMS
invented and first implemented the now-pervasive
concept of clusters [5,6].

When it was clear that the market was
responding to VAX and VMS, DEC moved to VAX
and VMS as its sole computer system strategy [7].
All other DEC systems were put in niche roles or
moved to what was essentially a maintenance
mode.

It is notable that the VAX architecture
remained essentially unchanged over the last 20
years. The only material addition was the early
adding of 2 floating-point data types. The only
other material change was to define permissible
subsets [8] of the architecture. (The MicroVAX
architecture was such a subset.) Processors imple-
menting VAX subsets generate sufficient state on
encountering an instruction not in the subset to
enable transparent, efficient software interpreta-
tion of the missing instruction.

A retrospective on VAX must reflect a strong
sense of time. The VAX embodiment of the goals
and constraints of PDP-11 compatibility, the code
size constraint, instruction set completeness and
regularity, and hardware support for ‘software’
data types was absolutely key to moving from the

PDP-11 (and other DEC architectures) to the
hugely successful VAX and VMS business. How-
ever, once that success was achieved, the VAX
architecture carried a complexity burden that
would make it particularly vulnerable to the RISC
concept.

From VAX to Alpha

In 1980, Patterson [9] discussed the modern
RISC architecture concept. By the mid-1980s, there
was a general consensus in DEC that for a given
amount of CPU logic in a given technology, a RISC
processor could achieve (at least) twice the perfor-
mance of a CISC processor. There was no consen-
sus, however, on what to do about this.

There were two rational strategic responses to
the RISC challenge:

1. Since the RISC advantage would ‘only’ be a
factor of 2, DEC could ‘tough it out” until the limits
of a 32-bit address space would force a new archi-
tecture (predicted, as discussed above, to be about
1999). To ‘tough it out” would be (1) to focus on the
most aggressive possible microprocessor imple-
mentations of VAX, (2) to use multiprocessing and
clustering to achieve performance, and (3) to
accept limited success in some market segments
where (1) and (2) would be marginal (e.g. UNIX
workstations). Effectively, this was the type of
strategy successfully employed by IBM for the
‘360" architecture and Intel for the x86" architec-
ture — the other two important CISC architectures
with a large customer base.

2. Since CISC was going to ‘lose’ by at least a
factor of 2 to RISC, it was essential to embrace
RISC ASAP, define a new or use an already defined
RISC architecture, and get products to the market
in a timely manner. Especially important, it was
necessary to get DEC’s then strategic software sys-
tem — VMS — ported to the RISC architecture (or
perhaps, even better, made processor independent,
and sold industry-wide). Effectively, this was the
type of strategy successfully employed by Sun in
moving from the ‘68000” to SPARC.

As we discussed in the last section, DEC’s VAX
business was a huge success, and it was very prof-
itable. At this time, DEC’s senior leadership was
operating under the philosophy best captured by
the two phrases ‘if some strategy is good, less strat-
egy is better,” and ‘if some internal competition is
good, more internal competition is better.”

As a result, exploiting the considerable profits
of the VAX business, an overwhelming array of
internal projects in processor technology, VAX and
RISC architectures, and operating systems were
launched. During the second half of the 1980’s,
major projects were undertaken in various combi-
nations of 3 different ECL gate array technologies,
high performance multichip packaging, advanced

custom CMOS, 3 internally developed and one
externally developed (MIPS) 32-bit RISC architec-
tures, a 64-bit RISC architecture (Alpha), multiple
system and 1/O busses, a new UNIX operating sys-
tem, and two new proprietary operating systems!
Knowing that all these projects could not possibly
be successful, DEC’s product development organi-
zation was locked in internecine warfare.

By the end of the 1980’s DEC had essentially
lost control of its system strategy. It wasn’t explain-
able or affordable, and remarkably still hadn’t
done everything necessary to successfully imple-
ment either of the two strategic alternatives dis-
cussed above. It wasn’t until 1992/1993 that DEC
changed its senior leadership and regained control
of its system strategy.

Alpha

Alpha is a RISC architecture with a 64-bit vir-
tual address [10]. The first Alpha implementation —
the 21064 single chip microprocessor — was intro-
duced in early 1992. Computer systems using the
21064 were introduced at the end of 1992.

The goals of the Alpha architecture design
were high performance, longevity, support for run-
ning the VMS and UNIX operating systems, and
support for existing VMS and UNIX applications.
The goals of high performance and longevity were
met by a RISC approach with extreme attention to
details that might interfere with high-speed imple-
mentations, a 64-bit virtual address, and PALcode
(to be discussed later). The goals of VMS/VAX and
ULTRIX/MIPS (DEC’s UNIX offering was called
ULTRIX and ran on the MIPS architecture) applica-
tion support were met with data type and address-
ing compatibility with VAX and (little-endian)
MIPS, PALcode, and binary translation (discussed
later).

Compared to VAX, the design of Alpha can be
considered ‘classic’ RISC. There are 32 64-bit gen-
eral-purpose registers and 32 64-bit floating point
registers. All instructions are 32 bits in length. The
programming model is load/store: the only mem-
ory operations are load from memory to register
and store to memory from register. All other opera-
tions are between registers. The only data types are
integer and floating point with VAX compatibility.
The principal integer data type is 64 bits, and there
is very limited instruction support for smaller inte-
gers. Memory is addressable to the byte but there
are strong size and alignment constraints on mem-
ory accesses. There are no condition codes: condi-
tional branches are based on testing the state of a
register.

In addition to ‘classic” RISC techniques, Alpha
has some novel approaches for enabling high-
speed implementations. For example, there is a
very flexible approach to specifying and handling

arithmetic exceptions. A conditional move instruc-
tion eliminates branches in certain instruction
sequences. Certain instructions contain hints about
branch targets and data prefetching.

PALcode (Privileged Architecture Library)
provides a means of implementing the privileged
architecture seen by an operating systems. Privi-
leged architecture includes context switching,
interrupts, exceptions, and memory management.
In Alpha, PALcode is implemented with ordinary
instructions running in physical memory, with
interrupts off, and access to all machine state. The
PALcode is tailored to the needs of each operating
system (e.g. VMS, UNIX, and Windows NT).

Rather than hardware compatibility modes,
binary translation is used to run VMS/VAX-based
and ULTRIX/MIPS-based applications on Alpha.
The binary translator takes, say, VMS/VAX-based
executable code and compiles it to the extent possi-
ble to VMS/ Alpha-based executable code. A runt-
ime interpreter paired with an incremental
compiler handles the portion of the code that can-
not be initially compiled. During runtime interpre-
tation, enough additional information and context
is gathered to significantly extend the scope and
optimization of the initial compilation.

Binary translation was very successful in exe-
cuting applications from VAX and MIPS on Alpha.
Recently it has been used successfully to execute
Windows NT/x86 applications on Windows
NT/Alpha.

Around Alpha a unified system strategy was
developed. The strategy consisted of (1) an aggres-
sive long-term road map for Alpha microproces-
sors, (2) a family of systems from workstations to
large-scale multiprocessor systems using the
Alpha microprocessor. (3) PCI bus-based 1/0O for
all systems, and support by three operating sys-
tems: VMS (evolved from 32-bit to 64-bit support),
UNIX (called DIGITAL UNIX: a new pure 64-bit
operating system based on OSF technology) and
Windows NT (provided by Microsoft). All other
DEC systems were put in niche roles or moved to
what was essentially a maintenance mode.

This strategy was well executed by DEC. The
various Alpha microprocessors maintained a sig-
nificant performance lead over competitive RISC
and CISC microprocessors. The transition of
VMS/VAX to VMS/Alpha and ULTRIX/MIPS to
DIGITAL UNIX/Alpha went smoothly. In applica-
tion areas — particularly databases - where 64-bit
addressing could be exploited, Alpha performance
and 64-bit DIGITAL UNIX functionality set the
competitive benchmark.

Unfortunately, the strategy was late. By
1992/1993 de facto standards had been set by com-
petitors for RISC and (32-bit) UNIX. Despite the

simplicity of the strategy, and the technical excel-
lence, DEC would struggle to get product volumes
adequate for a profitable systems business.

However, a new opportunity is emerging for
Alpha. As the UNIX and the Windows NT market
moves from 32 to 64 bits, Alpha is the only mature,
high performance 64-bit RISC architecture with
pure 64-bit UNIX and Windows NT support. A
complete retrospective on Alpha awaits the indus-
try 32- to 64-bit transition.

Summary

The PDP-11, VAX-11, and Alpha can be consid-
ered members of an architecture family starting in
the 1960’s and extending to the present.

The PDP-11 was a huge commercial success for
DEC. The PDP-11 was the de facto standard 16-bit
minicomputer in the 1970’s. The basic PDP-11's
design was extremely elegant and it significantly
influenced future computer architecture. However,
the PDP-11"s 16-bit virtual address space and the
inability to efficiently and consistently extend the
architecture, led to its successor — VAX — being
designed only 6 years after its introduction.

The VAX was similarly a huge commercial suc-
cess for DEC. VAX and its closely related software
system — VMS — became the de facto standard for
32-bit virtual memory networked computing in the
1980’s. However, VAX, driven by its initial design
goals and constraints, was a complex architecture,
and was particularly challenged (internally and
externally) by the RISC concept that competitively
emerged in the mid-1980’s.

DEC’s internal situation in the second half of
the 1980’s made it impossible to achieve a timely,
rational response to the RISC challenge. By the
time the Alpha strategy emerged in 1992/1993,
DEC had lost momentum in the market and other
vendors had established de facto standards in RISC
and UNIX. This situation would impact the com-
mercial success of Alpha despite its superior tech-

10

nical attributes. However, the Alpha story awaits
completion of the industry transition from 32 to 64
bits, starting — as we predicted in 1975 — in about
1999.

References

[1] G. Bell W. D. and Strecker, "Computer Structures:
What Have We Learned from the PDP-11,” The 3rd
Annual Symposium on Computer Architecture
Conference Proceedings, pp. 1-14, 1976.

C. G. Bell, R. Cady, H. McFarland, B. Delagi, J.
O'Laughlin, R. Noonan and W. Wulf, "A New
Architecture for Mini-Computers - The DEC PDP-
11,” Proceedings of the Sprint Joint Computer
Conference, pp. 657-675, AFIPS Press, 1970.

R. R. Schaller, “Moore’s Law: Past, Present, and
Future,” IEEE Spectrum, pp.52-59, June 1997.

W. D. Strecker, “VAX-11/780: A Virtual Address
Extension to the DEC PDP-11 Family,” Proceedings
of the National Computer Conference, pp. 967-980,
AFIPS Press, 1978.

W. D. Strecker, “Clustering VAX
Superminicomputers Into Large Multiprocessor
Systems,” Electronics, pp. 143-146, October 20, 1983.
N. Kronenberg, H. Levy, W. Strecker, “VAX
Clusters: A Closely Coupled Distributed System,”
ACM Transactions on Computer Systems, May 1986.
C. G. Bell, “Toward a History of (Personal)
Workstations,” ACM Conference on the History of
Personal Workstations, January 9, 1986, published in
Goldberg, A., A History of Personal Workstations,
Addison-Wesley, Reading, MA, 1988.

T. E. Leonard, VAX Architecture Reference Manual,
DEC Books, Burlington, MA, 1987.

D. A. Patterson and D. R. Ditzel, “The Case for the
Reduced Instruction Set Computer,” pp. 25-33,
Computer Architecture News, October 1980.

R. L. Sites, Alpha Architecture Reference Manual, DEC
Press, Burlington, MA, 1992.

[3]
[4]

RETROSPECTIVE:

An Instruction Timing Model of CPU Performance

Leonard]. Shustek

Network Associates, Inc.
Portola Valley, CA 94028
Len_Shustek@NAI.com

Reading one’s own work from 20+ years ago
results inevitably in a mixture of pride and embar-
rassment, recognition of achievements and realiza-
tion of opportunities missed. This paper is no
exception.

What We Did

There are three main contributions which this
paper attempted to make:

1. Measurements of dynamic as well as static
instruction utilization for a popular mainframe
instruction set, which was then extended in the
related Ph.D. thesis [1] to other instruction set
architectures including microprocessors. There
were few other comparable empirical studies in
the literature, and we were pleased that our mea-
surements were later used both for instruction-set
design and for instruction implementation optimi-
zation.

2. Observations on the design of high-perfor-
mance instructions sets that were implied by the
measurements, which were again expanded upon
in the thesis. The overall conclusion, counter to the
movement in the 60’s and early 70’s towards com-
plex instruction sets which reduced the semantic
gap between programming languages and the
hardware, was that “simpler is better”. We like to
flatter ourselves in thinking that this study was
one of the instigators of the RISC movement.

3. An “instruction timing” model of CPU tim-
ing analysis that was much simpler than a full sim-
ulation of the implementation but more accurate
than just counting instructions. This hybrid model
used timing formulas derived from the implemen-
tation (whose data- dependent parameters were
measured, such as average string lengths), aug-
mented by simulations of subsystems that
depended on instruction sequences, such as cache

11

Bernard L. Peuto

Concord Consulting,
Portola Valley, CA 94028
blpeuto@peuto.com

memory interlocks and instruction prefetch. The
result was an easy-to-compute prediction of execu-
tion time that could be quickly adapted for pro-
posed changes in the implementation.

The model never was used in practice for that
last purpose, perhaps because neither of the
authors ever again worked for a mainframe manu-
facturer. Although this timing model was the moti-
vation for the paper’s title, in retrospect it was the
weakest of the three contributions.

Why We Did It

Published papers often omit motivation which
is deductively irrelevant but nevertheless histori-
cally interesting. The true progenitor of this work,
strangely not referenced in the paper, was micro-
programmed instrumentation for instruction set
measurements on the Standard Computer Corpo-
ration 1C-7000 processor, which emulated the IBM
7090 [2]. Analysis similar to what is in the 1977
paper had been done in 1971, for an instruction set
which was already obsolete at the time!

The IBM 360/370 instruction-set simulator
used to generate the data for this paper had origi-
nally been written, after a suggestion by Forest
Baskett, to generate address traces for memory sys-
tem analysis. For years afterwards there was a
healthy underground exchange of these address
traces. They were used as the basis of scores of
papers, including those of Alan Smith on cache
design. (Thanks, Alan, for always acknowledging
the source of the data — not everyone did!)

A practical motivation for this work was that
one of us [BP] was a computer architect at Amdahl
Corporation doing performance evaluation of the
new 470/V6, an IBM 370 clone. There was little
detailed information on instruction-level perfor-
mance evaluations that was publicly available. Per-

formance measurement at the time either used
synthetic benchmarks which were simple but not
representative, or a suite of real programs which
was difficult to run and yielded no detailed infor-
mation useful for instruction design tradeoffs. For
example, little data was available contrasting the
difference between static and dynamic frequencies.
At the time, being a computer architect was still
synonymous with designing a new computer with
a new instruction set, and little else. It was quite
exciting to satisfy our architectural curiosity at the
instruction level by using customer’s benchmarks,
and to be able to accurately approximate the execu-
tion time for the benchmark.

As with many such projects, the programming
was seductive and at least as motivational as the
promise of results (or published papers). It was
great fun for the programming member of the
team [LS]. The paper only hints at the challenges in
simulating the least well-specified instruction of
the architecture: the operating-system defined
Supervisor Call (SVC), which didn’t even have the
decency to always return to the following instruc-
tion. In contrast to the kludgy specialized code to
handle SVC was the elegance of a multitasking
trace-analysis coroutine system which obviated the
need to generate long trace files. Those “engineer-
ing” details were, as is traditional, left as an exer-
cise to the reader.

What We Accomplished, and What We
Didn’t

The paper (and the later thesis) was used by
various architects primarily because it had a pot-
pourri of interesting measurements of instruction-
set usage by real programs, not because of the
“instruction timing model” that made it seem more
academic. How long are strings? How far do
branches go? In which direction? How many
instructions execute between successful branches?
How much cache is purged by operating system
calls? How often do operands overlap? How many
registers are loaded or stored at one time? What are
the dominant instruction pairs? These are all basic
questions that instruction set designers and imple-
menters needed to know.

12

The data was used immediately at Zilog in the
design of two microprocessors. The Z8000 [3] was
an early 16-bit microprocessor, and the dynamic
data on memory vs. register operands, instruction
time distribution, and branch frequencies helped
to tune a design which was still dominated by the
need for compatibility with the earlier Z80 and
8080. The Z8 [4] was a single-chip microprocessor
that is still in use today. For it, where the freedom
to start the design from scratch was tempered by
the constraints of a chip with only 128 bytes of
RAM, 2K bytes of ROM, limited logic and a slow
clock, both the static and dynamic measurements
led towards a RISC-like design.

In retrospect we should have recognized more
fully the importance of the paper’s data, and
expanded it into a systematic and comprehensive
database of instruction-set measurements. The the-
sis treated some other instruction set architectures,
but we could have made many other measure-
ments, analyzed other applications, included oper-
ating-system code, and made both the technology
and the results more widely available. We might
have standardized measurements for instruction
sets the way Whetstone and SPEC metrics stan-
dardized program benchmarks.

But one of us (LS) had a doctorate to finish and
a paying career to start, one of us (BP) had micro-
processors to design, and those goals dictated
other directions. We had to be content with what
we did, and we are honored that it has been judged
suitable for inclusion in this collection.

References

[1] Leonard J. Shustek, Analysis and Performance of
Computer Instruction Sets, Ph.D. Thesis, Stanford
University, January 1978

H. J. Saal and L. J. Shustek, “On Measuring
Computer Systems by Microprogramming,” in
Microprogramming and Systems Architecture, pp. 473-
490, Infotech Information Ltd, 1975, ISBN 8553-
9220-7.

Bernard L. Peuto, “Architecture of a New
Microprocessor”, IEEE Computer, V12, #2, February
1979, pp 10-21.

Charles Bass, Judy Estrin, Bernard L Peuto, and
Gary Prosenko, “Introducing the Z8,” Electronics,
August 31, 1978.

[2]

[4]

RETROSPECTIVE:

A Retrospective on High-Level Language Computer Architecture

David R. Ditzel

Transmeta Corporation
Santa Clara, CA 95054
dave@transmeta.com

& $ ritten at the end of 1979, this paper chal-

lenged the 1970’s trend in computer architecture
toward ever increasing complexity. The decade of
the 1970’s was dominated by the growing influ-
ence of micro-coded minicomputers such as the
Digital Equipment Corporation VAX computers.
The VAX had over 200 instructions with complex
addressing modes. Micro-coded implementations
of computer instruction sets meant that adding
new instructions was relatively easy.

Research in computer architecture during the
1970’s often proposed far more complicated com-
puter hardware that would move towards imple-
menting high level languages directly in hardware
in order to facilitate programming in high level
languages. Recall that during the 1970’s there still
existed considerable debate as to whether pro-
gramming in high level languages would be too
inefficient in both performance and code space.

This paper reflected a mood that something
was wrong with the direction of computer archi-
tecture research. The paper started by repeating six
commonly held beliefs (“Axioms”) of the day that
we felt were not well justified, and ended with an
appeal that what mattered was the effect of the
combined hardware/software system, and not
which individual component was implemented in
hardware. In many ways, this retrospective set our
direction toward the RISC movement of the 1980’s,
and heavily influenced us in our research and fur-
ther publication on RISC processors. Our first
paper on RISC was published only five months
after this first retrospective paper appeared.

Re-reading this paper 18 years later, we are
surprised by how well it holds up. Most surpris-
ingly, many of the same issues about High-level
Language Computers are again resurfacing with
proposals to implement JAVA byte-codes directly
in hardware. Stack machines, byte-coded instruc-

David A. Patterson

Computer Science Division

University of California, Berkeley, CA 94720

13

pattrsn@CS.Berkeley. EDU

tion sets and small code size were the hallmarks of
many of the papers calling for High-level Lan-
guage Computers. We hope that the next genera-
tion of computer designers can learn from the
lessons of the past, and not repeat the same mis-
takes over again.

The paper starts with a criticism of the High-
Level Language Computer work, including a sum-
mary of the High-Level Language Computer moti-
vation as six High-Level Language Computer
axioms, followed by our responses to each axiom.

From today’s perspective, the major observa-
tion about making sure a High-Level Language
Computer can execute multiple programming lan-
guages is still a good one. It is not clear whether
the standard JAVA byte-code instructions are also
appropriate for implementing languages like C or
C++. This was a common weakness for many of
the proposed high level language computers of the
1970’s, and we suspect may be a weakness for
JAVA processors also.

Another axiom discussed the focus on code
size. This issue has not disappeared. In 1998 the
processor-memory performance gap is so large
that it might make sense to return to very compact
instruction encoding just to reduce the number of
instruction cache misses. Embedded applications,
which were not the focus of that paper, will also
desire smaller code to reduce the total system cost.
Hence the 16-bit versions of standard 32-bit
instruction sets of ARM and MIPS were invented
in the last 2 years.

The paper then makes one of our main points,
that we should be defining a High-level Language
Computer System combined of both hardware and
software, and proposes a specific definition.

Our paper proposes metrics to measure differ-
ence when a system does or does not obey the defi-
nition. For example, imagine the differences in

CPU time, code size, and compile time between
compiling with debugging flags on (and no opti-
mization) versus compiling with highest level opti-
mization.

Given 18 years of improvements in processor
performance and DRAM capacity with little
improvement in software productivity, when peo-
ple use computers that are 1000 times faster and
DRAM with 4000 times the capacity there is less
concern about shipping highly optimized code.
Hence today we are at a funny point, where people
ship either unoptimized or slightly optimized soft-
ware yet the benchmarks are performed with the
highest possible levels of optimization. We can’t
help but wonder whether these proposed metrics,
which didn’t particularly catch on, would be just
as interesting for machines of 1998 as they were for
machines of 1980.

The last part of the paper lists ten attributes
that we hoped would be found in High-level Lan-
guage Computer Systems of the mid-1980s. Four of
the ten lead directly to RISC computers: the
instruction set architecture (ISA) is optimized for
the way HLL are used, the ISA is designed to be
compiler generated, the ISA will not inhibit pipe-
lining and instruction prefetching, and good com-
piler technology will be important in overall
efficiency. The only one of the ten that really falls
flat is the suggestion that there would be one ISA
for languages like C and another for languages like
LISP. The disappearance of microcode in machines
of the late 1980s made such projections unlikely.

The paper ends with an impressive list of 52
references.

What happened to the authors

David Ditzel graduated from Berkeley and
went to AT&T Bell Laboratories, where he was
lead architect of the CRISP microprocessor, a RISC
machine designed to run C programs efficiently. Its

14

novel features included a Stack Cache, Branch
Folding and unusually compact code size for a
RISC processor.

In 1982 he started the first ASPLOS conference,
which included the first paper on the IBM 801
RISC machine and the first public debate of RISC
vs. CISC. He also helped start the Hot Chips con-
ferences. He joined Sun Microsystems in 1987 and
was Director of SPARC Labs where he helped
advance SPARC processors.

In 1995 he founded Transmeta Corporation,
where as President and CEO he is leading new
innovations in computer design.

David Patterson got his tenure shortly after
this paper appeared. and moved on to become
department chair, and later SIGARCH chair and
Computing Research Association chair. This paper
described the first of a series of RISC-related
research projects which produced several RISC
chips: RISC-I, RISC-II, SOAR (Smalltalk On A
RISC), and SPUR (Symbolic Processing Using
RISCs), with RISC-I likely being the first VLSI RISC
chip. In 1984 he started consulting with Sun Micro-
systems, which lead to SPARC being designed
based on the various Berkeley RISC designs.

In 1987 Randy Katz and Patterson developed
Redundant Arrays of Inexpensive Disks (RAID),
which showed how to get more performance and
higher reliability from secondary storage. To help
make the more quantitative approach to computer
design more popular, John Hennessy and Patter-
son co-authored two architecture textbooks in the
early 1990s. Since that time he has worked on Net-
works of Workstations (NOW) with Tom Anderson
and David Culler, which built large-scale systems
from smaller systems using off-the-shelf switched
networks, and most recently on Intelligent RAM
(IRAM) with Tom Anderson and Kathy Yelick,
which integrates a processor into a DRAM chip to
provide a small, fast, energy-efficient computer for
mobile, multimedia applications.

RETROSPECTIVE:

Architecture of a Massively Parallel Processor

Ken Batcher

Dept. of Mathematics and Computer Science
Kent State University, Kent, OH 44242, USA
batcher@mcs.kent.edu

Having an opportunity to write a retrospec-
tive is a rare privilege: very few authors ever get a
chance to comment on their earlier work. What fol-
lows are the various thoughts that came to mind
when I read this 18-year-old paper again.

When the company asked me to write a paper
on the MPP I decided to submit it to ISCA-7. Man-
agement balked at first: why pick a conference in
La Baule, France when there were so many other
conferences here in the U.S.? They only agreed
after I convinced them that ISCA is the best confer-
ence in computer architecture; that the chance the
paper would be accepted was very low; and that I
could always submit it to some other conference if
ISCA-7 rejected it. Management was much sur-
prised when the paper was accepted: to help amor-
tize my travel expenses they had me visit a few
European groups that had some interest in the
MPP so my trip lasted two weeks.

Readers can easily see what we thought of
software at the time: the only mention of it is in a
small paragraph in the section describing the
PDMU. How naive we were to think that users just
needed an assembler for PE micro-routines and
another assembler for application programs! For-
tunately NASA Goddard knew better and funded
Anthony Reeves of Cornell University to write a
Parallel Pascal compiler for the MPP: several scien-
tists used the MPP at NASA Goddard and most all
of them wrote their applications in Parallel Pascal.

At first the company wasn’t going to respond
to the request for proposals (RFP) from NASA
Goddard: management thought it was useless to
compete since other companies had much more
experience building 2D-mesh-connected image
processors. We on the technical staff thought we
might win using what we learned about bit-serial
word-parallel machines from STARAN. When
management realized the staff was going to write a

15

proposal anyway they gave up and let us submit it.
It sure was a nice day for the staff when we won
the contract!

The RFP specified only 256 bits per PE but we
knew from STARAN that a bit-serial PE requires
much more memory than that. STARAN also
taught us what a pain it is to try and expand mem-
ory in an architecture that didn’t allow for it. For
the MPP we used 16 bits for every bit-slice address
so ARU memory could grow to 65,536 bits per PE.
SRAM technology at the time allowed us to supply
1024 bits per PE.

The RFP said the MPP should have “PDMU-
ARU 1/0 Registers” so that’s what we called the
corner-turning memory. Soon after ISCA- 7 the
name of the corner turner was changed to “Staging
Memory.”

The hardware design group in our department
always followed very strict design rules and made
sure that printed-circuit-board layers had the
proper impedances and that all connections
between boards were terminated properly. They
were always proud to show me signals on the
scopes: nice sharp pulses with no discernible ring-
ing or other anomalies. Most likely the logic could
have been run at a much higher speed but the S-
RAM chips limited the clock to 10 MHz.

The project took about a year longer than
expected because the PE chip went through two
design cycles. The first design was silicon-on-sap-
phire but didn’t meet specs. The second design met
the specs using the advancements in bulk CMOS
technology that were now available.

The machine was delivered to NASA Goddard
on May 2, 1983: it met all specs and ran at the
speeds shown in Table I of the paper. We never
found any other customers for the MPP even
though it was one of the fastest machines available
at that time. Very few places had highly-parallel

problems that could be spread out across 16,384
PE’s so the market was very thin — lack of user-
friendly software was another factor.

Many companies changed owners and names
in the 80’s. Goodyear Aerospace was sold to Loral
and later Loral was merged with Lockheed-Martin
so now the plant is known as Lockheed-Martin
Tactical Defense Systems - Akron.

On October 29, 1996 NASA Goddard donated
the MPP to the History of Technology branch of the
Smithsonian. It's now resting in a warehouse in
case some historian in the future wants to see what
1980 technology looked like.

The best place to find information on the MPP
is “The Massively Parallel Processor”, J. L. Potter,
ed., The MIT Press, 1985. (ISBN 0-262-16100-1)

Today we would take a far different approach
in designing a machine like the MPP. We would
add some compiler and OS people to the team and
try as much as possible to design the ideal parallel
processor — a machine so user-friendly that most
users wouldn't realize it’s a parallel processor!

16

RETROSPECTIVE:

A Processor for a High-Performance Personal Computer

Ken Pier

Xerox PARC
3333 Coyote Hill Road, Palo Alto, CA 94304
pier@parc.xerox.com

Forward

I would like to thank the International Sympo-
sium on Computer Architecture for selecting “A
Processor for a High-Performance Personal Com-
puter” for their 25th anniversary anthology. The
editors have asked for a retrospective on the his-
tory and genesis of the ideas — what influenced
the thinking, why were certain decisions made,
and the like, reported in this paper. By happy coin-
cidence, I (Ken Pier) already wrote and published,
in ISCA 10, “A Retrospective on the Dorado, A
High-Performance Personal Computer” [1] with
detailed answers to those questions. So I'm going
to take the opportunity here to write a more histor-
ical, personal, anecdotal, and entertaining (I hope)
addition to the description in [1], which may be
found at http://www.parc.xerox.com/istl/mem-
bers/pier/.

Prologue

In 1974, the year of ISCA 1, the revolutionary
concept of personal distributed computing was
well underway within the walls of the Xerox Cor-
poration at its Palo Alto Research Center. What we
now consider commonplace computing: personal
hardware dedicated to the individual, with a high-
resolution display, mouse input device, network
connection to document viewing, filing and print-
ing services, graphical user interface, and a wide
variety of applications had all been created there in
the space of a very few years. Outside of PARC, the
focus was still on mainframes, time-sharing, mini-
computers, and special-purpose computers con-
nected together with special-purpose networks.
IBM was King, the Seven Dwarfs [2] scrambled at
its feet, and that seemed unshakable. Today, hun-

17

dreds of millions of people make daily use of per-
sonal distributed computing, having never even
heard that phrase.

However, as Alan Perlis and John R. White
noted in their 1988 foreword to A History of Per-
sonal Workstations [3]: “The transformation was not
trivial, nor even inevitable. It was accomplished by peo-
ple with energy, ambition, and purpose whose visions
were supported by great technical expertise and insight.
Their difficulties and triumphs are the stuff of which
history is made.”

Genesis

The Dorado was a proverbial “second system,”
successor to the Alto personal workstation. Three
excellent papers [4, 5, 6] by Alan Kay, Adele Gold-
berg, Chuck Thacker, and Butler Lampson (first
author of this anthology paper) describe the ideas
and implementations that created personal distrib-
uted computing, the Alto, and its environment.

In brief, Alto was inspired by several visions.
One vision came from Alan Kay in the early 1970s
of personal dynamic media, to be embodied in a
small, lightweight, interactive, personal device
christened Dynabook. Dynabook would carry all
the personal information, such as diary, calendar,
documents to read and documents in the process
of being written, painting and music compositions,
animations, etc., for an individual. It would also
contain a powerful computational engine to enable
studying and experimenting with any system that
could be quantified and simulated. It would be
easy enough to use by a person as young as nine
years of age. In short, it would turn computing
completely around, making the machine the ser-
vant of the human. Although the Dynabook could
not be built in 1970, Thacker and Lampson knew
they could build a prototype not much bigger than

four breadboxes and a television screen. And Kay
and his team knew how they wanted humans to
interact with machines — graphically, easily, and
intuitively. Smalltalk, the first computing environ-
ment with a graphical user interface, would run on
the Alto.

A second vision influenced the Alto, stemming
from its corporate parent. Xerox PARC was com-
missioned in 1970 to develop the “architecture of
information” for the electronic office of the future,
to allow Xerox to play a major role in the emer-
gence of that future, and to marry the Xerox exper-
tise in copying and duplicating to that architecture.

While pursuing these and related visions, a
new style of computing emerged, which became
the mainstream form of computing today. As with
many “paradigm shifts,” it took nearly a genera-
tion from conception to full acceptance; when peo-
ple encountered this radical, humanistic way of
computing for the first time and “got it,” it forever
transformed their relationship to and way of think-
ing about human-computer interaction. Some did
not get it. If you are young enough, some of the
conventional wisdom of the 1970s may amuse you:
that no ordinary office worker wanted or needed a
computer at work, that executives would not learn
to type, that machines that cost $15,000 in 1976
would never be cheap enough to be practical, and,
of course, that no proud professional would ever
let that “mouse thing” onto their office desk.

By 1975, just before I came to work for Xerox,
hundreds of Altos, interconnected via Ethernet,
were in daily use in Palo Alto, and a development
department had formed out of the research center
to capitalize on the electronic office of the future. It
was clear that the first order of business was to cre-
ate a much more powerful computer than the Alto,
one capable of both offering real time response for
users in the office setting and of handling the enor-
mous data rates that high-speed office printing
systems would need. A small team of engineers in
the department, lead by Lampson and Thacker, set
out to make such a system, basing its microtasking
architecture on the Alto [5], but with greatly
expanded IO bandwidth, virtual memory hard-
ware, and support for modern programming lan-
guages which were also developed at Xerox [6].

Exodus

Events occurred rapidly even in the 1970s, and
after eighteen months of preliminary work the
department realized that the Dorado would be

18

much too large and expensive to serve as a per-
sonal workstation. Meanwhile, the adjoining
research center had bet its computational infra-
structure on the Dorado for five or more years into
the future. Thus, the Computer Science Lab
decided there was no alternative but to assume
responsibility for completing the task and the
project was transferred from development into the
research center. Ten or so scientists and engineers
devoted some or all of their time over the next two
years to specify, design, prototype, and launch
manufacturing of Dorados for the PARC computer
research laboratories, some giving up their
research agendas for the good of the cause. The full
story of this effort is detailed in [1]. I've selected a
few hardware highlights to relate herein.

Numbers

The Dorado was to be blazing fast, compact,
and capable of replacing Altos in the office envi-
ronment, that is, to cohabit with humans. It was to
evolve into the first “3M” machine: at least a mil-
lion instructions per second from the processor, at
least a million bytes of memory, and at least a mil-
lion pixels of display. It was to occupy a box not
larger than a four-drawer file cabinet. It was to be
quiet enough to reside in an office, powered from
an ordinary 110 VAC outlet.

Hardware parallelism provided the speed, and
MECL-10K (a state-of-the-art, power-hungry MSI
logic family, long before VLSI was invented) pro-
duced the blaze. The processor was capable of ini-
tiating a microinstruction every 60 nanoseconds (a
“click”) in production machines (prototypes were
faster), completed most pipelined instructions in
three clicks, and could execute simple macroin-
structions in one microinstruction. A memory
cache had a latency of two clicks, a throughput of a
single click, and a hit rate on byte-coded instruc-
tion streams of nearly 99%. A hardware memory
map, main memory storage, and an instruction
fetch/decode unit all ran in parallel, independent
of but coordinated by the microcoded processor.
The processor was itself multiplexed to service all
of the device controllers in the Dorado with no
context switching overhead, due to hardware
devoted to saving and restoring state for each indi-
vidual device on demand. By having the computa-
tional power of the processor at their command,
the controllers were simple, small, and fast.

To achieve compactness, a packaging system
was developed in which high-density (288 MSI
chips/board) custom-designed circuit boards slid
horizontally into zero-insertion force connectors
mounted in dual backpanels, which were really
sidepanels. Boards were 0.625 inches apart. This
meant that, unlike conventional machines, most of
the circuitry would be inaccessible to oscilloscope
probes for debugging; clever diagnostic software
and brilliant deduction would have to suffice. In
addition, the raw speed of the MECL logic and the
need for controlled-impedance wiring made it
impossible to use “extender” boards. Necessity
may have been the mother of this invention, but it
may also be due to the fact that Thacker could
build or debug almost anything electronic, and
Lampson, often explaining that “Science is Predic-
tion,” could debug complex circuitry in his head
without benefit of physical aids.

But, a fully packaged Dorado with its large
300MB removable disk drive “... consumed 2500
watts of power, was the size of a refrigerator, and
required 2000 cubic feet of cooling air per minute
(while producing a noise level that has been com-
pared to that of a 747 taking off).” [5, p. 285]. Only
a slight exaggeration, but external packaging, cool-
ing and noise reduction did not receive the level of
attention required; we had no mechanical engi-
neers on the Dorado team, and Dorados ended up
rack mounted in machine rooms, cabled afar to
offices and other workspaces where humans
resided. Good thing, too.

Epilogue

By 1985 approximately 175 Dorados were in
service. Although perhaps a dozen were marketed
to laboratories and universities as the Xerox 1132,
and a few tens exported to other sites within
Xerox, the remainder were within a few hundred
meters of one another at Xerox PARC. Dorados
lasted until about the beginning of 1990 as the
PARC workhorse workstation, when Sun Micro-
systems workstations, having been phased in over
about two years, took over. The last Dorado was
decommissioned in 1995 having served for over
ten years as the PBX for an experimental digital
telephone service, Etherphone [7].

In conclusion I would like to share a story and
three favorite aphorisms from the history and evo-
lution of personal distributed computing and the
Dorado experience.

19

I presented this paper at ISCA 7 in 1980. It was
my first technical paper and my first technical pre-
sentation. During the question/answer period fol-
lowing the paper, someone stood up and said,
“How can you call a machine that costs $50,000 to
manufacture a personal computer?” I was not pre-
pared for such a question, but I remembered that I
had chosen the title specifically to raise the bar on
what should be expected of the personal worksta-
tion of the future. So I answered, almost without
thinking, “The same way you can call a Mercedes a
personal automobile.” Perhaps “Ferrari” would
have been more apt.

Lampson, quoting Browning in [6], reminds us
that “a man’s reach should exceed his grasp, else
what’s a heaven for?” Thus, customer require-
ments. L. Peter Deutsch informs us that “imple-
mentation is the sincerest form of flattery.” Thus,
commencement of system building. And the most
important thing I have learned in my twenty-some
years of building innovative hardware and soft-
ware systems: nothing would ever be accom-
plished were it not for unwarranted optimism.

References

[1] Kenneth A. Pier, “A Retrospective on the Dorado,
A High-Performance Personal Computer,” Proc. of
the 10th International Symposium on Computer

Architecture, June 1983, pp. 252-269.
(2]

The term was coined by the business and technical
press of the time to denote the seven companies
who attempted to compete with IBM. They were
RCA, UNIVAC, Honeywell, Burroughs, Scientific
Data Systems (SDS, later XDS, Xerox Data
Systems), Control Data Corp. (CDC), and General

Electric.

A. Goldberg, Editor. A History of Personal
Workstations, ACM Press, 1988.

Alan Kay and Adele Goldberg, Personal Dynamic
Media., In [3], pp. 254-263.

Charles P. Thacker, Personal Distributed Computing:
The Alto and Ethernet Hardware, In [3], pp. 267-289.

Butler Lampson, Personal Distributed Computing:
The Alto and Ethernet Software, In [3], pp. 293-335.

Douglas B. Terry and Daniel C. Swinehart,
“Managing Stored Voice in the Etherphone
System.” ACM Transactions on Computer Systems
6(1), pp. 3-27, 1988.

RETROSPECTIVE:

Lockup-Free Instruction Fetch /Prefetch Cache Organization

David Kroft

14 Kings Inn Trail
Thornhill, Ontario
L3T 117

How does one begin to describe the dreams,
thoughts and fears that surround a discovery of a
different view of some old concepts or the employ-
ment of old accepted methodology to new ave-
nues? It is probably best to start the account by
describing the field of Computer Architecture, in
particular, the area of hierarchical memory design,
that was prevalent around and before the time the
ideas came to light.

In the mid seventies, I was fortunate to be
selected as one of the members of a design team to
design and develop the central processing unit
(CPU) for a low end model of Control Data’s new
line of main frame computers. Since integrated
logic circuit components were now readily avail-
able and, consequently, computer hardware was
much cheaper, the new line would feature a highly
expanded instruction set — the move in vogue at
that time was toward complex instruction set com-
puters (CISCs). Note, that due to the price of hard-
ware, all former CPUs were of the reduced or
minimum instruction sets varieties (RISCs). The
fall of the cost of hard logic and memory, also,
allowed for the implementing of the new hierarchi-
cal memory design concepts into these next com-
puters to be designed, developed and
manufactured. Control Data, or should I say, the
technical visionaries of Control Data at that time
had differing opinions as to the advantages of hier-
archical memory design. I recall one of these
visionaries telling me the following: “We, at Con-
trol Data, have the know-how to design central
memories big enough, fast enough and put them
close enough to the CPU that memory hierarchy
would never be needed.” T was, however, able to
convince at least a sufficient number of these tech-
nical gurus that a Cache Memory would be advan-
tageous to the new CPU so that I was given the

20

assignment to design the Cache for this low end
model of the line. The fact that IBM was now incor-
porating Caches in all their new designs, obvi-
ously, helped me considerably with my
persuasion. Note that there were other later com-
puters designs at Control Data that did not have
Caches — believe it or not.

So, there I was in the mid seventies, having
never designed anything real up to then — I had
accomplished a lot on paper — given with the
assignment to solely perform the system design
and logic design implementation of a Cache for
this new low end model with its extended instruc-
tion set. I say, solely, because no Cache had ever
been included in any of the Control Data designs
previously and there were a number of “Doubting
Thomases.” Due to the opposition or possibly since
I had still had the courage and adventure of youth
— I 'was only in my early thirties, I embarked on a
very ambitious design approach.

First, I included most of the latest Cache con-
cepts that were contained in the literature. I
decided on a set associative organization with 128
sets (rows) of four or eight blocks (lines) per set
and a block size of 32 bytes (4 8-byte CDC words).
In addition, write through and a least recently used
(LRU) replacement algorithm were chosen. These
selections were made after much study and consid-
eration of the simulation data in the literature and
with the restrictions imposed by the then available
memory components (a fast 256 by anything was
not on the horizon while a fast 128 by 1 was there.)
The two set sizes (columns), (4 and 8), allowed for
the two required Cache sizes of 16K and 32K bytes.
In retrospect, the complexity (i.e. additional cost)
of the additional associativity for the marginally
higher hit rate for the larger Cache was the only
decision I regret.

Next, I decided to incorporate the additional
cost of having the Cache’s address space be an
unique virtual address space thereby putting the
cache closer to the processor; the translate looka-
side buffer (TLB) would now operate in parallel
with the Cache rather than before it. Note that the
Cache only needs the real memory address from
the TLB on a miss. Lastly, just before the miss over-
lap feature (from paper) inclusion in the design, I
discovered a way to allow for the graceful degra-
dation of the Cache via the disabling of any one of
the four 8K bytes sections at a time. The above
required just the need to determine the maximum
LRU of the enabled blocks in a set when block
replacement was needed.

Recall that this new line of machines envi-
sioned by Control Data had an extended instruc-
tion set. In fact, the instruction set included almost
all the instructions of all formats that were present
in one machine or another. Many of the instruc-
tions made more than one reference to memory. At
first, I thought, how can one order the memory ref-
erences so that the first references always produce
a hit in the Cache to prevent impact on the follow-
ing ones. At the same time, I saw that the Cache
had effectively two input ports, one from the exe-
cution unit and one from the instruction unit. Why
should the hit/miss of one port impact the other, I
reflected? I was told that a two port Cache with
each port totally independent of one another was
an open problem with no solution known as yet
and the route most manufacturers were taking to
circumvent this two port problem was to have two
Caches, one for each unit — these units, it was
known, each had different classes of data. There

21

were, now, two cases for miss overlap or for Cache
hit(s) being processed while a Cache miss was out-
standing. How can this be accomplished?

I associated the above problem with everyday
occurrences. I pondered “what if” there was a
queue of people waiting for service from one par-
ticular individual and this individual could service
these people either with one of two possible sce-
narios - a long time consuming service due to the
need for additional parts, information, etc. or a
short quick response. The solution for minimum
wait time would not be solved by reordering the
people in the line; a second individual is required.
How should this second individual help? The sec-
ond individual would back up the first by going to
get the necessary parts, information, etc. while the
first continued to service the queue. The above
thought process permitted me to see a vision for
overlapping misses. I will save all the relevant
information about a miss, forward a request to a
“block getting unit” for the block needed and then,
continue processing the input service requests. A
block receiving unit will interrogate the relevant
information about a miss, forward the response to
the waiting individual and update its own unit, the
Cache bulffer, if advisable. The block getting unit
and the block receiving unit are this second indi-
vidual. A light has come on; the long process of
determining all the details and workings must
now be done to determine viability. Fortunately, all
fell into place, if not initially, then during debug.

As indicated at the beginning, a discovery is
just a different look at some old concepts or the use
of some old concepts for new mechanisms. Mine
was the latter.

RETROSPECTIVE:

A Study of Branch Prediction Strategies

James E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin-Madison
jes@ece.wisc.edu

J[n 1979, 1 took a leave of absence from the Uni-
versity of Wisconsin to work at the Control Data
Corporation in the Twin Cities. In truth, my inten-
tion at the time was to abandon an academic
career; I felt awkward teaching computer design —
never having worked on the design of a computer.
And I was doing research in fault-tolerant comput-
ing as a theoretical enterprise, which seemed con-
tradictory.

The project I joined at CDC was developing
the high end processor of a new product line — the
Cyber 180 series. The processor was code-named
“Theta”, and would become the Cyber 180/990
when it was officially announced. The Cyber 180
architecture was a 64-bit virtual memory system
with all the bells and whistles that were fashion-
able at the time. It was built around register-regis-
ter instructions, but also had a number of complex
instructions to support a heavy duty protection
system, business data processing, and a memory-
to-memory vector instruction set. With the same
hardware, it also had to support the older 60-bit
Cyber 170 instruction set, and switch seamlessly
between the two modes — potentially at the proce-
dure call level.

My manager was Jim Stockard, and I took
technical direction from Ron Hintz, the chief archi-
tect. At the time I joined, the project had been
underway for awhile, and was beginning to fall
short of performance goals. My main responsibility
was to carry out performance studies and suggest
performance features to the designers.

The technology was based on ECL gate arrays
— about 200 gates per chip. It had been developed
for the Cyber 200 supercomputers, which ran at a
20 ns clock cycle. The Theta clock cycle was 16 ns,
however, and in retrospect, this was probably a
touch too aggressive. The complex instructions,
aggressive clock cycle, and the packaging technol-

22

ogy led to very long pipelines. It took about six
pipe stages to fetch an instruction, decode it, and
generate what were called “micrands”, ready to be
issued (this process was very similar to what is
done today in aggressive x86 implementations).
Instructions issued in order, at most one per cycle.

With a pipeline this long, conditional branches
were a performance problem. The original pipeline
design used a very simple static prediction strat-
egy where all branches were predicted taken (or
maybe not taken — I don't recall which). Instruc-
tions following a branch had to wait for the branch
to be resolved before they could issue.

During discussions with Tom Lane, the
designer responsible for part of the instruction
pipeline, the possibility of branch prediction came
up. Tom had done a small study, using a cache-like
table with single-bit entries. Tom also pointed me
to Shustek’s thesis [1] — a real classic that suggests
a number of static prediction strategies.

I considered several prediction methods, most
of which are given in the paper. It was evident that
dynamic prediction was better than static. For
studying performance, most of the benchmarks I
was using (kernels, actually) were heavily loop-
dominated. It was evident that using a single his-
tory bit led to two mispredictions at loop termina-
tions. Solving this problem with a two-bit
saturating counter seemed like a good thing to do,
and simulations showed a performance advantage.
The parts available for implementing the predictor
table were 16 x 4 register file chips, so a two-bit
table entry cost no more than a one-bit table. I
studied larger counters, but two bits worked better
than three or four.

Hardware was at a premium, and early on I
realized that the table could be indexed like a
cache, but tags were unnecessary — there was
already a way of recovering when mispredictions

were made. I believe the final implementation con-
sumed four 16x4 register chips (a 64 entry table)
and a single gate array for updating. The counters
described in the paper used two’s complement
arithmetic with the sign bit being used to indicate
taken/not taken. However, the final implementa-
tion used the now-common 0-to-3 integer counter.

When I joined the Theta project, I took over the
performance simulator from Paul Higgins; it had
been developed by Paul and Dick Olson of CDC in
Canada. The simulator was written in ASPOL and
was trace-driven. We had a pile of 9-track trace
tapes — including both Cyber 170 and 180 codes.
The benchmarks were FORTRAN kernels and one
nasty system benchmark called the SWL-profile
(“swill” for short).

The benchmarking in the paper was very basic
by today’s standards — yet the paper made it into
the “Performance Analysis” session at the confer-
ence. Many of the kernels were only a few lines of
code. I included the more difficult-to-predict ker-
nels, but even those were pretty small. In doing the
study, the SWL-profile was also simulated, and it
showed the biggest performance improvement,
but these results were not included in the paper.

In conjunction with branch prediction, the
actual Theta design also included a scheme for
“conditional issue” (“speculative execution”
today). As mentioned above, instructions issued in
order, and branches took 5 cycles to resolve (only
some simple integer instructions were faster).
When a branch issued it reserved all result bus
slots up until the time it finished. Then, following
instructions could conditionally issue and start
executing prior to the resolution of the branch. The
reserved bus slots inhibited any conditionally
issued instruction from writing its result register
before the branch was resolved. A branch mispre-
diction would invalidate all conditionally issued
instructions and start over.

23

Overall, with branch prediction and condi-
tional issue, the FORTRAN benchmarks improved
by about 5%, and SWL about 10%. The SWL
improvement was the real clincher, because the
Theta project was furthest behind in SWL perfor-
mance goals.

This work was done in the context of a devel-
opment project, so there wasn’t much time for aca-
demic investigation. The only exception is the
small study I did using larger counters and assign-
ing confidence levels depending on the count val-
ues. The concept was to speculate more
aggressively when the confidence level was higher.
I continued to carry this idea around for about 15
years before working on the study that appeared in
Micro-29 [2], two years ago.

This was my first ISCA paper; the conference
was held in the Twin Cities, which provided addi-
tional motivation for writing the paper. One of my
clearer memories of the conference is the invited
speech Jim Thornton gave. I also recall meeting
David Kroft, another CDC employee who devel-
oped a non-blocking cache for a different Cyber
180 machine being designed in Canada.

A number of Cyber180/990 machines were
eventually built and sold; I believe several went to
Europe, where CDC did a good business at the
time.

References

[11 L. Shustek, Analysis and Performance of Computer
Instruction Sets, Ph.D. Thesis, Stanford University,

1978.

E. Jacobsen, E. Rotenberg, J. E. Smith, “Assigning
Confidence to Conditional Branch Predictions”,
29th Int. Symp. on Microarchitecture, Dec. 1996.

RETROSPECTIVE:

RISC I: A Reduced Instruction Set Computer
David A. Patterson and Carlo H. Séquin

Computer Science Division
University of California, Berkeley, CA 94720
{pattrsn,sequin}@CS.Berkeley.EDU

This 1981 paper was written as part of the
RISC movement that began to flourish in the early
1980s. The three groups leading the charge were at
IBM, Berkeley, and Stanford.

IBM was the earliest, focusing on advances in
compiler technology and instruction sets that com-
pilers could use to get good performance without
the need for a microcode interpreter. Their targets
were a 24-bit ECL minicomputer for hardware,
called the 801, and a programming language they
invented called PL8, and their competition was the
IBM 370 family of computers.

As the introduction to this paper suggests, the
Berkeley effort was in trying to design an instruc-
tion set that made sense for a single VLSI chip. Our
group did not include compiler experts, so that
was not something that we were pushing. Our tar-
gets were a 40,000 transistors, 32-bit NMOS micro-
processor and the programming language C and
UNIX operating system, and the competition was
the VAX-11/780, a relatively new machine that was
making big waves in the marketplace.

The Stanford effort was also interested in a 32-
bit single chip microprocessor, called MIPS for
Microprocessor without Interlocked Pipeline
Stages, and since Hennessy knew compilers they
pushed it as well. They concentrated on the Pascal
language, and while they didn’t typically compare
to other machines, occasionally they compared to
the PDP-10.

The Berkeley RISC effort was inspired in large
part by Patterson’s reaction to a sabbatical he took
at DEC in Fall 1979, and by our goal to make our
architecture courses “hands-on” and as relevant as
possible. This was the first time a university
planned to actually build a complete microproces-
sor on a chip, and many people let us know that
we had almost zero chance of success. So we were
well aware that we had to keep the structure and

24

the logic of this chip as simple as we could get
away with. Séquin, at that time, was involved as a
consultant in the Mead-Conway revolution of get-
ting universities involved in chip design. Having
previously built several chips at Bell Labs, he was
more aware of what it would take to make a work-
ing chip, but tried to hide his anxieties in order not
to dampen the enthusiasm for the project.

Patterson had worked on microprogramming
tools for his Ph.D., and that was what he had been
helping with at DEC. He wondered about building
a VAX as a single chip, especially given all the
microcode bugs which were often patched in the
field. (Indeed, IBM invented the floppy disk just to
have a convenient media to ship patches to micro-
code.) Upon his return to Berkeley, he submitted a
paper to IEEE Computer saying that the only way
to build a VAX-class machine on a chip, with all its
complexity in microcode, was to provide mecha-
nisms that would allow patches to occur. The
paper was rejected, as reviewers said such a tech-
nique was wasteful of silicon resources, which was
certainly true, but it was also in Patterson’s opin-
ion not possible at the time to get the VAX micro-
code perfect in order to mass produce chips. If both
positions were valid, then perhaps the solution
was to re-examine the value of the instruction set
complexity in the VLSI age?

The Berkeley work was done as part of a series
of graduate classes, and the early statistics in the
paper were generated by the first class investigat-
ing the RISC ideas, starting in January 1980. This
series of courses included learning Mead-Conway
design, investigating the RISC architecture ideas,
and then implementing RISC-I. Many Berkeley
students took some of the courses, but students
who stayed all the way to the end included Dan
Fitzpatrick, John Foderaro, Manolis Katevenis, Jim
Peek, Bob Sherburne, and Korbin Van Dyke.

John Cocke of IBM visited for a day during
those courses and gave us a very inspiring
endorsement of our plan to keep the instruction set
as simple as possible. Sometime that winter we
also heard a talk by Forest Baskett in which he
expressed his desire to have a really large number
— e.g., “one thousand” — registers. Some time
later, after we had completed the course series,
Peter Denning came to give a “qualitative” archi-
tecture talk in Spring 1980, and he found an audi-
ence loaded with statistics as well as opinions
about the value of complex architectures. The fol-
lowing year or two Nick Tredennick presented us
with a seminar with the provocative title “Why
RISC is a pile of junk.” So these were rather excit-
ing times!

One story of interest is where the name RISC
came from. In the winter of 1980 Dave Patterson
and Carlo Séquin were driving to Silicon Valley to
go to a program committee meeting, and they were
talking about what to name the project and where
to get research funding for the project. Our hope
was to get funding from the Department of
Defense Advanced Research Project Agency, as
DARPA was the prime agency for providing suffi-
cient budgets to actually build chips and systems.
The agency’s motto was to fund “high risk, high
payoff” proposals, as DARPA’s responsibility was
to push the state of the art to make sure the United
States was not surprised technologically as it was
by the Sputnik satellite in 1957. Hence we decided
to name the project RISC since by definition it was
“high risk”, hoping that DARPA would see the
high payoff and support our work!

One thing about the RISC vs. CISC debate is
the revisionist history on what was CISC. The
paper says the trend towards complexity was
given by comparing VAX vs. PDP-11, iAPX-432 vs.
8086, System 38 vs. System 3. The VAX and the 432
were the ones that we questioned, and we think
those concerns hold up pretty well today. The 8086
may have been inelegant, but it was not particu-
larly complex, and this paper used it as the exam-
ple of a simple machine. I think the trade press
concluded that any commercial computer that
wasn’t a RISC must be a CISC, and hence the con-
fusion.

Something to keep in mind while reading the
paper was how lousy compilers were of that gener-
ation. C programmers had to write the word “reg-
ister” next to variables to try to get compilers to
use registers. As a former Berkeley Ph.D. who
started a small compiler company said later, “peo-
ple would accept any piece of junk you gave them,

25

as long as the code worked.” Part of the reason was
simply the speed of processors and the size of
memory, as programmers had limited patience on
how long they were willing to wait for compilers.

This brings us to one final story about RISC a
few years later. The register windows of RISC-I
were there to make sure the operands stayed in
registers versus in memory, as a RISC machine that
keeps scalar variables in memory is a slow com-
puter. When Patterson was consulting for Sun on
SPARC, the Sun compiler expert was Steve Much-
nick. Muchnick asked Patterson about register
windows for Sunrise, the code name for SPARC.
Patterson said variables need to be in registers, so
the question was whether the Sun compilers were
going to implement the graph coloring algorithm
from IBM that did a very good job of register allo-
cation. Muchnick got a ghastly look on his face,
and gave an emphatic NO. Patterson said then
sunrise better use register windows. Two years
later when the machine shipped Sun’s compilers
had improved such that graph coloring was not
such a ghastly prospect, but by then the die had
been cast.

Looking at the technical content of the paper,
the definition of RISC-I stands as a pretty good def-
inition of RISC machines and the RISC-I instruc-
tion set is still a very reasonable 32-bit integer
instruction set — given that you want to build the
whole processor in less than 50,000 transistors.
Now that we know about the 801, you can see the
differences in the instruction format (16-bit imme-
diate field vs. 13-bit for RISC-I) and terminology
(“execute and branch” vs. “delayed branch”.) The
paper claimed the RISC-I code size was about 1.5
times the VAX, and that is probably still a reason-
able estimate. Claiming that a single chip com-
puter was faster than the best selling
minicomputer was a bold claim, even if the claim
was qualified by saying it was made on only using
two small programs. Bhandarkar and Clark [1] did
a careful study 10 years later when there were real
systems to compare, and reached the same conclu-
sion: “RISC as exemplified by MIPS offers a signifi-
cant processor performance advantage over a VAX
of a comparable hardware organization.”

What have the authors and key students been
doing since this 1981 paper?

David Patterson got his tenure shortly after
this paper appeared and moved on to become
department chair, and later SIGARCH chair and
Computing Research Association chair. This paper
described the first of a series of RISC-related
research projects which produced several RISC

chips: RISC-I, RISC-II, SOAR (Smalltalk On A
RISC), and SPUR (Symbolic Processing Using
RISCs), with RISC-I likely being the first VLSI RISC
chip. In 1984 he started consulting with Sun Micro-
systems, which lead to SPARC being designed
based on the various Berkeley RISC designs. In
1987 Randy Katz and Patterson developed Redun-
dant Arrays of Inexpensive Disks (RAID), which
showed how to get more performance and higher
reliability from secondary storage. To help make
the more quantitative approach to computer
design more popular, John Hennessy and Patter-
son co-authored two architecture textbooks in the
early 1990s. Since that time he has worked on Net-
works of Workstations (NOW) with Tom Anderson
and David Culler, which built large-scale systems
from smaller systems using off-the-shelf switched
networks, and most recently on Intelligent RAM
(IRAM) with Tom Anderson and Kathy Yelick,
which integrates a processor into a DRAM chip to
provide a small, fast, energy-efficient computer for
mobile, multimedia applications.

Carlo Séquin was made Computer Science
Division chair in the fall of 1980, and was thereby
yanked out of the mainstream of the development
of the successor chips to RISC I and II. When he
returned to research full-time, after an influential
sabbatical at Siemens Corp. in Munich, Germany,
he decided to abandon chip building in favor of
building tools that would ease the tedium of
designing and debugging VLSI chips. Together
with Richard Newton and Alberto Sangiovanni-
Vincentelli they launched the Berkeley Synthesis
Project which focussed a large number of faculty
and graduate students on an effort to build CAD
tools and integrated circuits in a symbiotic manner.
Towards the end of the 1980’s Séquin wanted to
build CAD tools that would involve more than just
the two dimensions used in chip layout. He had
had a long-standing interest in Computer Graph-
ics. The design and construction of Soda Hall, the
new home of the CS Division since 1994, provided
him with the opportunity to create a complete
computer model of Soda Hall and to develop tools
for the interactive exploration of virtual buildings.
Since then he has worked on the development of
CAD tools for architects and for mechanical engi-
neers, and most recently even started to collaborate
with sculptors who would implement his com-
puter-generated artistic designs in wood or in
bronze.

26

Dan Fitzpatrick got his Ph.D. in 1983, working
on Computer Aided Design software for VLSI. He
initially joined VLSI Research.

John Foderaro also got his Ph.D. in 1983, but
his interest was in symbolic manipulation systems.
He helped found a Berkeley software startup
called Franz, Inc, which initially created a LISP
programming environment. He still works for that
company.

Manolis Katevenis was the lead graduate stu-
dent on the project, and his 1983 dissertation won
the ACM Distinguished Dissertation Award. He
went on to work as a faculty member at Stanford
university for a year before returning home to
Greece. He is now with the University of Crete,
Dept. of Computer Science, where he is currently
Professor and Associate Chairman. Since 1985, he
is also with the Institute of Computer Science,
FORTH, Heraklion, Crete, where he is currently
the Head of the Computer Architecture and VLSI
Systems Division. His recent work has been on
very fast switches (see http://www.ics.forth.gr
/proj/avg.)

Jim Peek came to Berkeley for an MS, and has
since worked for a variety of computer companies
in Silicon Valley, and most recently was working at
Sun Microsystems.

Robert Sherburne got his Ph.D. in 1984 and
went to work originally at what became Pixar to
build graphics hardware. He has since joined Sili-
con Graphics. Katevenis and Sherburne built RISC-
II, which was probably the first microprocessor
from a university accepted for publication at the
prestigious International Solid State Circuits Con-
ference.

Korbin Van Dyke also came for an MS, and
joined an early 8086 clone company that was even-
tually purchased by AMD. He now works for
Chromatics Research.

References

D. Bhandarkar and D. W. Clark, “Performance
from architecture: comparing a RISC and a CISC
with similar hardware organization.” Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
pp-310-19, April 1991.

(1]

RETROSPECTIVE:

Decoupled Access/Execute Architectures

James E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin-Madison
jes@ece.wisc.edu

J[n early 1981, I was still at Control Data in the
Twin Cities. The Cyber 180/990 project was close
to the prototype stage, so no new performance fea-
tures could be added. It was apparent there wasn't
much left for me to do. Also, there were a number
of interesting problems that had come up during
my year and a half at CDC, and time hadn’t
allowed pursuing them as much as I had wanted
— returning to the University of Wisconsin would
provide the opportunity. I decided to resume my
academic career, this time in computer architec-
ture, and in late May I headed back to Madison.

The Cyber 180/990 had issued instructions in
order, at most one per cycle. And, within CDC at
the time, these were treated as fundamental con-
straints. I had some rather vague notions of how to
overcome these barriers — but left CDC more with
goals in mind than any specific solutions.

Because my prior experience had been with
numerical problems, back at Wisconsin I hit upon a
way of achieving multiple issue and dynamic
scheduling with two instruction streams and
queues. One instruction stream was for addressing
and one for computation. Each stream would issue
in order — maintaining simplicity. I remember
being pretty excited about the novelty of the con-
cept — but was a little deflated a few weeks later
when I read about the CSPI array processors in the
Sept. ‘81 issue of Computer Magazine [1]. These
weren’t general purpose computers, but used basi-
cally the same access/execution decoupling. After
the ISCA paper appeared, I also became aware of
the SMA work that Andy Pleszkun had done for
his Ph.D. with Ed Davidson at Illinois [2]. And,
about a year later at a workshop in New Orleans
appeared yet another machine with similar con-
cepts [3]. It was a proposed machine called FOM

27

(FORTRAN Oriented Machine) from IBM — a
place where superscalar concepts had been kicked
around for a long time.

The benchmarking in the paper was pretty
miserable by today’s standards. I used compila-
tions for the Cray-1 as a guide. The actual simula-
tions were done by hand, and average speedups
were calculated as, ahem, the arithmetic mean.

The simplicity of in-order instruction issue had
been drilled into me at CDC — in retrospect, too
much. It probably prevented me from looking at
more flexible superscalar machines early on. It is
my observation that a common mistake of archi-
tects has been (and continues to be) overestimating
the complexity of dispatch/issue logic.

I still think the idea of two separate instruction
streams connected with branch queues was neat.
And having two PCs helped with the precise inter-
rupt problem. But later in a study published at a
small conference, Tom Kaminski and I looked at a
scheme that combined instruction streams in the
binary and had a hardware “splitter” that divided
the stream after it was fetched [4]. This was the
form that showed up later in the ZS-1 [5] (another,
longer story). With this modification, decoupled
machines were similar in appearance to the first
IBM RS/6000s. A major difference is that the
decoupled machines use architectural queues for
renaming memory operands. This had the advan-
tage of renaming the values that were most impor-
tant — load values, and the queue discipline made
management of the physical locations very
straightforward.

Following this paper, the research got a big
boost when Shlomo Weiss came along. Building on
tools Nick Pang had developed, Shlomo did sub-
stantial performance studies (and he and I realized
in the process that harmonic mean speedups
should be used). These more detailed results

appeared in the IEEE Transactions on Computers a
few of years later [6]. Along the way, Honesty
Young also added significantly to the Cray-1 simu-
lation tool set which benefited this research. After I
left the University in 1983 to work on the Z5-1,
research on decoupled architectures at Wisconsin
continued with the PIPE project [7], headed by Jim
Goodman, Andy Pleszkun, and Randy Katz. The
PIPE project produced a number of significant
papers on decoupled architectures — including
one that appeared in the 12th ISCA [8].

References

[1] E.U. Cohler and J. E. Storer, “Functionally Parallel
Architecture for Array Processors,” Computer, vol.
14, no. 9, pp. 28-36, Sept. 1981.

A. R. Pleszkun, A Structured Memory Access
Architecture, Computer Systems Group Report
CSG-10, Coordinated Science Lab., Univ. of Illinois,
Urbana, IL, Oct. 1982.

W. C. Brantley and J. Weiss, “Organization and
Architecture Trade-offs in FOM,” IEEE Workshop on

Computer Systems Organization, New Orleans, pp.

[2]

3]

28

[7]

139-143, March 1983.

J. E. Smith and T. J. Kaminski, “Varieties of
Decoupled Access/Execute Computer
Architectures,” 20th Allerton Conference on
Communication, Control, and Computing, Monticello,
IL, pp. 577-586, Oct. 1982.

J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D.
Klinger, C. M. Rozewski, D. L. Fowler, K. R.
Scidmore, and J. P. Laudon, “The ZS-1 Central
Processor,” Second Int. Conf. on Arch. Support for
Programming Languages and Operating Systems, pp.
199-204, Oct. 1987.

J. E. Smith, S. Weiss, N. Pang, “A Simulation Study
of Decoupled Architecture Computers,” IEEE
Transactions on Computers, Vol. C-35, pp. 692-702,
Aug. 1986.

J. E. Smith, A. R. Pleszkun, R. H. Katz, and J. R.
Goodman, “PIPE: A High Performance VLSI
Architecture”, IEEE Workshop on Computer Systems
Organization, New Orleans, pp. 131-138, March
1983.

J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun,
P. B. Schechter, and H. C. Young, “PIPE: A VLSI
Decoupled Architecture,” 12th Int. Symp. on
Computer Architecture, pp. 20-27, June 1985.

RETROSPECTIVE:

A Personal Retrospective on the NYU Ultracomputer

Allan Gottlieb

New York University and NEC Research Institute
New York, NY 10003 Princeton, NJ 08540
gottlieb@nyu.edu gottlieb@research.nj.nec.com

http://allan.ultra.nyu.edu/gottlieb

Introduction

The NYU Ultracomputer project, a long lasting
research endeavor, was started in 1979 by Jack
Schwartz and was very active throughout the 80s
and the early 90s. This project was an early attempt
to explore the possibilities of large scale, shared-
memory parallel computers. The project was broad
spectrumed: we developed hardware primitives
for coordination and implemented full-custom
VLSI chips to speed their concurrent execution, we
built prototype multiprocessors incorporating
these chips, we implemented a scalable, symmetric
Unix operating system, we ported compilers to
several microprocessors, we contributed to net-
work design and analysis, we implemented a par-
allel lisp system and worked on prologue, and we
developed algorithms and software for scientific
applications.

The 1982 ISCA paper you have before you, a
revision of which appeared in the Feb. 1983 “IEEE
Transactions on Computing”, includes contributions
in three areas: first, the coordination primitive
fetch-and-add and its generalization to fetch-and-
phi; second, a technique inspired by Larry
Rudolph for combining in hardware concurrent
memory references, including concurrent fetch-
and-adds, directed at the same memory location,
and a high-level VLSI design, inspired by Marc
Snir and Jon Solworth, for network switches imple-
menting combining; and third, analytic results pri-
marily due to Clyde Kruskal and Marc Snir on the
performance of buffered multistage networks.
Fetch-and-add is now present on commercial pro-
cessors including models from SGI-Cray and Intel.
Hardware combining inspired a mini-industry of
research results from a number of institutions, but
has not been realized commercially in anything
like the generality we proposed it. The analytic
network results form part of a well developed the-
ory with many contributors.

In the mid 80s, we cooperated closely with a
team from IBM research in the development of
their RP3 system. This cooperation raised our fame
(and funding level) significantly and had several

29

other very positive results. There were also some
imperfections in the cooperation as discussed
below: one in particular highlighted a weakness in
the NYU software team in general and Allan Gott-
lieb in particular.

Our first compilers were PCC-based and tar-
geted the 68K microprocessor used in our early
hardware. When we decided to use the AMD 29K
for the Ultra III prototype, we chose GCC as the
compiler and we, primarily Richard Kenner, retar-
geted it to the 29K and to the IBM ROMP used in
the IBM RT/PC workstations that constituted our
development environment (and that were used in
the IBM RP3). Kenner became very interested in
GCC, retargeted it to other microprocessors, and
has been the lead developer of its machine inde-
pendent portion for the last several years, an
important “spin-off” of our research efforts.

I summarize a few accomplishments in the
next section. Since we have bragged before and
many of these boasts can be found starting at my
home page, I have kept the next section short. Less
easily found in the literature is an account of our
shortcomings, which is the subject of the longer
section thereafter. Finally, I offer some thoughts on
doing it again.

Accomplishments

The primary achievement is that, at the end, it
all worked. We, primarily Ron Bianchini, built
Ultra III, a 16-processor Ultracomputer prototype
for which we designed the circuit boards. Ultra III
featured custom VLSI components, designed pri-
marily by Susan Dickey and Richard Kenner, that
combined concurrent memory references, includ-
ing various fetch-and-phis, directed at the same
location. Our Symunix operating system, due pri-
marily to Jan Edler, ran well and all the code was
compiled using our port of GCC. In the 80s we had
built several bus based systems that ran an earlier
version of Symunix. These Ultra II prototypes were
used successfully by researchers both within and
outside NYU and also by NYU students taking
courses in parallel computing. Their reliability was

outstanding for the time: I would say each Ultra II
crashed (including hardware and software prob-
lems) about once a month during its heyday.

Running a complete system with hardware
combining chips gave credence to our claim that
support for combining does not significantly
increase network latency during periods when no
combining occurs. Indeed for the systolic queues
we implemented, combining was not on the critical
path. While this last statement is implementation
and technology dependent, I believe that any simi-
lar implementation technique would also show lit-
tle or no speed penalty for combining. I also
believe, but this is much softer, that, independent
of combining, systolic queues are a competitive
design for any buffered network. The area and
pinout penalties for combining are factors of 2 and
1.5 respectively. Since network chips in general,
and ours in particular, are pin limited, I estimate
that combining adds 50% to the network cost.
However, if both directions of a combining switch
fit in a single package, there are no extra pins
needed and the hardware cost of combining is
small.

I would include in accomplishments the
friendship and good will that characterized our
group both during times of lavish funding and
during the contraction period that followed. I can-
not recall a single instance where there was a sig-
nificant argument on a personal level. (Like many
groups, we had constant technical and scientific
disagreements, often quite animated — the NY
does stand for New York, but the antagonists
remained friends throughout.)

Regrets

There are many changes in history that I could
propose, which would have increased our accom-
plishments. For example, if Jan Edler and I had not
fathered children during the period, we would
have developed more software — but these are not
regrets. Instead, I will only discuss those where we
should have done better (even if I am not sure
what exactly we should have done).

No Symunix Il

I am very proud of Symunix. I am also very
proud of Jan Edler’s thesis, which should have
become Symunix II. Instead, only parts were
implemented and it never went into full produc-
tion. Perhaps due to our heads being too swelled
by the success of Sym I, we were too ambitious
with Sym II and never stopped improving the
design. One of the team members complained that
she couldn’t implement as fast as the design

30

changed, so the end of tunnel kept receding. I
believe such over ambitious behavior is referred to
as the “second system syndrome”.

No Hardware, No Softwae

Sym II was to be hosted on both our Ultracom-
puter and IBM’s RP3. After work had begun on
Sym II, IBM placed an RP3 simulator and a 4381
host in our laboratory for us to use. However, we
never made full use of the simulator. Instead most
Symunix progress continued to occur on our proto-
type hardware. Although this observation sounds
like a clear NIH problem, it is not that simple. IBM
also gave us “pseudo” RP3 hardware that had the
same processor as the RP3 but a different memory
management unit and was not software equivalent
in other ways. Our operating system task on this
machine was accomplished successfully showing
that we could write OS code for NIH machines.
The shortcoming we exhibited was that we just
couldn’t get excited about writing for a simulator.
If we didn’t have hardware (even flaky hardware,
like our prototypes during hardware bring-up,
was good enough), we somehow couldn’t produce
software at anything close to our normal rate. This
was a clear failing of our very talented software
group, with primary blame falling on its leader,
me.

No NYU Switches with IBM Technology

The section title may be somewhat misleading.
IBM worked on a different combining technique
for the RP3 but canceled this VLSI effort, which
had no direct NYU involvement, prior to the avail-
ability of working chips. The regret that I am refer-
ring to, however, is our own effort to port the
“already working” NYU VLSI design to IBM tech-
nology. We spent considerable effort over a pro-
longed period but could never overcome the
hurdles we encountered. The design rules were
proprietary, were different in kind from what we
had dealt with, and we were not permitted direct
access to the design rule checker. Instead we had to
convert our VLSI description files to another for-
mat, which we then emailed to IBM. When the
design rule check was complete, the results were
emailed back. Now a dozen years later it sounds
like just a few months work but we never suc-
ceeded despite trying hard.

The Blankety-Blank Miswir ed Wirewrap Boards
The Ultra II boards were wirewrapped and
worked quite well. For Ultra III we used a larger
form factor and some pin grid arrays but the wire-
wrap vendor said it was no problem. We had one
board of each type (PE, MM, SW) wrapped and
indeed they worked after a few mods. We then
had the full complement of 4 PEs, 4 MMs, and 8
SWs wired and none of the 16 was close to work-
ing. Our NSF site visit was two or three months off.

One month later, we still had no working boards,
went into frantic mode, and started to find the
problems. Many of the wires were pulled too tight
and broke. Naturally the insulation did not break
so the wires looked fine. Since we had paid for con-
tinuity checking, considerable impolite language
was uttered. But this was the easy part. Many other
wires had been bent hard around pins and thus
developed intermittent shorts. What a mess! We
managed to get a partial system sort of running for
the NSF team and the visitors, who had been
through these wars themselves, understood and
helped us get the vendor to rewire the boards at its
own expense. Although still poor, the new boards
were better. But it took us well over a year to fix
them.

In retrospect, the success of Ultra II made us
too “comfortable” with wirewrap. We should have
realized that we were pushing that technology too
hard and that vendors were becoming less familiar
with it. In short Ultra III should have used printed
circuit boards as was done for 2nd generation Ultra
IT MMs. I must point out that all the junior mem-
bers of the hardware group were pushing for PC
boards; the old folks like me overruled them.

Play it Again Sam?

Professor Gottlieb, looking back would you do
the following things again?

e Build Hardware?

There are certainly downsides to building
hardware, especially when you don’t have an engi-
neering school: The effort is very labor intensive
and depends on the kindness (or at least compe-
tence) of strangers (in our case the wirewrap ven-
dor). On a positive note we did get to experience
the thrill of victory... but sadly only after repeated
agonies of defeat. Despite the difficulties of build-
ing hardware, it really was the only way to answer
the key questions about combining and fetch-and-
add. If I knew then what I know now, I would do it
again, of course somewhat differently. However,
building a full system today is a more problematic
decision. The bar has been raised rather high and I
realize that designing boards with modern signal
speeds might well require more engineering prow-
ess than a non-engineer PI at a non-engineering
university is able to provide.

* Work with IBM?

As mentioned above, we spent considerable
effort in an IBM-related VLSI effort that bore no
fruit and we performed poorly with their simula-

31

tor. In addition, it was ruled impossible to have the
RP3 OS based on Version 7 of Unix. As a result
Sym II moved to BSD4.2, which added to the
former’s complexity in ways not related to parallel
computing. Nonetheless I am pleased we worked
with IBM. For me personally it lead to a long last-
ing friendship with George Almasi, one output of
which was our book “Highly Parallel Computing.”
The cooperation also forced us to see how our
ideas could be used in a system that was not our
own and how to compromise with outsiders, both
positive consequences. We also benefited from the
close contact with the RP3 developers. In particu-
lar, they suggested improvements to the Sym II
design. Most importantly, for many people outside
of Greenwich Village in NYC, the RP3 collabora-
tion put us on the map with clear recognition and
funding advantages.

* Shun Mach?

It was suggested to us by ARPA that we incor-
porate our parallel algorithms in the Mach OS
rather than continue with Symunix. IBM was
agnostic on the OS issue technically but preferred
that we consent to ARPA’s request. When Mach
became available on the RT/PC workstations in
their offices, the IBM preference became stronger.
In addition to potential funding advantages, our
switching to Mach would have made us a player in
what was then deemed likely to become a major
OS. Nonetheless we refused. We were not agnostic
on the issue technically; instead, we Dbelieved
strongly that our approach was better for large-
scale, shared-memory computers like the RP3. I do
not regret our decision to follow these beliefs
uphill.

Acknowledgment

I would like to take this opportunity to thank
the funding agencies that made the Ultracomputer
research possible. Our initial support came from a
DOE grant to NYU that predates my arrival
(indeed this grant predates the DOE’s “arrival”; it
was first granted by the Atomic Energy Commis-
sion). In addition to continued support from the
DOE, our project received several NSF grants. We
also received significant ARPA support as a sub-
contractor to IBM’s RP3 grant. We thank IBM as
well for committing to our support before they
were assured of DARPA funding. We received two
student grants from ARO and equipment grants
from AMD, DEC, HP, DG, and IBM. Finally, we
received a donation from Sphynx.

RETROSPECTIVE:

Using Cache Memory to Reduce Processor-Memory Traffic

James R. Goodman

Computer Science Department
University of Wisconsin-Madison
goodman@cs.wisc.edu

& s hile it has long been recognized that

memory latency was a key parameter of perfor-
mance, the impact of memory bandwidth (or its
absence) has always been much harder to charac-
terize. The complex relationship between latency
and bandwidth is much better understood today
than it was in 1982, Nevertheless, this relationship
in the ever-varying context of “modern” system
designs, created a fertile ground for studying a
range of solutions to the same problem over many
generations of computers: how to balance band-
width and latency to provide a cost-effective, high-
performance memory system [1,3].

This paper was an enthusiastic attempt by an
assistant professor — who had never had a paper
accepted to ISCA — to establish credentials in the
area of single-board computer design, an exciting
and growing market at the time. The paper reflects
the exuberance and naivete of the era, where col-
lecting data was as simple as figuring out how to
use the trace mode on a VAX to generate a trace,
and writing a cache simulator to evaluate the
effects. With those simple tools, we studied every-
thing from cold start/warm start phenomena to
sector caches and block sizes, to replacement algo-
rithms. Along the way, it became apparent to me
that processors were approaching the point where
it was preferable to allow them to sit idle rather
than trying to keep them busy by switching tasks
frequently. This seemed obvious to me because of
the high-bandwidth, burst traffic required immedi-
ately following a task switch. While this conclusion
led us down some interesting paths, apparently
including the first publication of a snooping cache
algorithm, we are still waiting expectantly for peo-
ple to stop worrying about idle processors.

In the 1970s I was involved in the design of
several add-on memory systems for IBM main-
frame computers. Working on these designs, I had

32

developed an appreciation for the design of cache
memory, and the difficulty of supporting multiple
processors in the process. In 1979 I had the oppor-
tunity to participate in the specification of the Intel
80286. Microprocessors were just arriving at the
point where they were “interesting” to a computer
architect, and I spent a lot of time thinking about
Multibus-based systems. The Multibus standard
allowed for multiple processors to share a bus, and
to share commonly accessible memory on the bus
but generally accessed memory on their own
board. Microprocessors were just beginning to out-
run DRAM memories. In discussions of how to
support cache memory for the 286 I began to think
about the implications of a small, on-chip cache,
and how it could support a multiprocessor, and the
idea came up of watching the bus from within the
286 chip. However, the multiprocessor systems I
had studied were brute-force invalidation systems
consisting of only two processors. Every write
from a processor was conveyed to the cache of the
other processor, where it was treated the same as
an 1/0 operation, i.e., the remote cache was always
checked, and invalidated on a hit. This resulted in
a lot of traffic to the cache, since a check was
required for every write.

In March of 1982, Carl Amdahl, on a visit to
Madison, pointed out that write-back caches could
reduce the invalidation traffic substantially: once a
cache had been cleansed of a line, further invalida-
tion requests were unnecessary if it could be guar-
anteed that the line didn’t find its way back into
the cache. This realization led us to a key reason
that snooping is effective: the same mechanism can
be used to detect a write — causing invalidation
and exclusive access — and a subsequent read —
causing intervention to prevent the reading of stale
data.

The concept of a snooping cache developed
over an extended period, so that when all the
pieces finally fit together, I failed to see it as an
important advance. In fairness, at least two other
groups discovered the idea of snooping indepen-
dently: Thacker and McCreight working on
Dragon [4] at Xerox Parc and Steve Frank [2], archi-
tect of the Synapse N+1. In fact, when I wrote the
paper, 1 believed that the important contribution of
the paper was the recognition that caches — which
usually had much higher bandwidth on the mem-
ory side than on the processor side—could actually
reduce traffic from memory instead of increase it.

All of our studies were conducted in the con-
text of a Multibus system, though we never actu-
ally implemented the idea at Wisconsin. (I was
involved with the design of the Balance system
developed in 1983 at Sequent.) We recognized that
the addition of a couple of extra bus signals would
make a protocol much simpler to implement, as
well as provide better performance. Because of
concern for commodity parts (the Multibus mar-
ketplace), we confined our design to one that could
work in an unmodified Multibus system. From
that experience I came to the realization that limi-
tations imposed by commodity parts have their
place, but that these limitations should not be
allowed to stifle the search for novel solutions.

It was always apparent to me that there were
better algorithms available if one relaxed our self-
imposed constraint of Multibus compatibility. I
was unprepared for the flood of papers introduc-
ing a plethora of variations. Many years passed
before I was convinced that the seemingly small
differences among these algorithms were impor-
tant. I believe that, to this day, the most underrated
contribution to understanding of snooping caches
was Paul Sweazy’s work on Futurebus, and his
insistence that there had to be a common frame-
work for comparing the algorithms. This work, of
course, ultimately resulted in the MOESI model
[5].

Finally, it’s important to mention that my use
of the term “we” in the original paper was not the
royal we. As a junior professor I stumbled into an
incredibly supportive and nurturing environment

33

at the University of Wisconsin, one that allowed
me to focus early on the research side of my career.
I'm especially indebted to Jim Smith and David
DeWitt, who led by example, and to Larry Land-
weber for his vision, leadership and advice. As
acknowledged in the original paper, Phil Vitale
and Tom Doyle participated in many stimulating
discussions, both before and after this paper was
written. Tswen-Hwey Yang built a powerful VAX
trace tool that we used for this and much later
work. She left the university before this paper was
completed, and alas I have not heard from her
since. David Patterson also played a critical role as
a mentor during this period, and was one of the
first to appreciate the importance of this work. Ed
Davidson and Al Despain also provided critical
advice and feedback during this difficult period.

I also want to put in a plug for supporting
“small science” in the way that the National Sci-
ence Foundation does so well. Support from NSF,
particularly John Lehmann and, later, Zeke
Zalcstein, has been critical in allowing many of us
to develop our research programs. NSF support
was enormously helpful to me, and this work
resulted from my first NSF grant.

References

[1] D.C.Burger, A. Kagi, and].R. Goodman, “Memory
Bandwidth of
Microprocessors,” 23rd International Symposium on

Computer Architecture (ISCA-23), May 1996.

Limitations Future

S.]. Frank, “Tightly coupled multiprocessor system
speeds memory-access times,” Electronics, Vol. 57,
No. 1, (January 12, 1984), pp. 164-169.

J. R. Goodman, “Using Cache Memory to Reduce
10th Annual
Symposium on Computer Architecture (ISCA-10),
(June 1983), pp. 124-131.

Processor-Memory Traffic,” Proc.

E. McCreight, “The Dragon computer system: an
early overview.” TR, Xerox Corp., Sept. 1984.

P. Sweazy, A.J. Smith, “A Class of Compatible
Cache Consistency Protocols and Their Support by
the IEEE Futurebus,” Proc. 13th Annual Symposium
on Computer Architecture (ISCA-13), pp. 414-423,
June 1986.

RETROSPECTIVE:

Very Long Instruction Word Architectures and the ELI- 512
Joseph A. Fisher

Hewlett-Packard Laboratories
Cambridge, Massachusetts
jtisher@hpl.hp.com

VLIW Architectures and Region
Scheduling

In this paper I introduced the term VLIW.
VLIW was motivated by a compiler technique,
and, for many readers, this paper was their intro-
duction to “region scheduling” as well. I had put
forward the first region scheduling algorithm,
called Trace Scheduling, a few years before. Since
region scheduling is a compiler technique, it is of
interest to fewer people, but it enables superscalars
and VLIWs with lots of instruction-level parallel-
ism (ILP). Because I could see the power of region
scheduling, I first began to think about VLIWs. 1
was fortunate in that this allowed me to coin the
term Instruction-level parallelism, and to work out
a lot of the original details and terminology of ILP,
before many others believed it was important.

How VLIWs Came About

VLIWs came from my work as a graduate stu-
dent at Courant. Ralph Grishman (my advisor)
and I built PUMA, a CDC-6600 emulator that
Ralph had designed (it worked well and eventu-
ally several were made and used to replace some
big, old supercomputers of their day). One of my
jobs was “chief tool builder” — I read the litera-
ture, learned the state of the art in ECAD algo-
rithms, and then wrote tools to do most of the wire
routing, partitioning, chip layout, simulation, and
so on. You couldn’t buy tools like that at a univer-
sity then. The tools I wrote worked very well, but I
was really frustrated with how hard it was to
write, and especially maintain, the 64-bit horizon-
tal microcode PUMA used (PUMA stood for “Pro-
cessing Unit with Microprogrammed Arithmetic”).
I originally thought of the problem that I solved

34

with region scheduling as a hardware design prob-
lem. What I wanted to do was convert vertical
(serial) microcode into horizontal microcode. The
analogy to chip layout is clear:

- Chip layout involves converting a 1-dimen-
sion representation (a chip list) into a 2-dimen-
sional representation (a placement); I was
converting serial operations into 2- dimensional
horizontal microcode

- Chip layout has nodes (chips) connected by
edges (wire); I had operations connected by a data
precedence relation.

- Chip layout tries to minimize wire length
given the constraints of wiring; I had to minimize
schedule length given the constraints of data pre-
cedence.

Because of this analogy, I was surprised when I
realized that this was really a part of compiling,
relying more upon compiler tools than CAD tech-
niques. Fortunately, I was at Courant, which was
then compiler heaven. (The holy scrolls were cop-
ies of Cocke & Schwartz, which included a catalog
of optimizations; Ken Kennedy had just gotten his
degree there.) The few people looking at this prob-
lem elsewhere were scheduling basic blocks, and
then trying to iteratively improve the schedule by
moving operations from block-to-block afterwards.
The key insight was to recognize that this locked
you to too many bad decisions, and you should
instead look at a lot of code at once — for example
a long execution trace. Trace Scheduling lets you
do that, and frees you up to generate far more ILP.
Since then, new region selection algorithms have
suggested other regions of choice, often a more
limited subset of a trace, reducing the complexity.
Some of the region scheduling regimens that have
gotten the most attention include Percolation,
Superblock, Hyperblock and Trace-2.

Now that more and more ILP is present in
microprocessors, region scheduling has become
the technology of choice in high-end compilers.

Why Not VLIWSs?

Given Trace Scheduling, I wondered why you
couldn’t build a RISC-style CPU with lots of ILP,
and thus run really fast. Indeed, the farther my
group and I went (I was at Yale by then), the more
it seemed obvious that you could, and that it
would be a good thing at least some of the time. I
then learned a couple of things. First, you can get
more people, a LOT more people, to come to your
talk if you promise them bizarre sounding hard-
ware instead of a compiler technique. Second,
many people seemed to think that it would be very
hard to build such a thing.

The first effect was good and bad. It’s probably
mostly my fault that a lot of people think of VLIWs
as a weird kind of beast, rather than one of the nat-
ural alternatives once you start thinking about lots
of ILP. I think that if I had presented these ideas in
the context of a 2-issue compiled LIW, or a super-
scalar of any size, people would have thought
more soberly about the idea. But because of region
scheduling, I felt there was a real use for systems
that could issue 7 (or many more) operations per
cycle. This much ILP and weird long instructions
to boot; it was too much for most people to accept.
It was great for me professionally: I put forward a
lunatic-seeming proposal, and then had it turn out
to be practical, at least for some important uses,
and not bad at worst in any case.

The second effect absolutely amazed me, and it
still does. Why would this be impossible to build?
I'd ask them, and I guess the lack of answers meant
that you couldn’t because no one ever had. (Really,
in 1998 it seems amazing that people actually
believed you couldn’t build such a CPU at all.)
Whether you’d WANT to build one seemed legiti-
mately controversial and it still does, whatever I
personally believe. The real question was: having
built it, what now? Does this region scheduling
stuff really work well enough to justify it? Answer:
sometimes. Anyhow, I can’t portray strongly
enough the way in which this concept was greeted
by the many minicomputer manufacturers John
O’Donnell and I approached in trying to convince
them to build one. I recently ran across a wonder-
ful article in the San Francisco Chronicle (7/9/97,

35

first Business Section page), quoting Ray Simar,
Texas Instruments’ program manager for their new
generation of DSP chips:

The theoretical breakthrough came out of Yale Uni-
versity in the early 1980’s. “I remember looking at the
idea and saying these guys were nuts,” Simar recalled.
“I thought there was no way it would work in the real
world.” But three years ago, when Simar was given the
job of coming up with a great leap forward in DSP, he
revisited the Yale work with new appreciation. “At the
end of the day what we thought was ridiculous was the
best solution,” he said.

It’s just amazing to read someone being as
forthright as that. Indeed, that is how people felt.

Some Naivete

There were a lot of aspects of this paper that
seem naive from the perspective of 1998. Some of
these were genuine naivete, others were simply
artifacts of their time. The most significant is the
lack of any mention of object-code compatibility as
an issue for VLIWSs. This issue was not on my radar
screen. Being compatible with another company’s
binaries was an oddity, and most manufacturers
changed architectures willingly. (If you copied
someone else’s, you sort of weren’t even a legiti-
mate computer vendor in some people’s eyes, you
were a “clone manufacturer”.) People sometimes
brought it up, but not often until Multiflow, when
it was considered a big issue. (At Multiflow, we
were “upward” compatible, but not as much as
we’d have liked to be. You could run Trace 7 code
on a Trace 14, but that was it. The 28, the one with
1024 bit instructions, you really needed to recom-
pile for to run correctly.)

I never dreamed that there might someday be
techniques that operated at run time that might
solve the binary compatibility problem and change
a lot of our other architectural considerations. (I've
called these walk-time techniques, but nobody else
seems to.)

A truly naive thing is that I described VLIW as
an architecture, without really being conscious of
the distinction between architectures and imple-
mentations. I didn’t know to say it then, but VLIW
is really a design philosophy, much like RISC,
CISC, superscalar, vector processor, etc. To me, the
part of VLIW that mattered then and matters now
is the philosophy that one should get a lot of ILP in
a processor without asking the hardware to do
much to locate and schedule it. As with anything
of this sort, there’s a spectrum. I think of an imple-

mentation that expects operations to have been
arranged so it can trivially put them in parallel at
run-time as a good embodiment of this philosophy.
I think of processors that significantly rearrange
code, mapping architectural registers into physical
registers, etc., and in general thinking instead of
computing the answer, as embodiments of oppo-
site. Does the object code actually have to have
wide instructions in it for an implementation to be
a VLIW? Not to me, and I'm not really interested in
the question, any more than I want to know
whether a particular processor is really RISC. I can
tell the extent to which they follow this philosophy,
and I think it's a good design philosophy.

At least two more truly naive things appear in
this paper. First, I really ignored the whole ques-
tion of exceptions. As anyone who builds real
CPUs knows, you spend more time handling that
problem than any other. Exceptions are a real pain
for out-of-order processors. They're probably
worse for superscalars than VLIWs, but no fun
either way. Second, the memory system I thought
was desirable, was, instead, baroque and silly. John
Cocke tried to straighten me out. He suggsted that
it would be enough to try to avoid references to the
same bank, and that it would be a good idea to
ignore this back-door nonsense. But I didn't listen.

Some Terminology

Finally, it's worth clarifying some terminology
to put this paper in a more modern context. When
John Ruttenberg and I laid out the basics of the
high-level ELI architecture, we decided that regis-
ter banks had to be split. We termed the combina-
tion of register banks and the functional units that
took their operands from them a “cluster”. That
term has mostly stuck, but lately there have also
been references to “split register bank architec-
tures”.

36

This paper addressed the problem of telling
whether indirect references are to the same address
or not, and called that problem “anti-aliasing”.
Because that term already had such strong mean-
ing in the graphics world, 1 later renamed it “mem-
ory disambiguation”, and that ugly term stuck.
(Yale Patt always complains that his term, “the
unknown memory address problem”, was better.
This shows again that short and ugly beats long
and careful every time.) VLIW itself is another
short and ugly term that stuck. I tried SPIE (for
Static Parallel Instruction Execution). That turned
out to be a conference name, which I found out
when I used the term in a grant proposal and got
on all the wrong mailing lists. I eventually came up
with VLIW. I figured if VLSI could stick, why not
VLIW? VLIW unfortunately emphasizes the long
instruction implementation detail over the explic-
itly parallel instruction design philosophy that is
really the key aspect.

One last thing I'd like to mention is that Mary
Claire vanLeunen (author of the still wonderful “A
Handbook for Scholars”, revised ed., Oxford Uni-
versity Press, New York, 1992) taught me to write
in the course of editing this paper, for which I'm
still very grateful. Several others had tried; some
had helped a lot, but this was where it took. “It’s a
lot like programming. Your goal is transparency,”
she told me. I figured that if she knew that about
programming — not so many people knew that
about programming then — she was undoubtedly
right about writing. Recently, because of her les-
sons, I had reviews of a paper that said, “This is
such a clearly written paper, it should be published
on those grounds alone,” and, from another
reviewer, “This paper was written in an annoy-
ingly juvenile style.” Right!

RETROSPECTIVE:

Characterization of Processor Performance in the VAX-11/780

Joel S. Emer

Digital Equipment
Shrewsbury, MA, 01545
Joel. Emer@Digital.com

J[n reminiscing with early VAX designers about
the work in this paper, it has been difficult to recall
how startlingly primitive our performance knowl-
edge and approaches once were. While inside Dig-
ital and in the larger architecture research
community we are now thoroughly indoctrinated
in the quantitative approach to computer architec-
ture and design, of which this paper is an early
example, the situation in the early 1980’s was quite
different. In particular, while the VAX-11/780,
which was introduced in 1978, was probably the
preeminent timesharing machine on university
campuses at that time, very little was known about
how it worked or exactly what its performance
was.

In particular, before 1980, even inside Digital
the fact that some benchmarks ran at less than the
widely-believed 1 MIPS was known to only a very
small number of people. And the fact that on real
multiuser workloads the 11/780 typically executed
instructions at only 0.5 MIPS was apparently
unknown. Furthermore, somewhat embarrass-
ingly, both facts were unknown to the architects of
some of the successor machines. That meant that
those designs were optimizing to the presumed 5
average CPI of the 11/780, where in fact another 5
cycles per instruction were totally unaccounted for.
It was only following some other measurements by
one of us (Joel) in which a frequency counter was
hooked up to record MIPS and he was shocked to
read 0.5 MHz where he expected 1.0 MHz, that a
more widespread account of the 0.5 MIPS rating
was propagated. Still, so widely believed was the
1.0 MIPS number, in fact, that one of our ISCA ref-
erees didn’t believe the data, making the “manda-
tory” recommendation to “explain why Table 8
and 1st bullet, pg. 23, seem to imply average VAX
780 instruction takes > 2 us; should be ~1 us.”

In addition, while we have become accus-
tomed to single chip microprocessors with mini-
mal interfaces to probe their internal operations,
the VAX 11/780 CPU spanned about 20 boards.
One such board was the microcode store, which

37

Douglas W. Clark

Dept. of Computer Science
Princeton University, Princeton, NJ 08544
doug@cs.princeton.edu

directed much of the behavior of the machine. That
meant that one could probe the backplane of the
machine to determine the address of each microin-
struction executed. That’s exactly what the mea-
surement tool described in the paper was able to
do. Furthermore, a microcoded processor like the
11/780 reveals a huge amount of detailed behavior
this way, some of which was reported in the paper
included in this volume.

While it would be nice to claim that all the
work in the paper was premeditated as a compre-
hensive characterization of the 11/780, the
microPC histogram tool used in the study was
actually inspired by a single question that it
wouldn’t answer. It was probably late in 1980, and
the company was in the early stages of the design
of the VAX 8200, the first microprocessor VAX.
Although it was a microprocessor, it wasn’t on one
chip, but the CPU core spanned three chips, not
including the cache. Furthermore, the microcode
had to be on an additional five chips. Since chip
crossings were expensive, it was suggested that
perhaps a two-level hierarchical microcode store
would perform better. Thus, some small number of
microinstructions could be included in the proces-
sor chip, and the remainder would live in the
microcode chip. But with different latencies for dif-
ferent microinstructions, what would the perfor-
mance be? The answer of course depended on the
execution rate of each microinstruction. Unfortu-
nately, we had little idea what the actual rates
were,

The way to answer this question was obvious.
Measurements of PC histograms for applications
were commonplace, so why not measure the
microPC histogram? Of course, as is invariably the
case for questions that arise during a design, there
was no time to conduct an extensive new study,
especially one that involved building new mea-
surement hardware. So a decision was made to
build a single level control store for the 8200, as
much for hardware complexity arguments as per-
formance arguments. But the idea of a device to

characterize microcode behavior was established,
and given our preexisting belief in the value of
accurate performance characterization, it was pur-
sued in the expectation that next time we would be
prepared with data to answer many other ques-
tions as they arose.

By the Fall of 1981, the first set of measure-
ments was completed. Figure 1 shows the original
graph that could answer the design question we
were too late to answer. In addition, there was also
a wealth of data on many of the arcane facets of use
of the VAX architecture and the 11/780 implemen-
tation. At Dick Sites’ suggestion, we created an
annotated microcode listing that showed the rela-
tive execution count of each 11/780 microinstruc-
tion. Those listings were indispensable to several
generations of VAX microcoders, who used them
to determine the relative frequencies of different
cases or typical microcode loop counts, and to bud-
get microcode space. In addition, it was used to
justify a variety of hardware /microcode tradeoffs.

Probably most significant was the two-dimen-
sional instruction class versus operation cycle
count table that appears as Table 8 in the paper.
While such breakdowns of architectural and
implementation statistics seems obvious and
essential today, there were many novel applica-
tions at the time. This information was used to
quell an internal attack on the (ultimately correct)
performance claims of the VAX 8800. And the VAX
9000 architect carried around a marked up copy of
the diagram with crossed-out entries, and updated
values to justify the performance expectations of
his machine. We believe that this data used in the
early 80’s was the most compelling evidence for
performance claims that DEC designers had used
to date, and was instrumental in establishing a
firmly quantitative approach to performance
inside the company.

On the other hand, the most fun we had with
the data happened in various design meetings,
when, as seemed standard practice in those days,
some clever designer would claim that a monu-
mental performance gain could be achieved if only
some cache were enlarged or the translation buffer
were improved. It became a pleasant avocation to
short-circuit these discussions with hard data,
which inevitably showed that no single clever idea
could cut VAX CPI significantly. Of course, this
was not universally appreciated, as evidenced by
the remark of a very senior designer, who in
response to the interjection of a measured fact into
a heated discussion, said, “Boy, you ruin all our
fun — you have data.”

As is often the case with industrial research,
there was not a large incentive to publish results
immediately, and this particular work was avail-
able within DEC for over two years before it was

38

submitted to ISCA. There was also some under-
standable concern over the sensitivity of the data.
In the end, we (and the corporate reviewers)
decided that releasing the data was the right thing
to do, as long as we didn’t make the blunt observa-
tions that the 11/780 was only a 0.5 MIPS machine.
Thus, noting that it was a little over 10 CPI and had
a 200 ns. cycle time was okay, but no MIPs number
was to appear.

In the end, we have been pleased by the accep-
tance of this paper as an example of the quantita-
tive approach to computer architecture. We also
have been pleased by the use of some other tech-
niques exhibited by the paper, such as the separa-
tion of architectural and implementation statistics,
the use of per-instruction metrics, and the use of
better benchmark programs, especially those that
include multiple users and system activity. It also
seems clear to us in retrospect that this paper pro-
vided a service to designers of competitive
machines (especially in academe), by quantita-
tively characterizing the most commonly used
benchmark processor.

Both authors of this paper have continued to
work on computer architecture. Joel has remained
at Digital, and has worked on performance evalua-
tion for a number of VAX processors. Doug was a
designer of the VAX 8800 family, and worked on
two further VAXs that never shipped. Both partici-
pated in the small corporate taskforce that led to
the creation of the Alpha architecture. At that point
their paths diverged, as Doug left Digital for an
academic position at Princeton, while Joel has
remained at Digital doing architectural research on
various Alpha processors.

Figure 1. Original graph of micro-location usage

Micro-location Usage (SPA)

100

v

/

[0

| I |

80

1111

70

Cummulative Percent Utilization

1111

60 T T T T T

o 200 400 600 800 1000

Number of locations

RETROSPECTIVE:

A Low-Overhead Coherence Solution for Multiprocessors with Private
Cache Memories

Janak H. Patel

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign, Urbana, IL 61801
patel@crhc.uiuc.edu

Origins of This Paper

The cache coherence solution proposed in this
paper, now referred to as “lllinois Protocol”, had
its origin in my work on performance modeling
and analysis of multiprocessors. Having com-
pleted the work on performance of multiprocessor
interconnection networks in 1978 and first pub-
lished in ISCA-1979 [1], I embarked upon extend-
ing the analysis to multiprocessors with cache
memories. The analytical method used in [1] was
readily extendible to more complex situations
involving transactions between processors, caches,
interconnection networks and memories. The
interconnection network used was either crossbar
or multi-stage Delta Network [1]. This analytical
work 1 completed in Fall of 1980, and was later
published in the Transactions on Computers [2].

The focus of these two papers was interference
in the interconnection network with or without
cache and therefore cache coherence did not get
much attention, neither did bus based systems.
However, things changed in 1981 when I came
across a research project that Ed Davidson and his
students were conducting at Illinois. Davidson had
built a multiprocessor, called AMP-1 using the
microprocessor Motorola 6800 and a synchronous
bus. This system was designed around 1977-78
time frame by Bob Horst and Roy Kravitz and is
described in an ISCA-1980 paper [3]. Several others
were involved in performance modeling and mea-
surement of the AMP-1, notably Joel Emer and
David Yen. This is when I thought I could use my
multiprocessor analytical method of [2] for single
bus multiprocessor systems. While the AMP-1 did
not have private cache, it still raised my interest in
analyzing a bus based system with private caches.

In 1982, I was familiar with then prevalent
microprocessor buses, namely Intel Multibus and
Motorola VME Bus. I thought I should model a

39

hypothetical multiprocessor system with caches
and a bus like VME or Multibus. I was teaching a
hardware lab that designed an interface for Multi-
bus and as a result I was very cognizant of the low-
est level details of its bus protocol. To model such a
bus I needed to know various events that caused
bus activities. A survey of literature found no bus
based system with private caches. Most cache
papers were directory based protocols and in addi-
tion the interconnection either was a crossbar or
not mentioned. So I decided to just assume some
arbitrary cache protocol. After all my goal was to
provide a model and analytical method for such a
system, not invent new cache protocols. As it hap-
pens with many innovations, they are often
unplanned! So in Fall 1982, to make my analysis
more realistic, I decided to define a cache protocol
that had some practicality and low cost in relation
to bus interfaces for Multibus. It was not very diffi-
cult to come up with a reasonable cache protocol.
In that Fall of 1982, Marc Papamarcos started his
M.S. Thesis under my supervision. He was very
familiar with VME bus and Motorola microproces-
sors. So I asked him to work on a hardware imple-
mentation of this cache protocol for the Motorola
VME bus. It so happens that the protocol is not
directly implementable on either Multibus or VME
bus without extending the capabilities of the bus in
some way. However, we made sure that any modi-
fication to the bus were simple, practical and of
low cost. Mark carried out a very detailed hard-
ware design for the cache controller [4]. Mark also
worked out details for implementing an indivisible
read-modify-write for the Motorola 68K.

Many other researchers also were working on
bus based cache coherence during that time
period. When we had just finished writing the core
of the paper we saw Jim Goodman’s paper in
ISCA-1983 [5]. We thought that since we found one

paper on a bus based cache, we should include it in
our performance analysis and we indeed did. This
was not to prove the superiority of our protocol, it
was merely a demonstration of analysis of differ-
ent situations. The fact that our protocol did better,
was just incidental. Since then a number of papers
on coherence have appeared and indeed as I men-
tioned earlier, once you put your mind to it, it is
not very difficult to come up with a variety of pro-
tocols. Nevertheless, Illinois protocol was different
in several major respects: (1) Cache to Cache trans-
fer of cache lines, (2) while Cache-to-Cache transfer
takes place, the main memory also gets updated,
and (3) all caches that have the requested line
respond simultaneously, but a hardware priority
network allows only one to perform the transac-
tion.

I started presenting this work to industry con-
siderably before it got presented in ISCA in June
1984. I gave talks at Texas Instruments, Intel, Digi-
tal, and IBM during 1983-84. In those days, ques-
tions often came about the difficulty of
programming for cooperating processes on differ-
ent processors in the presence of the cache. A com-
mon concern was that synchronization between
parallel processes on different processors would be
adversely affected by the cache protocol. Since this
was such a common question, I started thinking of
a simple explanation that could satisfy most casual
programmers and engineers, very much like me.

Single Processor-Multiprogramming
Paradigm

After considerable thought and analysis I was
convinced that the cache protocol as defined with
the indivisible read-modify write, was indeed so
transparent to the programming synchronization
that one could make the following statement with
confidence. If your program with multiple threads
can be run correctly on a single processor without
any assumption on the order of execution among
these threads, the same program will also run on a
multiprocessor with private cache, where the
threads are distributed in any number of proces-
sors. I started presenting this concept during my
oral presentation in 1983-84. The importance of this
paradigm is the sheer simplicity of it, which a non-
expert in the intricacies of parallel programming
semantics could easily understand and use during
programming. It is good to contrast this simple
paradigm with later paradigms with much more
formal treatment and varying degree of serializa-

40

tion assumptions called weak ordering; see, for
example, the paper by Adve and Hill in ISCA-
1990.

In June of 1984, I presented this paper at ISCA
in Ann Arbor, Michigan. Sitting in the front row
was Dave Patterson, making copious notes in the
proceedings. He asked the first question about my
data showing the bus saturating at about 8 to 16
processors and stating that a company X had just
announced a 32 processor single bus system. I also
had performance data for zero coherence over-
head, which still showed that for reasonable miss
rates and bus transfer times, it was nearly impossi-
ble to put 32 processors on a bus without saturat-
ing the bus. The company X was defunct the next
year. This only reinforced my belief in the need for
good performance analysis in any architecture
research.

IEEE Future Bus and Illinois Protocol

In November of 1984, I received a letter from
Paul Borrill who was chairing the IEEE Futurebus
Working Group. The letter stated that the working
group had decided to include a cache protocol
based upon our paper in ISCA-1984. He specifi-
cally stated that the solution that was being imple-
mented was based upon our work and hence he
needed my help in reviewing the standard. I asked
my coauthor Mark to help them since he was
located near where the Working Group was meet-
ing. At a later date, the Working Group also took
assistance from others, including Alan Jay Smith
and Jim Goodman. As it happens with many stan-
dards, when the committee gets large the standard
begins to cover everything under the Sun! This
was no exception. The final Futurebus standard
tried to accommodate a multitude of cache proto-
cols, in the process they could not include the Illi-
nois Protocol. The reason that Illinois Protocol
could not be supported in Futurebus is that the
IEEE bus did not permit the way the cache-to-
cache data transfer were specified in the Illinois
protocol. The irony of this is that this was precisely
the reason that many others found the Illinois pro-
tocol attractive from a performance point of view.
As a result, today the Illinois Protocol is found in
several commercial multiprocessors, notably
among them are SGI and Sequent. It is also found
in some single microprocessors. To some it may not
be readily apparent that a cache coherence protocol
is also needed for single processors because of I/O.

Illinois protocol was also present in the early ver-
sions of the Nexgen microprocessors, which subse-
quently gave rise to the AMD-KG6.

Final Thoughts

Over the years since the publication of Illinois
Protocol, several in the community have told me
that I should have patented this protocol. I do not
believe this should be a goal of an academic
researcher. Then, last year there was the news of
the litigation between major computer corpora-
tions on patent infringement. One of the patents
involved was on the topic of cache consistency pro-
tocols. The litigation involved large sums of
money! Did I wish now that I had patented the Illi-
nois protocol? The answer is still no. However, I do
wish that companies honestly acknowledge aca-
demic research by referencing them in their litera-
ture. I am grateful that SGI and Sequent did
acknowledge our work. ISCA proceedings have a

41

wealth of novel ideas and if industry gives them
due credit in public, costly intellectual property lit-
igation could be avoided.

References

[1] J. H. Patel, “Processor-memory interconnections
for multiprocessors,” Proc. 6th Annual Symp. on
Computer Architecture, pp. 168-177, April 1979.

J. H. Patel, “Performance of processor-memory
interconnections for multiprocessors,” IEEE Trans.
on Computers, vol. C-30, pp. 771-780, Oct. 1981.

E. S. Davidson, “A multiple stream microprocessor
prototype system: AMP-1,” Proc. 7th Annual Symp.
on Computer Architecture, pp. 9-16, May 1980.

M. S. Papamarcos, A low overhead coherence solution
for bus-organized multiprocessors with private cache
memories, Technical Report CSG-29, University of
Illinois at Urbana-Champaign, May 1984.

J. R. Goodman, “Using cache-memory to reduce
processor-memory traffic,” Proc. 10th Annual Symp.
on Computer Architecture, pp. 124-131, June 1983.

RETROSPECTIVE:

Implementing Precise Interrupts in Pipelined Processors

James E. Smith

Department of Electrical and Computer Engineering
University of Wisconsin-Madison
jes@ece.wisc.edu

:][became interested, reluctantly at first, in precise
interrupts while part of the Cyber 180/990 project
at Control Data in 1979. CDC had implemented
imprecise interrupts in the 6600 and 7600. Precise
interrupts could complicate an otherwise clean
design, and weren’t the kind of thing designers
liked to think about. But the Cyber 180 was a vir-
tual memory architecture, and the specification
called for precise interrupts.

The earlier CDC STAR-100 had also been a vir-
tual memory machine, and its schedule had suf-
fered a substantial delay when recoverable
interrupts had to be added to the design late in the
day. The solution used in the STAR-100 and later
Cyber 200 follow-ons was to implement an “invisi-
ble exchange package” — basically a dump of the
pipeline contents that could be later restored.

With the STAR-100 lesson clearly in mind, my
manager Jim Stockard asked me to assume respon-
sibility for pulling together an overall precise inter-
rupt strategy. Some pieces had been implemented,
but there was no cohesive strategy. I believe Jim
thought there was some connection between my
fault-tolerant background and precise interrupts; I
couldn’t convince him otherwise. The onerousness
of the task must have impressed me, because to
this day I can clearly recall that specific meeting
with Jim. Working on things like branch prediction
seemed like a lot more fun.

Before I joined the project, some of the design-
ers — including Denny Longnecker, John Pearson,
and Terry Lyon, probably others — had worked
out a method of restoring register state with a his-
tory buffer mechanism.

Mechanisms for handling memory stores and
“multi-micrand” instructions remained to be
worked out. “Micrands” were similar to RISC
operations, and some of the complex Cyber 180
instructions required many micrands for execu-
tion. I started with the history buffer and added a
method for handling multi-micrands by adding
markers that delineated groups of micrands

42

belonging to the same instruction. Stores were han-
dled by signaling the store unit whenever all
instructions preceding the store were known to be
error-free; this was done via a simple reorder
buffer-like mechanism.

Also at that time, I puzzled a little about other
ways precise interrupts could be implemented,
and decided that an alternative would be to
replace the history file with a reorder buffer plus
bypasses. But the history buffer method was in
place, and the large number of bypasses seemed to
be a problem.

I carried the precise interrupt problem back to
Wisconsin and sat on it awhile — one of those
projects worth doing at some point in the future.
After Andy Pleszkun joined the faculty at Wiscon-
sin, we started talking about the problem and
started a joint research effort. At CDC, no serious
study of the performance impact of precise inter-
rupts was done — we felt it was small and were
happy just to have something that worked. So, as
part of our project, Andy and I measured perfor-
mance impact of implementing precise interrupts
(which turned out to be small).

Somewhere along the line, Andy and I came
up with the future file method — it seemed to be
the dual of the history buffer. Exactly how we came
up with that one I don't recall. It seemed to round
out the paper, though. Andy did all the perfor-
mance work, and we spent many hours talking
about the problem and the alternative solutions.

In retrospect, although neither of us thought it
very significant at the time, the reorder buffer has
probably turned out to be the main contribution of
the paper. My colleague Guri Sohi made it really
fly with the observation that the reorder buffer
could be used for a lot more than supporting pre-
cise interrupts; it could also be used to support
renaming and speculative execution. Sohi’s
method is described in another paper in this pro-
ceedings.

RETROSPECTIVE:

HPSm, a High Performance Restricted Data Flow Architecture Having
Minimal Functionality

Wen-mei W. Hwu

Computer & Systems Research Laboratory
University of Illinois at Urbana-
Champaign, Urbana, IL 61801
hwu@crhc.uiuc.edu

“HPSm, a High Performance Restricted Data Flow
Architecture Having Minimal Functionality,” was
the first paper describing the HPS execution model
that was published in ISCA. However, it was not
the first paper published on the subject. The HPS
paradigm was first presented at Micro-18 in two
companion papers, the first introducing the execu-
tion model [1] and the second identifying the criti-
cal issues that needed to be dealt with if wide-
issue, out-of-order execution, deep pipelined pro-
cessors were to be viable [2]. The HPS paradigm
was developed by three Berkeley Ph.D. students
(Wen-mei Hwu, Mike Shebanow, and Steve
Melvin) and their Ph.D. research advisor (Yale
Patt). The idea crystallized during the summer of
1984 when Patt, Hwu and Shebanow spent the
summer at Digital Equipment Corporation’s
Research group, at that time located in Hudson,
MA.

We felt from the outset that high performance
implementation required concurrency at all stages
of the instruction pipeline. That meant wide-issue
instruction supply which would only be viable if
the subsequent execution of each of those instruc-
tions were decoupled from the set that each was
fetched and decoded with. That meant dynamic
scheduling of those instructions, and space for
instructions awaiting execution to reside.

It also involved aggressive speculation to keep
up the instruction supply, and an in-order retire-
ment mechanism to handle precise exceptions. All
parts of the mechanism are introduced in the first
two papers.

HPS came about because the four of us
believed that a microarchitecture that can take
advantage of information available at run time can
exploit concurrency inherently better than one that
can’t. The complexity of the microengine to do this
was large, and the number of transistors required

Yale N. Patt

Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109

43

patt@eecs.umich.edu

was also large. The concept also flew in the face of
the popular paradigm of the day, RISC, which sug-
gested that the compiler was the answer and that
the hardware should be as simple as possible. In
fact, many suggested that transistors should never
be used to do anything that couldn’t be accom-
plished by the compiler. This reached its extreme
with the absence of a multiply instruction in the
SPARC architecture — the multiply step was suffi-
cient [3].

By 1985, the HPS research group had more
than a year of experience studying the HPS para-
digm in all its extended capabilities. An interesting
question of the day, and the subject of this paper,
was to design an HPS engine that one could rea-
sonably expect to put on a single chip in the near
term. The authors were fortunate to have at Berke-
ley at that time Professor David Hodges and his
Ph.D. student, Greg Uvieghara. The critical storage
structures on the chip, the Node Tables (aka reser-
vation stations) and the Checkpointed Register
Alias Table (used for handling precise exceptions)
intrigued Uvieghara. Under the direction of Pro-
fessor Hodges and with the consulting of Wen-mei
Hwu, Uvieghara proceeded to investigate the via-
bility of these storage structures for a current
implementable design [4].

We limited the scope of all the structures in
order to obtain a comprehensive HPS microengine
that could be implemented on a single chip. We
called the result HPSm, where “m” stands for the
“minimal” implementation of the HPS paradigm.
The chip supported three-wide issue, multiple
functional units, the autocorrelation branch predic-
tor, out-of-order execution, and checkpointed in-
order retirement of instructions. In retrospect, we
believe it was the in-order retirement of instruc-
tions, which provided the capability to handle pre-
cise exceptions, that subsequently made the HPS

paradigm attractive for implementing commercial
high-end microprocessors. Although most people
did not embrace HPS when the original papers
were published in 1985, insisting that (a) there
were not enough transistors on the chip and (b) not
enough parallelism in the code, a few industrial
people were enthusiastic in their strong support.
Particular acknowledgment goes to Lee Hoevel,
formerly of NCR Corporation, and Fernando
Colon Osorio, formerly of Digital Equipment Cor-
poration, who believed in the concept from the
outset. Today, 12 years later, almost every major
high-end microprocessor embodies wide-issue,
out-of-order execution, aggressive speculation,
and in-order retirement.

Wen-mei Hwu received his Ph.D. from Berke-
ley in 1987, and joined the faculty of the University
of Illinois, Urbana-Champaign, where he is now
Professor of Electrical and Computer Engineering.
At Illinois, he immediately focused his attention on
a critical component of exploiting instruction level
parallelism, the compiler. His IMPACT group has
produced compiler technology that is vital to any
high performance computing system today. Yale
Patt joined the faculty of the University of Michi-
gan, Ann Arbor, in 1988, where he continues to

44

teach both freshmen and graduate students and
direct Ph.D. research in high performance com-
puter implementation. Mike Shebanow is the CTO
and Vice President of HAL Computer Systems
where he is responsible for the development of
new high-end microprocessors. Steve Melvin is an
independent consultant, operating mainly in the
San Francisco Bay Area, but occasionally from his
offices in Paris and Lisbon.

References

[1] Y.N. Patt, WW. Hwu, and M.C. Shebanow, “HPS,
A New Microarchitecture: Rationale and
Introduction,” Proc. 18th Microprogramming
Workshop, Asilomar, CA, December 1985.

Y.N. Patt, SW. Melvin, WW. Hwu, and M.C.

Shebanow, “Critical Issues Regarding HPS, A High

[2]

Performance Microarchitecture,” Proc. 18th
Microprogramming ~ Workshop, — Asilomar, CA,
December 1985.

SPARC Programmer’s Reference Manual.

G. A. Uvieghara, W. W. Hwu, Y. Nakagome, D. K.
Jeong, D. Lee, D. A. Hodges, and Y. N. Patt, “An
Experimental Single-Chip Data Flow CPU,”
Symposium on VLSI Circuits Design, May 1990.

RETROSPECTIVE:

A Retrospective on the Warp Machines

Thomas Gross

School of Computer Science

Departement Informatik

Monica Lam

Department of Computer Science

Carnegie Mellon University ETH Ziirich Stanford University
Pittsburg, PA 15213 CH 8092 Ziirich, Switzerland Stanford, CA 94305
Context and background 1. Evolution

This paper presents the hardware and software
architecture of the Warp machine, a parallel system
of LIW processors. When the paper was written,
CMU had just installed in a laboratory the first
operational 10-cell system, which had been con-
structed by GE, one of the industrial partners. A
second system was still under construction by
Honeywell and was completed a few months later.

Developments after the paper

The Warp system was installed and almost
immediately used for application development.
Additional software demands were the price of
user acceptance — our collaborators wanted to use
the system over the network [3], they demanded
optimized code [7] and a debugger. When the
project started, the plan was to hand microcode a
set of core vision library routines. When a compiler
effort proved feasible, the application developers
stated that programs would be “simple functions,
about 1/2 a page of code”. When the compiler was
done, programs with a length of 10s of pages were
written; the right hand side of one assignment
alone contained 11,000 characters. (This statement
had been generated by another tool. The compiler
translated the statement correctly, but it took 30
minutes.)

The Warp array was connected to a UNIX
workstation host — this organization contributed
significantly to user acceptance of the Warp sys-
tem. Now (in 1998) UNIX (or a variant) is the dom-
inant operating system for supercomputers, but in
1985, connecting a compute engine (the Warp
array) to a workstation was a novel implementa-
tion. Overall this decision was a solid one and set
the tone for the next 10 years of system develop-
ment.

45

As we gained experience with the system, we
noticed a number of features that limited the use-
fulness of the system. The biggest problem
(already mentioned in the paper) is the tight cou-
pling of the cells: if a cell sends data into a full
input queue, then data are lost. This tight coupling
made it impossible for the compiler to support the
pipeline mode in practice.

Since the Warp machine at CMU performed
really well for vision applications, several ARPA
projects decided to use the Warp machine. The
wire-wrap systems however were hard to repli-
cate, and since at least one system was targeted for
a moving platform, the users demanded an imple-
mentation on PC boards. CMU was in no position
to produce systems, but GE or Honeywell (the
partners of the wire-wrap phase) lacked the design
expertise. Therefore the design team at CMU had a
chance to revise the architecture, and we jumped at
this opportunity. The most important chance
affected the overall operation of the system: with
added hardware flow control and a local controller,
cells are no longer tightly coupled and can operate
independently [1]. In addition, advances in VLSI
allowed an increase in the sizes of the queues (4x),
the program memory (4x), and the local memory
(8x) — more memory always helps. The wire-wrap
system was labeled the prototype, and the PC-
board version was known as the Warp machine.
The re-engineering of the Warp machine allowed
us to put our compiler and application research
results to immediate use, and although we worried
a lot about engineering issues (like the cost, space,
and power budgets), seeing the effect of our
research on a real system was an exciting experi-
ence.

With these enhancements, the Warp machine
became a solid platform for applications and
research. The vision group developed a custom-
program generator [6], and the increased flexibility
made it possible to support other programming

models, e.g.,, message passing [10]. Of course,
Warp remained a good platform for systolic algo-
rithms [9]. The Warp compiler pioneered software
pipelining for LIW processors [7].

2. Applications

One Warp system was installed in the NavLab,
a GM van converted by researchers in the Robotics
Institute at Carnegie Mellon. The NavLab was a
laboratory for research in autonomous road fol-
lowing, and a Warp machine (as well as a number
of workstations) was installed in the van. The
Warp machine turned out to be a good engine for
neural net learning [8]; it also performed a variety
of other vision and planing tasks. A Warp machine
remained in the NavLab until 1989, when the van
caught fire after the air conditioning system leaked
liquid onto the computers. Warp machines were
also used in other computer vision projects [4]
(unfortunately often in environments that do not
encourage publications), or for Kalman filtering
[2].

In total, about 20 Warp systems were pur-
chased by the government for various contractors
(industrial research labs and universities) or gov-
ernment installations. The CMU team tried to con-
vince GE to market the Warp machine to other
research groups, but the GE unit was used to the
“cost-plus” model of operation used in defense
contracts: parts for the construction of a system are
purchased after an order is booked. For the fast-
moving computer industry, this mode of operation
is deadly, and this experience with the defense
industry motivated ARPA and us to search for a
commercial partner for the successor project [5].
One machine was sold to a (friendly) foreign coun-
try, at least one attempt by an institution in another
(neutral) foreign country to obtain a Warp died in
the bureaucracy that controlled the export of high-
technology. From a 1998 perspective, Warp perfor-
mance may not appear impressive and it is hard to
believe that this system was considered high-tech-
nology in its days. However, the reader should not
be misled by the peak performance figure of 100
MFLOP/s. A few standard microprocessors con-
nected together might have the same peak perfor-
mance, but Warp delivered a high percentage of its
peak performance [1], with impressive speedups
over standard laboratory computers of its time. ([1]
reports the performance of the Warp machine for
various kernels and applications.)

3. Integrated Warp system

The Warp machine was highly successful, but
it was not cheap ($350,000 w/o the workstation),
and it was bulky. Furthermore, it could not support
“industry-standard” languages like C or Fortran
and it provided only basic support for message
passing, with a fixed arrangement of channels (two

46

channels in the left to right, one in the reverse
direction). Soon after the paper was finished (and
the design of the PC-board version was under-
way), we started to plan an integrated Warp sys-
tem. This system became known as “iWarp” and
was carried out in collaboration with Intel. [5] con-
tains a detailed discussion of the shortcomings of
the Warp system, as well as an evaluation of the
iWarp design, implementation, and use for appli-
cations.

Looking back

When re-reading the paper, I was amazed to
recall how much work the software group invested
to deal with issues that we take today for granted.
At the time the Warp machine was designed,
address generation and loop control were moved
to another unit, and the compiler worked hard to
ensure that no cell ever read from an empty queue.
Today, we take superscalar designs for granted.

The paper stated a number of conclusions, and
most of them have remained valid till today: (i)
Computer architecture is coupled to technology
developments: when the Warp machine was
designed, absence of hardware flow control and
the arrangement of a linear array were a necessity.
The PC-board version included hardware flow
control and was able to support a much larger class
of applications. A linear array is suitable for most
applications, but once new technology (iWarp)
allowed us to increase the number of nodes by (up
to) 2 orders of magnitude, concerns about packag-
ing, the shortest paths, and more general usage
models led us to adopt a 2-dimensional torus. Sub-
sequent systems, e.g., the Cray T3D and T3E, even
moved to a 3-dimensional torus. (ii) Early identifi-
cation of an application area is essential. Today we
may want to add that continued collaboration with
application experts is important to identify the
strengths and weaknesses of an architecture; feed-
back by application experts pointed to interesting
improvements. (iii) Compilers are crucial for an
architecture project. At least this point, we hope, is
nowadays universally accepted. (iv) A balanced sys-
tem is essential if the architecture must host a vari-
ety of applications. The design of the external host
turned out to be crucial: it allowed integration into
a UNIX environment (which provided an environ-
ment accepted by the users) as well as high perfor-
mance (data could be supplied to the Warp array
so that it could operate at peak rate). This combina-
tion allowed Warp to win the “design competition”
for the ARPA projects; other solutions were either
based on a custom host (difficult to integrate into
most environments) or lacked adequate 1/O capa-
bilities.

Systolic systems closely couple the computa-
tion units to the communication system — sending
or receiving a word is as cheap as reading or writ-
ing local operands. The close coupling allows sys-
tolic systems (including Warp and iWarp) to
support fine-grained computations (where each
computation step requires a communication step).
However, the Warp host interface exploits that
many applications do not produce an output value
for every computation step, i.e. the design recog-
nizes the importance of coarse-grained computa-
tions.

The issue of coupling computation and com-
munication remains an important one. Parallel sys-
tems still are difficult to program or achieve only
low efficiency (or both). Warp demonstrated that a
systolic system can be a cost-effective platform for
many important applications. However an imple-
mentation based on PC boards is too expensive. An
integrated solution is cheaper to manufacture but
has higher setup costs — and as the cost for VLSI
fabrication increased, the industrial partner of the
integrated Warp project was not willing to con-
tinue the system. As of today, there exists no inte-
grated system that combines good communication
properties with high computation performance,
e.g., for embedded systems in sophisticated cam-
eras. Modern signal processors have closed the
gap, but their communication performance is still
not adequate in many situations.

The key idea of fine-grained coupling of com-
munication and communication remains relevant.
The Warp “family” of systems demonstrated for
the first time the benefits of this idea for a pro-
grammable platform. Future architects, who may
have access to other implementation technologies
that combine implementation flexibility with low
replication costs, will without doubt revisit fine-
grained computations.

What happened to the authors

After the construction of the PC-version of the
Warp machine, the Warp team members moved on
to different projects:

Marco Annaratone was a faculty member at
the time the paper was written; he joined after-
wards the Department of Electrical Engineering of
the Swiss Federal Institute of Technology (ETH)
Zuerich. He is now director of the DEC Western
Research Laboratory, Palo Alto, CA.

Emmanuel Arnould, a research engineer,
returned to France.

Thomas Gross is still a faculty member at Car-
negie Mellon and is still working on software.

47

H.T. Kung, the principal investigator of the
Warp project started also the iWarp project and
later moved to Harvard, where he is now the Gor-
don McKay Professor of Electrical Engineering and
Computer Science.

Monica Lam was a graduate student in the
Computer Science Department and is now a fac-
ulty member at Stanford University, where she
directs the SUIF project.

Onat Menzilcioglu was a graduate student in
the Electrical and Computer Engineering Depart-
ment. A co-founder of FORE Systems, Inc., he
served as President of FORE until January 1998.

Ken Sarocky was a research engineer; he left
Carnegie Mellon to pursue a career in the com-
puter industry in Japan and the U.S.

Jon Webb, a faculty member in the computer
vision group, eventually left Carnegie Mellon to
found Visual Interface, Inc., a company that devel-
ops hardware and software for shape photography.

References

[1] M. Annaratone, E. Arnould, T. Gross, H. T. Kung,
M. S. Lam, O. Menzilcioglu and J. A. Webb. The
Warp Machine: Architecture, Implementation and
Performance. IEEE Trans. on Computers C-

36(12):1523-1538, Dec. 1987.

R. S. Baheti, D. R. O’Hallaron and H. R. Itzkowitz.
Mapping Extended Kalman Filters onto Linear
Arrays. IEEE Transactions on Automatic Control
35(12):1310--1319, December 1990.

B. Bruegge, Program Development for a Systolic
Array. In Proc. ACM SIGPLAN Symp. on Parallel
Prog., pp. 31-41. ACM, New Haven, CT., July 1988.

R. Dunley, Obstacle Avoidance Perception
Processing for the Autonomous Land Vehicle. In
Robotics and Automation, pages 912-918(Vol 2), 1988.

T. Gross and O’Hallaron, D. iWarp: Anatomy of a
Parallel Computing System. MIT Press, 1998.

L. G. C Hamey, J. A. Webb and I. C. Wu. An
Architecture Independent Programming Language
for Low-Level Vision. Computer Vision, Graphics,
and Image Processing, 48:246-264, 1989.

M. S. Lam. A Systolic Array Optimizing Compiler.
Kluwer Academic Publishers, 1988.

D. A. Pomerleau, G. L. Gusciora, D. S. Touretzky
and H. T. Kung. Neural Network Simulation at
Warp Speed: How We Got 17 Million Connections
Per Second. In IEEE Second Intl. Conf. on Neural
Networks, pp. 143—150. July 1988.

H. B. Ribas. Automatic Generation of Systolic
Programs from Nested Loops. Ph.D. thesis, Carnegie
Mellon University, June 1990.

P. S. Tseng. A Systolic Array Parallelizing Compiler.
Kluwer, 1990.

[2]

[3]

[4]

[10]

RETROSPECTIVE:

Memory Access Buffering in Multiprocessors

Michel Dubois

Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA 90089-2562
dubois@paris.usc.edu

At the time when the research work for the
above paper was done, Michel Dubois was a start-
ing assistant professor and Christoph Scheurich
was a Ph.D. student at the University of Southern
California. In this retrospective they both relate
their experience on the work they did jointly more
than 10 years ago.

The Advisor’s Perspective

The problems of coherence and consistency
have been addressed quite extensively in the past
10 years, to a point of information overload. It was
not always that way. Back in 1982, the only defini-
tion of coherence was the one given by Censier and
Feautrier in their landmark 1978 paper (the notion
of “latest” copy) [1]. In that paper a central direc-
tory formed a bottleneck through which all cache
requests had to go. It appeared to me back at that
time that the definition was not sufficient in the
context of a more distributed environment (even a
bus-based system); moreover, as the speed gap
between processor and memory widened, I real-
ized that there would eventually be a time when
memory accesses would have to be buffered in the
processor to overlap them with each other and
with computation.

I started thinking about these issues as I took a
job in France in an R&D group in computer archi-
tecture from 1982 to 1984. During that time I dug
out most of the literature that I could find on the
topic. Mostly, the issues were touched lightly here
and there in a few papers (clearly some people
were thinking about the problems), and also there
were Lamport’s papers [2], totally ignored by the
architecture community. If one of my colleagues
from these early days in my career ever read this
retrospective he will remember a presentation in
which I explained in broad terms how to design a
system such as the one shown in Figure 1, where
each processor has a cache and an input and out-
put memory access buffer.

48

Christoph Scheurich

Intel Corporation
2200 Mission College Blvd.
Santa Clara, CA 95052-8119
christoph.e.scheurich@intel.com

Whether a multiprocessor system with caches
and memory access buffers could ever work cor-
rectly in general was not at all clear, back in 1982.

When I took a position at U.S.C., I had the time
to think more intently about these problems and
wrote a paper for ISCA’85, which already included
the definitions of strong and weak memory order.
The paper was flatly rejected, which was extremely
frustrating to me because I had the firm conviction
that the material was important and fundamental.

CACHE ouT

®

Figure 1

It appeared to me at that point that I needed
help since thinking about the problem was con-
suming most of my time and energy and I had to
teach at the same time. When I received a bit of
money in the form of a research initiation grant
from the National Science Foundation, I was able
to start hiring students. I needed someone articu-
late, fearless, who has a strong sense of logic and
common sense and I found that person in Chris-
toph Scheurich who had been my teaching assis-
tant for a semester.

After a learning period, we were able to have
long technical discussions, which were very help-
ful. From that point progress was fast. I think we
were both enthusiastic about the research. A new
paper was submitted to ISCA’86. The reviews were
mixed. I remember however a long, very technical
review. Clearly we had connected with someone.
Through the reviews we also learned of William
Collier’s work [3]. I remember being very relieved
that someone else had been working so extensively
on the topic.

Another paper was accepted the following
year in ISCA’87 strictly on sequential consistency
[4]. Obviously we still had problems with review-
ers: I will never forget the comment of a reviewer
who claimed that “he had polled his friends and
no one cared about sequential consistency”.

At this point more work needed to be done in
refining the concepts and on performance evalua-
tion. With another student and with the help of
Faye Briggs who was then at Rice, we had devel-
oped a simple simulation environment [5]. How-
ever, the student left, and Faye Briggs went to Sun
Microsystems. By that time Christoph deserved to
complete his Ph.D. [6]. All my attempts at getting
funding to continue the work failed. Through the
vagaries of the funding process, I received some
money to work on asynchronous algorithms. My
focus shifted and I dropped the problem of coher-
ence and consistency.

Meanwhile the work was still getting no recog-
nition and again, this was extremely frustrating
since I believed in the work and also there was
clear interest from industry. It took until ISCA’90
before other groups published work on the same
topic and finally our work started to be referenced
(71[8].

The paper we published in 1986 was the first
one to tie together coherence, sequential consis-
tency and consistency relying on explicit synchro-
nization. These issues were mostly ignored at the
time, even by the large well-funded groups doing
research on multiprocessors at other universities.
The paper introduced the notion of general coher-
ence (which does not rely on Censier and Feau-
trier’s memory bottleneck) and of strong and weak
memory access orders. Some of the terminology
defined first in the paper such as “performed”,
“performed with respect to a processor”, and “glo-
bally performed” has withstood the test of times
and has become part of the vocabulary used to
explain coherence and consistency.

The work had a large impact on both academia
and industry. It ultimately led to innovations that
were totally unexpected. Who could have pre-
dicted back in 1986 that architecture manuals
would dedicate entire chapters to coherence and
consistency and that the topic would generate the
flood of ink that it did in the 1990’s?

The Student’s Perspective

The paper “Memory Access Buffering in Mul-
tiprocessors” was my first successful publication as
a Ph.D student. However, after taking a class on
data-flow computers, I was mostly interested in
such architecture. It was a paper on “data-flow
pipelines” that I had written for ISCA’86 that
caused some unhappiness on the part of Michel

49

Dubois (my academic advisor at USC) after he
reviewed my first draft. He made some construc-
tive suggestions but finished up by urging me to
pick up on the problem of memory consistency
that he had been working on before joining USC. I
thought that the data-flow paper was pretty
unique, I had no real understanding of what the
research on memory consistency entailed, and had
only mild interest in conventional multiprocessor
architectures but decided that accord was in my
best interest. The data-flow paper was of course
summarily rejected by the ISCA referees and the
research on memory consistency became the foun-
dation of my Ph.D. thesis and also impacted other
research activities outside of USC.

I'read Michel’s draft at least five times from the
beginning to the end as well as the relevant papers
by Censier and Feautrier and Lamport. When I
started to understand the problem it became clear
to me that thinking about parallelism involves
some mental exercises that I could not perform in
single steps - I needed a method to partition the
problem. To that end, I spent some time with a text
editor to come up with an early version of Defini-
tion 3.3 that is now part of the paper. Only later did
I recognize this definition as significant. At the
time I thought of it as a mental bridge.

Over a weekend I took some of Michel’s earlier
text and merged it with some of my own thoughts
and embedded Definition 3.3. Then I went back to
what I considered to be the real problem: data-flow
pipelines. After Michel had some time to review
my draft I expected that my stint in memory con-
sistency research would come to a merciful end at
our next scheduled meeting. I had no way of
knowing that this meeting would have significant
impact on my successful completion of the degree.
I was thoroughly surprised when Michel’s reaction
to my write-up was very positive. Not only did he
think that value had been added but it became
obvious that he had spent some considerable
amount of time thinking through the added con-
cepts. Not surprisingly, I emerged from our first
meeting on the new topic highly motivated.

In the following weeks we had many more
meetings and it became clear that Michel was tak-
ing this work very seriously. We refined defini-
tions, defined problems, and analyzed the
conclusions. After we had both become fluent in
the subject there were many long discussions on
ordering scenarios that could become sometimes
very obscure. Initially sequential consistency was
our aim but then Michel shifted the focus to non-
sequentially consistent models while maintaining
correct operation (weak ordering). While sequen-
tial consistency made sense to us as it enforced the
apparent sequential event ordering that we are all
comfortable with, weak ordering initially appeared
to me to be a formal definition for absolutely cha-

otic computer behavior. However, soon we man-
aged to contain theoretically weakly ordered
systems and defined rules that showed that such
systems could work predictably. Because the paper
is based on definitions there was very careful
wording to be done as well. The simple perfor-
mance models that demonstrated that weakly
ordered systems can achieve higher performance
than strongly ordered systems were added by
Michel and made the draft ready for submission to
ISCA.

The paper was accepted by the reviewers and
the feedback was extremely helpful. However, one
reviewer had rejected the paper outright without
much elaboration. During the revision writing pro-
cess we often wondered whether the negative
reviewer had thought the topic mundane or
whether he simply did not “get it.” After some fur-
ther feedback we finalized the paper hopeful that
we had gotten the point across convincingly. The
paper ends with the sentence: “We believe that
more work is warranted in this direction.”
Whether or not researchers agreed with our other
conclusions, that one certainly proved itself to be
true. In the three years after the conference we
published related research in various journals and
conference proceedings [9] [10] and in 1989 my dis-
sertation on the topic was accepted. The following
year ISCA dedicated a session to the topic of multi-
processor memory models. By no means does the
topic seem to be exhausted even today, as com-
puter companies specify and build single proces-
sors and multiprocessors that vary significantly in
their memory access ordering behavior.

What Happened Next?

Michel Dubois is currently a Professor in the
Department of Electrical Engineering-Systems at
the University of Southern California. He teaches
courses on hardware design, computer architec-
ture, parallel processing and performance evalua-
tion. Although his mind still strays at times into
the subtle intricacies of coherence and consistency
his main research interests have drifted into sys-
tem verification [11] and emulation of multiproces-
sors using FPGAs [12].

50

Christoph Scheurich joined Intel Corp. after
receiving his Ph.D. at USC. At Intel he has worked
on performance analysis, system architecture, and
video capture implementations. Presently, he man-
ages a group focused on real-time video imaging.

References

[1] L.M. Censier and P. Feautrier, “A New Solution to
Coherence Problems in Multicache Systems,” IEEE
Transactions on Computers, Vol. C-27, No. 12, pp.
1112-1118, December 1978.

L. Lamport, “How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess
Programs,” IEEE Transactions on Computers, Vol. C-
28, No. 9, pp. 690-691, September 1979.

W. W. Collier, Architectures for Systems of Parallel
Processes, Technical Report TR 00.3253, IBM
Corporation, Poughkeepsie, NY, January 1984.

C. Scheurich and M. Dubois, “Correct Memory
Operation of Cache-based Multiprocessors,” 14th
Int. Symposium on Comp. Arch., June 1987, pp. 234-
243.

M. Dubois, FA. Briggs, 1. Patil, and M.
Balakrishnan, “Trace-driven Simulations of Parallel
and Distributed Algorithms in Multiprocessors,”
Proceedings of the 1986 International Conference on
Parallel Processing, August 1986, pp. 909-916.

C. Scheurich, Access Ordering and Coherence in
Shared Memory Multiprocessors, Ph.D. Thesis, Dept
of EE-Systems, University of Southern California.
Also Computer Engineering Technical Report No.
CENGS89-19, May 1989.

S.V., Adve and M.D. Hill, “Weak Ordering--A New
Definition,” Proc. 17th Int. Symp. on Computer
Architecture, pp. 2-14, 1990.

K. Gharachorloo, et al., “Memory Consistency and
Event Ordering in Scalable Shared Memory
Multiprocessors,” Proc. of the 17th Int. Symp. on
Computer Architecture, pp.15-26, 1990.

M. Dubois, and C. Scheurich, “Memory-Access
Dependencies in Shared-memory
Multiprocessors,” IEEE Transactions on Software
Engineering, Vol. 16, No. 6, June 1990, pp. 660-673.
C. Scheurich and M. Dubois, “Lockup-free Caches
in High-Performance Multiprocessors,” Journal of
Parallel and Distributed Computing, 11, 25-36,
January 1991.

F. Pong and M. Dubois, “A New Approach for the
Verification of Cache Coherence Protocols,” IEEE
Transactions on Parallel and Distributed Systems, Vol.
6, No. 8, pp. 773-787, August 1995.

L. Barroso, S. Iman, J. Jeong, K. Oner, K.
Ramamurthy and M. Dubois, “RPM: A Rapid
Prototyping Engine for Multiprocessor Systems,”
IEEE Computer, pp. 26-34, February 1995.

[10]

[11]

[12]

RETROSPECTIVE:

Instruction Issue Logic for High-Performance, Interruptable Pipelined
Processors

Gurindar S. Sohi

Computer Sciences Department
University of Wisconsin-Madison
sohi@cs.wisc.edu

Background

Both Sriram and I started at the University of
Wisconsin in the Fall of 1985; Sriram as a graduate
student and I as an Assistant Professor. At that
time, there was a lot of processor-related activity
going on at Wisconsin: the Smith and Pleszkun
paper on implementing precise interrupts [5] had
just been published, and the PIPE project [3] was in
full swing. I was looking for research topics to pur-
sue. In graduate school, the papers that I had
found the most fascinating were the IBM 360/91
papers. Even though I had written a Ph.D thesis
about improving list-processing using associative
structures, given the level of interest at Wisconsin
in processor-related issues, it was natural to start
working in that area.

Developing the idea

We started out in Spring 1986 pursuing two
disparate lines of research. One was to simplify the
logic needed to do out-of-order execution. Another
was to develop a precise interrupt scheme that did
not aggravate dependences as much as the reorder
buffer (without bypass) mechanism proposed by
Smith and Pleszkun (and did not have as much
bypass logic as the reorder buffer with bypass). To
carry out our studies, we had access to an excellent
simulator of the Cray-1, developed by Jim Smith
and Nick Pang.

The catalyst for our first goal was recent work
by Weiss and Smith which studied Thornton’s
algorithm (aka scoreboard) and Tomasulo’s algo-
rithm within the context of the Cray-1, and pro-
posed some variants of Tomasulo’s algorithm [8].
Using that as a starting point, we set about looking
for other ways to reduce the amount of hardware,
especially tag matching logic, needed to imple-

51

ment out-of-order execution. The realization here
was that not all the logic was performing useful
operations; a lot of it was idle. By organizing the
logic differently, the utilization could be improved.
This led to the Tag Unit and the Reservation Sta-
tions and Tag Unit (RSTU) proposals in the paper.
We then realized that the handling of tags could be
simplified if instructions were completed in the
same order as they were issued (this observation
was also made in Tomasulo’s original work).

In parallel with the above work, we were look-
ing for ways of alleviating the aggravation in
dependences caused by a reorder buffer (ROB). It
occurred to us that these dependences, though
aggravated, could be tolerated with an out-of-
order issue scheme.

We realized that our two lines of thought were
converging to a common point. We proposed and
developed a common solution for both problems,
the Register Update Unit (RUU), and started
studying it, using a simulator which was devel-
oped by Sriram.

In the process of our experiments and studies,
we learned several other things which we used to
continue to refine our mechanisms. Perhaps the
most important observation was that a machine of
the form we were envisioning could be viewed as a
reservoir with an inlet (instruction issue) and an
outlet (updating registers, or instruction commit or
retire in today’s parlance) — the sustained rate of
instruction flow at the outlet could be no greater
than the sustained rate at the inlet. An important
source of constrained instruction flow at the inlet
was branches — instruction issue could not stop
until a branch was resolved. Continuing instruc-
tion execution after a branch meant that we would
need a way to separate machine resources corre-
sponding to instructions after a branch from those
before a branch, so that in case of an incorrect

branch prediction, we could discard the incorrect
work. We realized that the RUU mechanism could
easily be extended to achieve this functionality —
the extra information that was needed were point-
ers into the RUU which identified branches.

We continued to experiment with the simula-
tor in the Spring and Summer of 1986. After
ISCA’86, Jim Smith made us aware of the HPS
work (see paper in this collection). My immediate
reaction was one of disappointment — I thought
that we had been “scooped”. Later I determined
that while we were solving similar problems, our
solutions were quite different. I was especially
encouraged later when Yale Patt told me that he
was glad to see others “playing in the same sand-
box”.

What we learned and what followed

In the course of our experiments and studies,
which took place both before the paper appeared
as well as afterwards, we learned several things
about the design of instruction-level parallel pro-
cessors, This led to other papers which, at first
glance, might appear to be unrelated to this paper.
I describe some of these below.

Our first realization was the importance of
maintaining the inflow to the “execution reservoir”
— this is what is commonly referred to as the
“front end” of the machine today. We realized the
importance of instruction supply (branch predic-
tion, instruction caches and branch resolution
latency). The former two were not an issue in most
of our studies since we used the Livermore loops
as benchmarks; we studied the third aspect in an
ISCA ‘88 paper [4]. We did not study these issues
for other codes since we did not have simulators
for a generic architecture until later.

We realized the (lack of) importance of data
dependences vis a vis control dependences in an
awkward way. As we were developing the (trace-
driven) simulator, in an early version a bug
resulted in data dependences not being enforced
— instructions issued without regard for data
dependences. When we fixed the error, the instruc-
tion issue rate did not decrease significantly,
despite the somewhat long latencies of our under-
lying architecture — large buffers, coupled with
the parallelism available in the codes we were
studying, and the fact that much of the loss was
due to branch resolution latency (instructions were

52

not allowed to issue for some number of cycles
after a branch) meant that data dependences were
a secondary issue in such a machine.

Our next realization had to do with the flow of
instructions in our “reservoir” (out-of-order core in
today’s parlance). We observed that restricting the
flow of instructions in any of the execution pipe-
lines could severely back up the machine. In partic-
ular, if we artificially throttled the memory
pipeline, performance would suffer significantly.
This led to our work on non-blocking caches. We
initially did the non-blocking cache work on the
Cray-1 simulator, using single instruction issue.
Unfortunately, we were unable to show significant
benefits due to a combination of single issue, low
miss rates, and long functional unit latencies (and
paper describing this work was rejected from
ISCA). We redid the work for a MIPS architecture,
using multiple issue, and were successful in get-
ting our paper accepted to ASPLOS 91 [6].

We also learned that once memory requests
(cache misses) are being overlapped, their latency
becomes a secondary concern, given enough buffer
space, and parallelism. Accordingly, we decided
not to pursue cache enhancements that might pro-
vide minor improvements in miss rates (but were
unlikely to improve the resulting instructions per
cycle (IPC)) — we continue to use this observation
to guide our research even today.

In our continued experiments with the RUU,
we observed two other phenomenon, which led us
to many other ideas. The first was that instructions
close to each other in the RUU were rarely able to
issue simultaneously because they were dependent
— much of the simultaneous issue took place from
points in the RUU that were far apart. The second
was that when an instruction was committed from
the RUU, most of the time its value was dead —
another instruction in the RUU was going to over-
write the register. These phenomenon were per-
haps artifacts of the limited number of primary
registers in the Cray-1, and the poor quality of the
compiled code. However, we later realized that
these phenomenon were indeed more general phe-
nomenon, which could be exploited.

The issue distribution phenomenon (along
with other phenomenon that we had observed)
provided one rationale for the Expandable Split
Window (or Multiscalar) paradigm [1, 7]. This is
discussed in the retrospective on “Multiscalar Pro-
cessors”. The register lifetime phenomenon also
led us to carry out a detailed study of register traf-
fic patterns [2]. This work, which was eventually
published in MICRO-25 (after being rejected sev-

eral times), provided a basis for our understanding
of inter-operation communication behavior in a
program, and serves as a rationale for the distrib-
uted register file design in a decentralized microar-
chitecture.

Looking Back

Today, most high-end microprocessors use
speculative execution, out-of-order execution, and
maintain precise interrupts. I would like to say that
when we carried out the above work, we were con-
fident in its eventual success. However, that was
not the case. The late 1980s were a frustrating time
for an academic researcher (especially an unten-
ured one) to be working in the area of processor
architecture. The strong anti-processor rhetoric in
the research community, as well as the stream of
paper rejections, caused us to doubt our own ideas
and research philosophy on several occasions. For
example, we realized the importance of binary
compatibility (and the need to maintain the
appearance of sequential execution), and the need
to develop hardware solutions rather than resort-
ing to software for solving most problems. How-
ever, at times we doubted this, and consequently
doubted the solutions we developed. Were it not
for the constant encouragement of my colleagues
(Jim Goodman, Andy Pleszkun, and especially Jim
Smith), it is likely that we would have given up in
frustration and many of the ideas mentioned above
would not have seen the light of day.

And I wish the spell checker had caught the
mis-spelled word in the title (which I have left
unchanged for this retrospective).

Acknowledgments

In addition to the people mentioned above, I
would like to thank Larry Oliver and Zeke
Zalcstein of the National Science Foundation, and

53

the University of Wisconsin Graduate School who
provided the funding for some of the research
mentioned above. I would also like to thank Jim
Smith and Sriram Vajapeyam for their comments
on this writeup.

References

[1] M. Franklin and G. S. Sohi, “The Expandable Split
Window Paradigm for Exploiting Fine-Grain
Parallelism”, Proc. 19th Annual Symposium on

Computer Architecture, pp. 58-67, May 1992.

M. Franklin and G. S. Sohi, “Register Traffic
Analysis for Streamlining Inter-Operation
Communication in Fine-Grain Parallel Processors,”
Proc. MICRO-25, December 1992.

J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun,
P. B. Schecter, H. C. Young, “PIPE: a Decoupled
Architecture for VLSI,” Proc. 12th Annual
Symposium on Computer Architecture, pp. 20-27, June
1985.

A. R. Pleszkun and G. S. Sohi, “The Performance
Potential of Multiple Functional Unit Processors,”
Proc. 15th Annual Symposium on Computer
Architecture, pp. 37-44, June 1988.

J. E. Smith and A. R. Pleszkun, “Implementing
Precise Interrupts in Pipelined Processors,” Proc.
12th Annual Symposium on Computer Architecture,
pp- 36-44, June 1985.

G. S. Sohi and M. Franklin, “High-Bandwidth Data
Memory Systems for Superscalar Processors,” Proc.
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-1V), pp. 53-62, April
1991.

G. S. Sohi, S. E. Breach and T. N. Vijaykumar,
“Multiscalar Processors,” Proc. 22th Annual
International Symposium on Computer Architecture,
pp- 414-425, June 1995.

S. Weiss and J. E. Smith, “Instruction Issue Logic in
Pipelined Supercomputers,” Proc. 11th Annual
Symposium on Computer Architecture, pp. 110-118,
June 1984.

[4]

RETROSPECTIVE:

The J-Machine

William |. Dallyl, Andrew Changl, Andrew Chien?, Stuart Fiske’, Waldemar Horwat?, John Keen®,
Richard Lethin®, Michael Noakes, Peter Nuth6, Ellen Spertus7 , Deborah Wallach8, D. Scott Wills®

! Computer Systems

2 Department of Computer

3 Department of Electrical

Laboratory, Stanford Science, University of Illinois, and Computer Engineering,
University Urbana-Champaign Georgia Institute of
Technology
4 Netscape Communications 5 Equator Technologies 6 Hewlett Packard
Consulting Laboratories
7 Department of Computer 8 DEC, Western Research ? Silicon Graphics Computer
Science, Mills College Laboratory Systems
— Table 1 Project Chronology
leven years ago, at ISCA 14, we published a

paper titled, “Architecture of a Message-Driven
Processor” [1] marking the start of our J-Machine
project at MIT. The project culminated with the
construction of a working prototype in 1991 [2]
and the evaluation of this prototype in 1992 [12,
15].

The J-Machine demonstrated the use of a jelly-
bean part, a commodity part incorporating a pro-
cessor, memory, and a fast communication
interface, as a building block for computing sys-
tems. It was a fine-grain parallel computer designed
to exploit large amounts of parallelism by balanc-
ing the use of silicon area between processor and
memory. The J-Machine provided a small set of
efficient communication and synchronization
mechanisms that were used to support a broad
range of programming models. It also provided
fast user-to-user messaging without software inter-
vention by having each message dispatch a mes-
sage handler.

This retrospective reviews the history of the J-
Machine project, discusses its contributions with
the perspective of hindsight, and assesses what
was learned from the project

Chronology

The chronology of the J-Machine project is
summarized in Table 1. The project started at MIT
in 1986. A team of students built a simulator for the
machine, and we published a concept paper at
ISCA in 1987. Funding to build the machine was

54

Date Description
Sept 86 Project start
May 87 Initial architecture studies reported
Aug 88 Implementation started
Dec 90 Layout complete
Jun 91 First silicon
Jan 92 Second pass silicon
May 93 Evaluation reported

secured in the summer of 1988. Intel joined us as
an industrial partner and implementation started
that August. We designed the machine using a
very effective home-grown set of CAD tools [7] for

|

hbi AR ARREREEEY Eli‘! (0 e

Figure 1: MDP Chip Figure 2: 1024-Node

J-Machine

logic design, and Intel tools for physical design
and verification. Layout was completed in Decem-
ber of 1990. The first chips arrived in June of 1991
and were running programs within a few hours.
After revising the chips in early 1992 to correct a
few bugs, we built three J-Machines: a 1024-node
machine at MIT and 512-node machines at Caltech
and Argonne. In parallel with the hardware devel-
opment, several software systems were built for
the machine [4, 19, 14, 9].

A die photo of the MDP chip with outlines
identifying the major components is shown in Fig-
ure 1. The chip measures 1 x 1.5cm in a 1.2um
CMOS process. It was designed primarily using
standard cells with hand placement for the data
paths. The 32-bit integer CPU, at the lower right,
measures 3.7 X 2.9mm.

Figure 2 shows a 1024-node J-Machine with
the skins removed. Sixteen processor boards con-
taining 64-nodes each occupy the top portion of
the machine. The board stack communicates
through elastomeric connectors [10]. The base of
the machine contains an array of up to 80 disks.
The peripheral bay is just below the processor
stack. Peripheral interface cards developed for the
machine include disk controllers, a distributed
frame buffer for graphics, and two host interfaces.

Contributions

1. The Jellybean Rart

The MDP chip was a prototype of our vision of
a jellybean or commodity part: adding a processor
and network hardware to a commodity memory
chip. In the original paper we cited the advantages
of high bandwidth, low-latency access to the on-
chip memory and pointed out that the low latency
access to the memory of other nodes in the net-
work prevented the small amount of memory per
node from limiting applications. The amount of
memory reachable in a given number of cycles is
important, not the amount of memory per node.

Our original plan was to build our own DRAM
memory for the MDP prototype. Implementation
constraints drove us to implement the actual MDP
with 144Kbits of on-chip SRAM and 8Mbits of off-
chip DRAM. This configuration simulated what
we expected could be placed on-chip in the next
generation (16Mbit) DRAM technology.

After demonstration of the prototype J-
Machine in 1991, one of us (Dally) visited all of the
major DRAM manufacturers to propose joint
development of a commercial jellybean part by

55

augmenting a 16Mbit DRAM with a 32-bit RISC
processor, network interface, and router. There was
no industrial interest in the project at the time.
Recently the idea of building jellybean parts
combining a processor and memory, but without
the network interface, has been revived [5, 13].
These projects are aimed at building stand-alone
single-node systems, however, and do not address
our original goal of developing building blocks for
fine-grained parallel computer systems.

2. Fine-Grain Parallel Computing

Fine-grain machines, that balance processor
and memory by silicon area rather than
MIPS/Mbyte, achieve significantly better through-
put per unit area, and per dollar, than do conven-
tional coarse-grain machines [3]. This efficiency is
achieved by having a larger fraction of working sili-
con and by reusing expensive memory more often.
Efficient communication and synchronization
mechanisms are needed to realize the potential of
fine-grain machines, or these gains are swamped
by overhead.

The bulk of the real cost (silicon area) in con-
ventional computer systems is in memory. One can
build a very competent 32-bit RISC processor (not
including cache) in the area required by 100Kbytes
of DRAM. Adding pipelined floating-point arith-
metic raises this number to 500Kbytes. A machine
with a simple pipelined floating-point processor
and 256Mbytes of memory has only 0.2% of its sili-
con devoted to processing. This fraction of working
silicon is decreasing with time as the memory in
machines balanced by MIPS/Mbytes increases.

Conventional systems raise the fraction of
working silicon by devoting large amounts of sili-
con to a single processor in an attempt to exploit
instruction-level parallelism. This gives rapidly
diminishing returns in performance per unit area.
Doubling the area of a simple pipelined processor,
for example, typically yields a performance
improvement of less than 30%. The gains from a
second doubling are significantly smaller. Increas-
ing the number of processors, which gives nearly
linear returns for some demanding programs, is far
more efficient.

Consider an MDP built with today's technol-
ogy incorporating a simple pipelined floating-
point processor with a 64-Mbit DRAM. The frac-
tion of working silicon on each of these modern jel-
lybean chips would be 6%. A fine-grain machine
built from 32 of these chips would have the same
memory capacity and would cost about the same
(same silicon area) as a 256Mbyte workstation with

a more aggressive superscalar processor. The fine-
grain machine has much higher memory band-
width, lower local memory latency, and much
greater peak performance. Even if our simple pro-
cessor runs serial applications at half the speed of
the more aggressive workstation processor, it out-
performs the conventional processor by a factor of
16 on parallel applications and needs an average
parallelism of only two to break even.

The efficiency of fine-grain computers depends
on the availability of parallelism in applications.
Our application studies on the J-Machine showed
that there is plentiful parallelism in many applica-
tions. At small problem sizes, however, exploiting
this parallelism requires short threads and fre-
quent inter-thread interaction. The MDP's fast
mechanisms enabled us to extract large amounts of
parallelism even from applications run on small
problem sizes. One string manipulation applica-
tion, for example, gave a speedup of over 200 run-
ning a 1024-character string on 512 processors [12].

3. Mechanisms vs. Models

The J-Machine was designed with a set of fast
primitive mechanisms for communication and
synchronization intended to support a broad range
of programming models. A message could be sent
from user level with a single instruction, a message
handler was dispatched by hardware on message
arrival, synchronization was supported with pres-
ence bits on all memory locations and registers,
and global (segmented) addressing was supported
across the machine. These mechanisms were used
to implement object-oriented [4], data flow [14],
and message-passing [9] programming systems on
the prototype hardware.

In 1987 when the MDP was proposed, people
built machines specialized for one model of com-
putation: data flow machines, shared memory
machines, message-passing machines, and so on. It
was generally accepted that a hardwired imple-
mentation of the programming model was
required to achieve good performance. The J-
Machine demonstrated that this was not the case.

The idea of building mechanisms in hardware
and implementing programming models in soft-
ware has received considerable attention [11][6].
However, two trends threaten this approach to
parallel machine design. On the hardware side, the
deep and complex on-chip memory hierarchy of
modern microprocessors makes it difficult to build
mechanisms without building a custom processor.
The DEC Alpha 21164 processor used on the Cray
T3E, for example, takes at least 20 cycles to wiggle

56

a pin of the chip in response to a store instruction.
It would not be difficult to add a path that
bypasses the memory hierarchy and gives a much
faster response.

On the software side, there is a disturbing
trend toward applications that are written for the
least-common denominator machine. Message-pass-
ing application are written in MPI or PVM and
tuned to run on machines with 100ps message
latency. Shared memory applications are written
using a static process structure and tuned to oper-
ate with 10ps synchronization times. It is no won-
der the people who write these applications
conclude that they need large problem sizes to
extract parallelism. Unfortunately, programs that
are tuned to run on machines with slow mecha-
nisms can't take advantage of fast mechanisms
when they are available.

4. Fast Message Handling

In 1991, the J-Machine had the fastest intercon-
nection network of any parallel machine in terms
of start-up latency, throughput, and latency per
hop [12]. Its performance was not surpassed until
the announcement of the Cray T3D in October of
1993. The J-Machine's communication perfor-
mance was due to a combination of a fast router,
3D packaging, and a streamlined network inter-
face. Many ideas from the J-Machine network fab-
ric have found their way into commercial
machines including the Cray T3D and T3E and the
Intel ASCI Red machine.

The network interface of the MDP, by provid-
ing a SEND instruction to transmit messages and
hardware message dispatch on reception, set the
standard for user-level messaging performance.
Other experimental machines have taken a similar
approach [11, 6, 17]. Software protocols have also
evolved [16] to provide the same model of reactive
messaging on stock hardware.

Lessons Learned

Fine-grain computing is feasible:Our experiments
showed that it is feasible to extract parallelism
with a thread size of a few hundred instructions
from many applications and that with efficient
mechanisms these applications can be efficiently
executed on a machine with just IMbyte of mem-
ory per node.

Mechanisms work: We implemented several paral-
le] programming models with performance com-
petitive ~ with hardwired implementations.

Building programming systems using the J-
Machine mechanisms also taught us their short-
comings. For example, the streaming message
SEND instruction of the J-Machine causes resource
allocation problems. These shortcomings have
been remedied in our follow-on projects [18].
There is no substitute to bilding it: By implement-
ing the MDP we found that our initial estimates of
cost and performance were in some cases far from
the mark. The building process also fleshed out
many challenging design and technology prob-
lems. Our work on high-speed signaling, for exam-
ple, started from an observation that MDP
performance was limited by pin bandwidth. The
physical 1024-node prototype (too large to simu-
late) revealed challenging resource allocation and
load balancing problems [8]. While it is certainly
easier to quit after the simulation stage of a project,
we found that the results at that stage lack reality
and are often wrong.

Focus on the coe issues:For the MDP the core
issues were communication and synchronization
mechanisms, fast context switching, and fine-grain
thread and object handling. We were not studying
instruction set design, pipelining techniques, cir-
cuit design, or logic design. We took a very conser-
vative approach to these areas that sacrificed
considerable absolute performance but greatly
increased our probability of success. At various
points in time we considered building our own
DRAM, making extensive use of asynchronous
logic, and pipelining the processor. In retrospect
we are glad that we avoided this temptation of
creeping featurism.

Why did we succeed?ntel's solid commitment as
an industrial partner provided us with advanced
CAD tools, manufacturing, and engineering talent.
Their interest and the interest of students was held
by a bold research agenda, rather than incremental
measurement. The team expended as much time
on validation as on design, meticulously cross
checking the models at the instruction, RTL, gate
and switch level; writing a comprehensive test
suite; and simulating heavily for slow paths, haz-
ards, and race conditions. We compromised some
dimensions early, such as using standard-cell
rather than full-custom design. Finally, the nature
of the machine itself was amenable to building
large systems: effort focused on the single-chip
building block was multiplied by its ability to scale
and form a large parallel machine.

57

A machine that requires new softwae is a hard sell:
Technology transfer depends more on ease of
insertion than on utility. Concepts from the J-
Machine network, which are easy to insert, have
seen the most use. The fast message interface, syn-
chronization mechanisms, and fine-grain architec-
ture have been largely ignored because they
require major modifications to a microprocessor,
completely new software, or both. The barrier to
new ideas represented by existing software is for-
midable.
Incidental errors: We made a number of errors in
the architecture of the MDP that were orthogonal
to the issues of granularity and mechanisms. The
machine had inadequate floating-point perfor-
mance, too few registers, and did not operate the
on-chip memory as a cache. These errors hindered
our evaluation of the machine and were a barrier
to getting applications programmers to target the
prototype machine. Also, our software develop-
ment would have been simplified if we had
extended an existing instruction set rather than
developing a new one.

Conclusion

The vision of a fine-grain parallel computer
constructed from jellybean processor-memory-net-
work components is even more compelling today
than it was in 1987. As the fraction of working sili-
con in modern machines and the performance
returns from aggressive superscalar implementa-
tions continue to decrease, explicitly parallel
machines look even more attractive. Unfortunately,
software compatibility remains a formidable bar-
rier.

Using a fine-grain parallel computer as the
memory of a conventional coarse-grain machine
can lower the barrier of software compatibility.
Such a smart memory machine can run existing pro-
grams unchanged, albeit with some increase in
cost. Programs can then be parallelized incremen-
tally, modifying critical loops and kernels one at a
time to run on the fine-grain computer. By offering
an incremental software path, smart memories
make possible the transition from coarse-grained
machines based on instruction-level parallelism to
fine-grained machines based on explicit parallel-
ism.

The J-Machine demonstrates the importance of
building experimental computer systems. In the
academic world, where we can afford to fail, we
can build a machine based on unproven ideas. We

also have the luxury of building a machine that
demonstrates a vision of a computer system with-
out concern for compatibility. It is essential to build
and evaluate such machines. Simulation results do
not reduce the perceived risk of new technologies
sufficiently for industry to adopt them.

Acknowledgments

We thank all of the many people who contrib-
uted to the success of the]-Machine project. Special
thanks go to Scott Furman on the MIT side and to
Albert Yu, Greg Fyler and Roy Davison who made
it all happen on the Intel side. We also thank Mark
Pullen, John Toole, and Gil Weigand at ARPA for
their vision and support.

References

[1] W. Dally, et al., "Architecture of a Message-Driven
Processor," ISCA-14, pp. 189-196, 1987.

W. Dally, et al., "The Message-Driven Processor: A
Multicomputer Processing Node with Efficient
Mechanisms," IEEE Micro, pp. 23-39, April 1992.

W. Dally, "A Universal Parallel Computer
Architecture," New Generation Computing, pp. 227-
249, 1993.

W. Horwat, A. Chien, and W. Dally., "Experience
with CST: Programming and Implementation,"
PLDI, pp. 101-109, 1989.

P. Kogge, et al., "Combined DRAM and Logic Chip
for Massively Parallel Systems," Proc. 16th Conf. On
Advanced Research in VLSI, Computer Society Press,
pp. 4-16, 1995.
[6] J. Kuskin,

(2]

3]

[4]

[5]

et al, "The Stanford FLASH

58

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Multiprocessor," ISCA-21, pp. 302-313, 1994.

R. Lethin and W. Dally, "MDP Design Tools and
Methods," ICCD, pp. 424-428, 1992.

Lethin, Richard A., Message Driven Dynamics, Ph.D.
thesis, MIT, March 1997. Also MIT/LCS/TR-721.
D. Maskit and S. Taylor, "A Message-driven
Programming System for Fine-grain
Multicomputers," Software - Practice and Experience.
24(10), pp 953-980, October 1994.

M. Noakes and W. Dally, "System Design of the J-
Machine," Advanced Research in VLSI, pp. 179-194,
1990.

R. Nikhil, G. Papadopoulos, and Arvind, "*T: A
Multithreaded Massively Parallel Architecture,”
ISCA-19, pp. 156-167, 1992.

M. Noakes, D. Wallach, and W. Dally, "The J-
Machine Multicomputer: An Architectural
Evaluation," ISCA-20, pp. 224-235, 1993.

D. Patterson, et al., "A Case for Intelligent RAM,"
IEEE Micro, pp. 34-44, March/April 1997.

E. Spertus and W. Dally, "Dataflow on a General-
Purpose Parallel Computer," ICPP, pp. 11231-11235,
1991.

E. Spertus et al., "Evaluation of Mechanisms for
Fine-Grained Parallel Programs in the J-Machine
and the CM-5," ISCA-20, 1993.

T. von Eicken etal, "Active Messages: A
Mechanism for Integrated Communication and
Computation," ISCA-19, pp. 256-266, 1992.
Y.Kodama, et al., "The EM-X Parallel Computer:
Architecture and Basic Performance", ISCA-22,
pp-14-23, 1995.

W. Lee, et al, "Efficient, Protected Message
Interface in the MIT M-Machine", IEEE Computer,
November 1998.

D. Wallach, PHD: A Hierarchical Cache Coherence
Protocol, S.M. Thesis, MIT, 1992.

RETROSPECTIVE:

On the Inclusion Properties for Multi-Level Cache Hierarchies

Jean-Loup Baer

Computer Science & Engineering
University of Washington, Seattle, WA 98195
baer@cs.washington.edu

& $ hen we wrote this paper, it had been over

20 years since caches had been introduced and
they had become a regular feature in most com-
puter systems. As applications were demanding
more main memory and as the gap between pro-
cessor speed and memory access time was widen-
ing (a familiar story today), the need for larger
caches was clear. Like today though, increasing
cache capacity was not a sufficient answer to the
problem since as cache sizes grew, so did the cache
access time. The need for a hierarchy of caches was
apparent. Proposals for on-chip caches were bur-
geoning but, quite often, these caches were special-
purpose: instruction caches only, top-of-stack
caches etc. Shared second level caches for multi-
processor systems had also been proposed and
even been implemented in one Japanese machine
(Facom). However, the placement of second level
caches in shared-bus multiprocessors, the parallel
processing architecture of choice in the late 80’s,
and the impact of the cache hierarchy on snoopy
coherence protocols had not been investigated
thoroughly.

The conventional memory hierarchy of that
time, i.e., cache, main memory, secondary memory
was all inclusive: each component of the hierarchy
was a subset of the component at the next higher
level. It was easy to show that introducing two (or
more) levels of caches without imposing some con-
straints on cache design (capacity, line size, asso-
ciativity, replacement algorithm) would destroy
this property, even in a uniprocessor context.
While research on some special cases had been
published, there had been no treatment of the
problem in its full generality. One of the goals of
our paper was to formally define rules that would
enforce an inclusion property between the various
levels of the memory hierarchy. This MultiLevel
Inclusion (MLI) property was to hold for a tree-like

59

Wen-Hann Wang

Microcomputer Research Lab
Intel Corp., Hillsboro, OR 97124
wang@ichips.intel.com

hierarchy so that caches at a given level could be
shared by lower level caches as could be needed in
multiprocessors. A second goal was to explore the
design space of cache hierarchies in shared-bus
multiprocessor structures and to define protocols
so that MLI was enforced for these architectures.

One pleasant memory about writing this paper
is that we had fun proving new ideas and explor-
ing new cache structures without having recourse
to time consuming simulations! Of course, we did
the simulations later, when we showed that MLI
was instrumental in reducing coherence checks in
a shared-bus multiprocessor system [1] or for solv-
ing synonym problems for virtually addressed
caches [2] or for fast cache simulations [3].

Until quite recently, MLI was a given in the
implementation of cache hierarchies for single pro-
cessors or multiprocessors with a small number of
processors like in SMP clusters. However, there are
specific instances now where MLI might not be
warranted. The first one is when the two lowest
levels of the hierarchy are on-chip, or when the sec-
ond level cache L2 is “glued” to the processor chip
like in the Pentium Pro. There even have been pro-
posals to have L1 and L2 be mutually exclusive [4]
in order to maximize the amount of information
kept on-chip. Nonetheless, MLI still holds between
the on-board cache (L3) and L1 and L2 taken as a
whole. The second example is when in a cluster an
L2 (or L3) remote cache is shared by the processor
caches of the cluster. This remote cache, as e.g., in
the Sequent CC-NUMA [5] can be such that it con-
tains only data that is not homed in the cluster.
However, MLI is enforced for the remote data. And
thirdly, an excessive amount of associativity at the
L2 level might be needed to enforce “pure” MLL
This pressure on the associativity component was
what led us to refine a “partial inclusion” protocol
that had originally been proposed by Wilson [6].

Two of the three shared-bus multiprocessor
structures that we described, namely those corre-
sponding to Multi’s (as defined by Gordon Bell)
and clusters with a partial inclusion protocol simi-
lar to the one we sketched in this paper, are very
popular. The third one, a multiport cache hierar-
chy, was included because it was the architecture
of an existing machine. To our knowledge, it is not
a structure implemented in any recent multipro-
cessor system.

As a final comment, on the light side, we had
used the notation L1, L2 etc. for the various levels
of caches in our submitted manuscript. One of the
referees was adamant that we changed the nota-
tion to C1, C2 etc. Unfortunately, we complied! It is
clear that we should have not done so. The morale
of the story is that authors should not always listen
to referees.

About the authors

After completing his Ph.D. at the University of
Washington on “Multilevel cache Hierarchies,”
Wen-Hann Wang joined IBM Watson Research cen-
ter in 1989. Since 1991 he has been with Intel Cor-
poration where he worked on P6 platform
architecture development for a few years. Cur-
rently he is a Principal Researcher at Intel Micro-
Computer Research Labs where he leads a number
of system research activities.

Jean-Loup Baer is still a Professor of Com-
puter Science & Engineering at the University of
Washington. The design and performance of mem-

60

ory hierarchies remain his primary research inter-
est. He gratefully acknowledges the constant
support from the National Science Foundation, not
only for this paper but also throughout his aca-
demic career.

References

[1] Jean-Loup Baer and Wen-Hann Wang, “Multi-level
Cache Hierarchies: Organizations, Protocols and
Performance”, Journal of Parallel and Distributed

Computing, vol. 3, pp. 451-476, 1989

Wen-Hann Wang, Jean-Loup Baer and Henry Levy,
“Organization and performance of a virtual-real
cache hierarchy”, Proc. of 16th Int. Symp. on
Computer Architecture, pp. 140-148, 1989

Wen-Hann Wang and Jean-Loup Baer, “Efficient
trace-driven simulation methods for cache
performance analysis”, ACM TOCS, vol. 9. no. 3,
pp. 222-241, 1991

Norm Jouppi and Steven Wilton, “Tradeoffs in
Two-Level On-chip caching”, Proc. of 21st Int. Symp.
on Computer Architecture, pp. 34-57, 1994.

Tom Lovett and Russell Clapp, “STiNG: A CC-
NUMA computer system for the commercial
marketplace”, Proc. of the 23rd Int. Symp. on
Computer Architecture, pp. 308-317, 1996

Andrew Wilson, “Hierarchical cache/bus
architecture for shared memory multiprocessors”,
Proc. of 14th Int. Symp. on Computer Architecture, pp.
244-252,1987

[6]

RETROSPECTIVE:

Evaluation of Directory Schemes for Cache Coherence

John Hennessy

Computer Systems Laboratory
Stanford University
jlh@mojave.stanford.edu

Origins of this paper

This paper was born from work done in 1987
that aimed at exploring ways to build scalable
shared-memory multiprocessors. This research
began in a special graduate seminar class in Spring
of 1987, which we had initiated to brainstorm on
architectures for shared- memory multiprocessors.
Prior to beginning the work in this paper, we con-
sidered a variety of schemes for avoiding cache
coherence.

In particular, we initially explored software-
based cache coherence schemes. We concluded that
while such schemes might work well for highly
structured, loop-intensive scientific applications,
software-based cache coherence was too inefficient
for less structured scientific applications as well as
for operating systems software. For such software
environments, we concluded that either too many
cache invalidations would be needed, or too much
data would be need to be kept uncached.

After concluding that software-based coher-
ence would not be sufficient for a broad range of
applications, we still felt that a coherence scheme
that was fully general might be too expensive or
hard to scale, so we began exploring a variety of
schemes that significantly limited sharing. One of
the first thoughts we had was to consider a scheme
that allowed only a single reader for a shared writ-
able data item. This scheme generated part of a
basis for this paper, as well as for a broader explo-
ration of directory approaches.

Developing the Directory Idea

In trying to avoid the broadcast nature of
snoopy-based coherence, we decided to try using
directory-based coherence as a possible approach.
At the time of this paper, our focus was driven by

61

one belief and one limitation of our experimental
data. Our belief was that any alternative to snoop-
ing should be competitive with snooping, even at
small processor counts. Since earlier papers on
snooping (especially Goodman’s landmark paper
included in this collection) had raised questions
about the performance implications of the
restricted bandwidth of a centralized directory, we
felt that it was important to carefully evaluate the
bandwidth requirements for a directory-based
scheme.

The limit in our investigations at that time was
that the shared-memory multiprocessor traces that
we had available were for small processor counts.
Thus, our initial research focus, and the major
focus of this paper became to evaluate the perfor-
mance of different directory schemes both within
themselves and compared to snoopy-based coher-
ence at small processor counts.

We believed it was important to create a frame-
work for directory schemes that would include the
earlier work of Tang, Censier and Feautrier, Yen
and Fu, and Archibald and Baer as well as the lim-
ited sharing schemes we were interested in. This
framework, which labels a scheme as Dir,B or
Dir,NB, where n refers to the number of directory
entries per block of data and B or NB describes
whether the system uses broadcast when the num-
ber of sharers exceeds n or whether the system
simply invalidates one of the sharers to make room
for a new one. This framework captured one
scheme that we found attractive from an imple-
mentation viewpoint: Dir;NB and more generally
described a space of possible directory approaches.

We focused our evaluation on four protocols:
two directory-based protocols (Dir;NB and
DirgNB, the latter of which is the Archibald and
Baer scheme) and two snoopy protocols (a write-
through invalidate scheme and the Dragon write-

update protocol). Later in the paper, we added an
analysis that estimated the performance of the Ber-
keley Ownership protocol. We focused our evalua-
tion by looking at bus cycles as the primary metric
of protocol performance. Given the four-processor
memory traces and our interest in seeing if direc-
tory schemes were competitive with snoopy
schemes, this was a local choice.

The key insight from the performance studies
in this paper was that directory schemes are rea-
sonably competitive with snoopy schemes, espe-
cially if synchronization traffic (especially spin
locks) are removed. (The use of such spin-locks
heavily penalize the Dir{NB schemes.) It was these
results that gave us confidence that directory
schemes might be efficient enough to compete with
snoopy schemes, while providing the possibility of
scaling to larger processor counts. This led to some
of the most interesting and important speculations,
which are the subject of the last two sections of the
original paper.

Looking Forward: Scalability of
Directory Schemes

Section 6 of the original paper investigates
both the scheme that we initially implemented in
DASH (Dir,NB) as well as Dir;B, a scheme most
similar to that implemented in the Hal S1
machine. We also speculated on the possibility of
using coarse representations of multiple caches,
which is the scheme used in the SGI Origin for
more than 128 processors. The competitive perfor-
mance of Dir,NB, even in a bus-based environ-
ment, which made broadcast as cheap in bus cycles
as a single invalidate, motivated us to explore
directory approaches further. We reasoned that the
phenomena of having small numbers of sharers for
a data item that was written with some reasonable
frequency would probably hold when we looked
at traces with larger number of processors. (Of
course, this property depends on the separation of
synchronization traffic, which has very different
behavior.)

Perhaps the most important insight in this
paper is contained in the first paragraph of the con-
clusions: “The basic bandwidth limitation to the
memory and the directory can be mitigated by dis-
tributing them on the processor boards. This tech-
nique allows the bandwidth to both the memory
and the directory to scale with the number of pro-
cessors.” This key observation that directory band-

62

width and memory bandwidth could be scaled by
distributing both was the key insight that led from
this paper to the DASH project. This paper enabled
us to see that such directory schemes would likely
have acceptable performance and thus, encour-
aged us to explore distributed directory cache-
coherence. As we say in the last sentence of the
paper: “If this data holds for large-scale multipro-
cessors, directories will provide an efficient
method of implementing shared memory.”

Looking back: what we knew, what we
guessed, and what we could not guess

Perhaps in retrospect, our concern with the
competitiveness of directory schemes compared to
snoopy schemes was misplaced. The key issues for
scalable cache-coherent shared-memory have
clearly turned out to be the scalability of the coher-
ence scheme, the implementation complexity and
overhead of the coherence protocol, and the perfor-
mance of such protocols at larger processor counts.
Nonetheless, this paper was a vital link in the
chain leading to further investigation of distrib-
uted directory protocols. This paper gave us the
confidence that directory schemes could be com-
petitive with snoopy schemes at small machine
sizes. We knew that bandwidth of directory
schemes could be scaled by distributing the direc-
tory with the memory. Finally, we reasoned that
directories would yield good performance except
under pathological sharing situations—situations
where the communication rates between proces-
sors would probably lead to unacceptable perfor-
mance for any multiprocessor architecture. What
we clearly did not understand were the challenges
in implementing distributed directory coherence.
Overcoming that challenge is the story of the
DASH project and another paper in this collection.

Acknowledgments

A number of people helped make this paper
what it became. DARPA supported our research
efforts. John Toole and later Gil Weigand were the
DARPA program managers. We appreciate their
encouragement to strive for the big payoff. Anoop
Gupta also played a key role in urging us to con-
sider scalable shared-memory and later helped
lead the DASH project.

RETROSPECTIVE:

Weak Ordering—A New Definition

Sarita V. Adve

Dept. of Electrical & Computer Engineering
Rice University
Houston, TX 77005 USA
sarita@ece.rice.edu

Introduction

We began work on “Weak Ordering—A New
Definition” [3] in early 1989 while Sarita Adve was
a first-year graduate student and Mark Hill a sec-
ond-year assistant professor at Wisconsin. It now
seems obvious that an interface for shared-mem-
ory must be defined. It also seems obvious that
such an interface must consider interactions
among reads and writes to all shared-memory
locations, and must not refer to hardware struc-
tures such as caches and write buffers. In early
1989, however, most work related to shared-mem-
ory semantics was on cache coherence. Such work
reasoned about interactions between reads and
writes to a given cache line in isolation, focusing
on hardware protocols to ensure that the effect of a
newly written value eventually propagated to all
processor caches. Only a few papers had been writ-
ten about a more comprehensive model of memory
[8, 9, and references in the main paper].

Our work was primarily motivated by the pio-
neering work on weak ordering by Dubois, Scheu-
rich, and Briggs [5]. The motivation and intuition
behind weak ordering were compelling. However,
as originally defined, weak ordering had two prob-
lems: (1) the definition was hardware-centric and
did not seem to be appropriate as a programming
model, and (2) the definition appeared to unneces-
sarily constrain hardware. These observations
steered us towards the following two questions:

* What are the minimal conditions that a shared-
memory model must impose on hardware?

* How could the shared-memory model be best
presented to programmers?

For a while, we viewed the above two ques-
tions somewhat independently. The defining
moment of this work was when we realized the

63

Mark D. Hill

Computer Sciences Dept.
University of Wisconsin-Madison
Madison, WI 53705 USA
markhill@cs.wisc.edu

connection between the two questions and rede-
fined the memory model to be a contract between
hardware and software. Specifically, we saw a
weakly ordered system as one that provided Lam-
port’s sequential consistency [13] to data-race-free
programs. Our model was subsequently dubbed
data-race-free (DRF) or data-race-free-0 (DRFO).

We next describe the process that led to the
paper and briefly summarize later work in the
area. Release consistency and the notion of prop-
erly labeled programs were developed concur-
rently with our work and are based on similar
ideas [7].

The Process

Search for a weaker model for hardware

Our initial work was hardware and perfor-
mance-centric, and focused on defining a set of
conditions that were less constraining for hard-
ware than Dubois et al.’s weak ordering. We would
consider common application characteristics, and
develop hardware constraints that would give
“reasonable behavior” for those (informally char-
acterized) applications. In this process, we defined
multiple models that relaxed consistency require-
ments in different ways at different points in the
program (e.g., at the acquire or release of a sema-
phore). These models, although less constrained
than Dubois et al.’s weak ordering, were neverthe-
less similar in style to the definition of weak order-
ing, and suffered from the drawbacks we sought to
alleviate.

A characterization of software

Our first key departure from Dubois et al.’s
work was to use partial orders instead of real time
in our specifications. Using any notion of real time

made the specifications harder to understand from
the programmer’s viewpoint and unnecessarily
constrained hardware. The use of partial orders
was motivated largely by the work of Lamport
(e.g., [12]) and of Rob Netzer and Bart Miller [14],
our colleagues at Wisconsin.

The second important step, in Summer 1989,
came from making a deeper connection with the
work by Netzer and Miller [14]. They were work-
ing on detecting data races in a program, and used
a variant of Lamport’s happened-before partial
order relation for formalizing the notion of a data
race. We realized the connection between their
characterization and the application behavior that
we were attempting to characterize for our weak
models. It became clear (at least intuitively) that
weak ordering and the weaker models we were
trying to develop appeared sequentially consistent
to data-race-free programs.

We now had a formal understanding of what
was needed from the application. We were still,
however, grappling with hardware conditions for
our new ideal memory model. Nevertheless, at this
point, we thought we had a well-defined path that
would lead us to the ideal model. All we needed
was to determine the minimal set of hardware con-
straints that would provide sequentially consistent
results for data-race-free programs, and call those
constraints our new memory model (or so we
thought).

Minimal conditions for the hardware and model

For almost three months, we frequently
invented a new “model of the day.” We would for-
malize a set of conditions that appeared necessary
and sufficient, but soon would discover another
way to weaken those conditions. To prove or dis-
prove the correctness of our conditions, we made
use of the formal methods developed by Shasha
and Snir [16] as well as ad hoc techniques. In late
October 1989, we realized that not only were the
absolutely minimal hardware constraints elusive,
but also that a model defined in terms of the type
of constraints we were proposing would be quite
complicated.

At this point, we realized that we needed to
move beyond viewing the model as purely a set of
hardware constraints. The defining moment of this
work came with the observation that weak models
could be viewed simply as a contract between
hardware and software. Given that we had already
defined a set of conditions for software, the only
necessary condition for hardware was to appear
sequentially consistent for the proposed software.

64

Further, we could develop different models by
determining different software conditions; the
hardware for those models would simply need to
appear sequentially consistent to the specified soft-
ware.

Subsequent Work

After the 1990 paper, most of our immediate
work focused on formalizing the software condi-
tions for which commonly used system optimiza-
tions would not violate sequential consistency, and
on formulating further system relaxations that
would not violate sequential consistency. Some of
this work was joint with Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy of Stanford. A
common theme throughout this work was that
most problems at first appeared to have decep-
tively simple solutions; however, formally proving
the correctness of the solutions proved to be quite
difficult. Our eventual framework to do these
proofs benefited immensely from previous formal
work by Collier [4] and by Shasha and Snir [16].

The flexibility afforded by defining a memory
model in the new programmer-centric way is argu-
ably most evident in the software shared-memory
work that followed later. Lazy Release Consistency
[11], arguably the most widely cited algorithm for
software shared-memory, is weaker than release
consistency. However, both release consistency and
lazy release consistency obey the data-race-free
model since they both appear sequentially consis-
tent for data-race-free programs. Thus, for pro-
grammers who write data-race-free programs,
these systems are equivalent.

Over the last few years, a rich body of litera-
ture in the area of memory consistency models has
developed. This includes new models for hard-
ware and software shared-memory, performance
evaluations, theoretical frameworks for formal
specifications and proofs, and highly successful
methods to reduce the hardware performance gap
between consistency models. Most advances, how-
ever, have been in the domain of hardware and
runtime systems. The performance impact of
relaxed consistency models on compiler optimiza-
tions is still unclear. Programming languages and
environments have also only recently begun to
address the issue more explicitly, with many sup-
porting relaxed models (e.g., Java, OpenMP, and
POSIX). A tutorial on the subject and an overview
of recent advances appear in [2,1].

Although memory consistency models are
now well-understood, there is no consensus yet
about the best consistency model. At the time of
this writing, commercial multiprocessors support-
ing sequential consistency and relaxed consistency
models are available. The Digital Alpha and IBM
PowerPC processor architectures support relaxed
models similar to DRF or release consistency, Intel
IA-32 and current SPARC processors support
derivatives of a relaxed model called processor
consistency, while processors from HP and MIPS
support sequential consistency. Recent hardware
optimizations that reduce the hardware perfor-
mance gap between various consistency models
[6,15], the lack of quantitative data on the benefits
of relaxed models for compiler optimizations, an
absence of widely used programming standards
for shared-memory, and the requirement on ven-
dors to keep their systems backward compatible
are some of the factors that have made a consensus
difficult. One of us (Mark Hill) has recently used
some of these factors to make an argument for
returning the hardware/software interface to
sequential consistency [10].

Summary

In summary, the key to our work was (1) we
took a more programmer-centric view of the prob-
lem compared to the more prevalent hardware-
centric view at that time, and (2) our persistence in
seeking the minimal possible constraints for the
hardware interface. This resulted in our redefining
the problem in programmer-centric terms,
enabling a better understanding of some of the
fundamental issues. It is perhaps worth noting that
when we began this work, the problem seemed
deceptively simple, and a highly respected senior
colleague actually warned us that we were getting
into what appeared to be a closed area!

Acknowledgments

We thank those acknowledged in the original
paper and Jim Goodman, whom we regrettably
omitted. We thank the sponsors of this research for
the confidence they showed in a new professor:
Michael Foster and Zeke Zalcstein of the National
Science Foundation, Rae McLellan of Bell Labs,
Chuck Thacker then of DEC, Doug Johnson of TI,
Chris Hsiung then of Cray, and the University of

65

Wisconsin Graduate School. We want to especially
note the acceleration brought to our careers by the
NSF’s Presidential Young Investigator program.

Biographies

Sarita V. Adve continued work on memory
consistency models for her Ph.D. thesis, under the
supervision of Mark Hill and supported by an IBM
graduate fellowship. She joined Rice University as
an assistant professor in 1993, where she has
worked on techniques to improve and evaluate the
performance of shared-memory systems. She
received an NSF CAREER award in 1995, an IBM
Partnership award in 1997, and an Alfred P. Sloan
research fellowship in 1998.

Mark D. Hill continued research on memory
consistency models, large caches, translation
lookaside buffers, and page tables. With Professors
James R. Larus and David A. Wood, he co-founded
the Wisconsin Wind Tunnel project that has devel-
oped new methods and new designs for parallel
computer systems. After earning tenure, Hill went
on sabbatical to Sun Microsystems where he
worked on high-end servers. Hill is now Professor
and Romnes Fellow at the University of Wisconsin-
Madison, Information Director of ACM SIGARCH,
and a Senior Member of the IEEE.

References

[1] S.V. Adve, V.S. Pai, and P. Ranganathan. Recent
Advances in Memory Consistency Models for
Hardware Shared-Memory System, to appear in
Proceedings of the IEEE, special issue on distributed
shared-memory systems, 1999.

Sarita V. Adve and Kourosh Gharachorloo. Shared
Memory Consistency Models: A Tutorial. IEEE
Computer, special issue on shared-memory
multiprocessing, pages 66-76, December 1996.

Sarita V. Adve and Mark D. Hill. Weak Ordering—
A New Definition. In Proc. 17th Ann. Intl. Symp. on
Computer Architecture, pages 2-14, May 1990.
William W. Collier. Reasoning about Parallel
Architectures. Prentice-Hall, Englewood Cliffs, New
Jersey, 1992. Parts of this work originally appeared
as IBM technical reports in 1984 and 1985.

Michel Dubois, Christoph Scheurich, and Faye A.
Briggs. Memory Access Buffering in
Multiprocessors. In Proc. 13th Ann. Intl. Symp. on
Computer Architecture, pages 434-442, June 1986.
Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. Two Techniques to Enhance the
Performance of Memory Consistency Models. In
Proc. Intl. Conf. on Parallel Processing, pages 1355—
1364, 1991.

[7]

(8]

[0l

[10]

[11]

Kourosh Gharachorloo, Daniel Lenoski, James
Laudon, Phillip Gibbons, Anoop Gupta, and John
Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory
Multiprocessors. In Proc. 17th Ann. Intl. Symp. on
Computer Architecture, pages 15-26, May 1990.
JamesR. Goodman. Cache Consistency and
Sequential Consistency. Technical Report #61, SCI
Committee, March 1989. Also available as
Computer Sciences Technical Report #1006,
University of Wisconsin, Madison, February 1991.
Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal,
Kevin P. McAuliffe, Lawrence Rudolph, and Marc
Snir. The NYU Ultracomputer - Designing an
MIMD Shared Memory Parallel Computer. IEEE
Trans. on Computers, pages 175-189, February 1983.
Mark D. Hill. Multiprocessors Should Support
Simple Memory Consistency Models. IEEE
Computer, to appear in 1998.

Pete Keleher, Alan L. Cox, and Willy Zwaenepoel.
Lazy Release Consistency for Software Distributed
Shared Memory. In Proc. 19th Ann. Intl. Symp. on
Computer Architecture, pages 13-21, 1992.

66

[12]

[13]

[14]

[15]

[16]

Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, 21(7):558-565, July 1978.

Leslie Lamport. How to Make a Multiprocessor
Computer That Correctly Executes Multiprocess
Programs. IEEE Trans. on Computers, C-28(9):690—
691, September 1979.

Robert H. B. Netzer and Barton P. Miller. Detecting
Data Races in Parallel Program Executions.
Research Monographs in Parallel and Distributed
Computing, MIT Press, 1991., August 1990.

V.S. Pai, P.Ranganathan, S.V. Adve, and
T. Harton. An Evaluation of Memory Consistency
Models for Shared-Memory Systems with ILP
Processors. In Proceedings of the Seventh International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII),
pages 12-23, 1996.

Dennis Shasha and Marc Snir. Efficient and Correct
Execution of Parallel Programs that Share Memory.
ACM Trans. on Programming Languages and Systems,
10(2):282-312, April 1988.

RETROSPECTIVE:

Memory Consistency and Event Ordering in Scalable Shared-Memory
Multiprocessors

Kourosh Gharachorloo

Western Research Laboratory
Digital Equipment Corporation
kourosh@pa.dec.com

ri]Ew memory consistency model influences
many aspects of shared-memory multiprocessor
system design, including the design of program-
ming languages, compilers, and the underlying
architecture and hardware. The choice of the
model can have significant impact on performance,
programming ease, and software portability for a
given system. Models that impose fewer con-
straints offer the potential for higher performance.
At the same time, fewer ordering guarantees can
compromise programmability and portability.

Our initial paper on memory models was writ-
ten over eight years ago, at a time when cache-
coherent shared-memory multiprocessors were not
widely believed to be scalable. The Stanford DASH
project was one of the pioneering efforts in this
area and provided an excellent infrastructure for
studying fundamental issues related to scalable
shared-memory systems. Our research on memory
models led to a number of other papers that
addressed issues such as performance, efficient
implementations, and better abstractions and for-
malisms for capturing the semantics of various
models. We refer interested readers to the thesis for
a comprehensive coverage of these topics [5]. A
short, easy-to-read tutorial paper is also available

[2].

It is always interesting to look back at a paper
after many years to see which ideas or observa-
tions have withstood the test of time. We begin by
describing what we consider to be the key contri-
butions of our initial paper. We next present an up-
to-date assessment of the key issues related to
memory consistency models.

Key Contributions of Paper

Our initial paper contributes a number of key
ideas. First, the distinction between read (acquire)
and write (release) memory operations used for
synchronization captures the basic intuition about
the ordering imposed by such synchronization: an
acquire relates to memory operations that follow it

67

and a release relates to memory operations that
precede it in program order. In addition to the reor-
dering of operations between an acquire and a
release, this observation enables the reordering of
previous operations with an acquire and future
operations with a release. Today, this form of reor-
dering is exploited by virtually every program that
runs on commercial shared-memory systems with
relaxed models (even stricter models allow write-
read reordering, whether or not either operation is
used for synchronization).

The second contribution is a formal abstrac-
tion, in the form of properly-labeled programs,
that captures the types of optimizations exploited
by relaxed models within a simple and easy-to-use
programming style. To enable safe optimizations,
the programmer conveys high-level information
(e.g., through labels or higher level primitives)
about the behavior of memory operations, such as
whether an operation is involved in a race with
other operations to the same address. This
approach is referred to as programmer-centric to
contrast it with the system-centric way that directly
exposes the programmer to the low-level reorder-
ing optimizations. Any program can be properly
labeled without requiring structural changes (such
as additional synchronization) by simply provid-
ing correct labels. Allowing conservative labels
greatly simplifies the task of labeling and permits
the programmer to focus on providing accurate
information in performance critical regions.
Another important benefit of the programmer-sup-
plied information is automatic and efficient porta-
bility across a wide range of implementations [5].

The remaining part of the retrospective
describes relevant developments since the publica-
tion of our initial paper. The discussion includes
lessons that we learned the hard way (e.g., com-
plexity of dealing with specifications and proofs in
this area), findings that surprised us (e.g., relative
performance of models on some platforms), devel-
opments we didn’t expect (e.g., clever implementa-
tions for stricter models, or the large impact on

software DSM research), and developments we
expected that haven’t materialized yet (e.g., rele-
vant compiler and programming language
research). We also cover the trends in commercial
systems.

Current Memory Models

We briefly mention some existing relaxed
models, that we will refer to throughout, broadly
categorized based on how they relax program
order constraints relative to sequential consistency
(SC). The first category of models, which includes
Sun’s total store ordering model (TSO) and proces-
sor consistency (PC), allow a write followed by a
read to execute out of program order. The second
category, which includes Sun’s partial store order-
ing (PSO) model, allows writes to be reordered
also. Finally, models in the third category addition-
ally allow reads to execute out of program order
with respect to following reads and writes; exam-
ples are weak ordering (WO), release consistency
(RCsc/RCpc), Digital’s Alpha model (Alpha),
Sun’s relaxed memory order (RMO), and IBM’s
PowerPC model (PowerPC). More information
about these models can be found in [5].

Formalism and Correctness

It is far too easy to underestimate the preva-
lence of subtle yet important correctness and per-
formance issues that arise in specifying and
implementing memory consistency models. There-
fore, it is absolutely critical to use a formal and pre-
cise specification framework.

While the “perform with respect to” frame-
work by Dubois et al. (referenced in our initial
paper) was commonly used and seemed suffi-
ciently formal at the time, we later realized that it
has several shortcomings. For example, phrases
such as “uniprocessor control and data depen-
dence are obeyed” turn out to be ambiguous (Sec-
tion 4.6 in [5]). Similarly, the framework is not
general enough to capture some key optimizations,
such as a processor reading its own write before
the write is serialized with respect to other proces-
sors [9].

To remedy these issues, we developed a formal
framework for specifying the ordering constraints
imposed by a model [5]. Our specifications have
the additional advantage of inherently exposing
aggressive optimizations by imposing as few con-
straints as possible. We have specified existing
memory models in this uniform framework, and
have used the specifications to determine auto-
matic and efficient mechanisms for porting pro-
grams across different models.

68

Programmer-Centric Approach

We extended our properly-labeled framework
(partly in collaboration with Sarita Adve and Mark
Hill) with an additional level of information about
synchronization operations that enables safe use of
optimizations captured by models such as PC,
TSO, PSO, and RCpc. Proving these equivalences
(e.g., SC=PC=RCpc) was more difficult than we
originally thought, and benefited from the proof
techniques developed by Adve [1].

This work led to a hierarchy of programmer-
centric models that successively exploit more
information about memory operations to achieve
higher performance [5]. We also provide a set of
sufficient conditions for supporting these models,
which expose some additional optimizations
beyond those allowed by release consistency.
Overall, the most important information supplied
by the programmer remains to be whether an oper-
ation is competing (i.e., involved in a race) or not.
The extra levels of information are only important
in programs with frequent competing operations.

Performance

Our performance studies of architectures with
blocking reads led to observations that were some-
what surprising at the time, emphasizing the need
for quantitative analysis of real workloads. We
found that the ability to reorder reads with respect
to previous writes is typically sufficient for elimi-
nating the write latency in most applications [6],
allowing models such as TSO and PC to perform as
well as more relaxed models such as RC. This
effect arises because (i) write misses tend to be
finely interleaved with read misses (unlike the
example in Figure 5 of the initial paper), and (ii)
there are typically more read misses than write
misses, providing the write buffer with ample time
to retire the writes without filling up.

We also studied the performance of architec-
tures with non-blocking reads in the context of
dynamically scheduled processors (which are com-
monplace today). We found that the ability to reor-
der reads with respect to future operations (as in
WO, RC, Alpha, RMO, and PowerPC) allows for
hiding a substantial fraction of the read latency as
well [8]

Implementation

The most interesting development in this area
has been the emergence of techniques that exploit
the fact that correctness is maintained as long as it
appears as if the ordering rules for a model are
obeyed. We proposed two such techniques, based

on hardware prefetching and speculative reads,
that can be easily added to dynamically scheduled
processors to boost the performance of stricter
models [7]. Even with sequential consistency, these
techniques make it possible to exploit many of the
reordering optimizations that were once believed
to be allowed only by the most relaxed models. A
number of commercial microprocessors (e.g., HP
PA-8000, Intel Pentium Pro, MIPS R10000) have
already adopted these techniques, and simulation
results have confirmed that stricter memory mod-
els can greatly benefit from such techniques [11].
(Interestingly, one of my co-authors in [7, 8]
believed that dynamic scheduling techniques were
unlikely to be used in commercial microproces-
sors!)

Software DSM Research

Much of the recent research in software distrib-
uted shared memory systems has been dedicated
to relaxing memory consistency models further
and developing protocols that aggressively exploit
such models (e.g., [4]), especially since such opti-
mizations are important for alleviating false shar-
ing in page-based systems. Furthermore, most
systems have opted for somewhat restrictive syn-
chronization models based on a limited set of sys-
tem-defined primitives. This has led to a
divergence with aggressive hardware relaxed
models, making it difficult to port programs writ-
ten for hardware multiprocessors to these software
platforms. More recently, alternative approaches
have been developed that allow transparent and
efficient execution of hardware binaries [12].

Compilers and Programming Languages

This remains to be the least explored area with
respect to memory models. Virtually all interesting
compiler optimizations require the flexibility to
reorder memory operations, and models that allow
only some reorderings (such as TSO, PC, PSO) are
not flexible enough (Section 5.10 in [5]). There has
been some work on exploiting more reorderings
under sequential consistency for a restricted class
of programs [10]. However, research in compilers
and programming languages has for the most part
ignored correctness and programmability issues
with respect to multiprocessor memory models.

Impact and Trends in Commercial
Systems

Much has changed since the DASH project
began. Scalable shared-memory machines are now
available from several vendors. Aggressive imple-

69

mentation techniques such as lockup-free caches
and dynamic scheduling (which we had to simu-
late for evaluation) are now commonplace. Most
hardware vendors have opted for memory models
that are more relaxed than sequential consistency.
Machines using Sun and Intel processors primarily
use TSO-like models, while others have opted for
more aggressive models (e.g., Alpha and Pow-
erPC). Relaxed models have proven themselves in
the marketplace, with large bodies of software
(including fully functional operating systems,
compilers, and applications) developed for them.
Awareness about the importance of memory mod-
els has also been elevated, with several vendors
providing more precise descriptions of their mem-
ory models as part of the architecture specification.

A few companies have chosen to support
sequential consistency (e.g., SGI). Nevertheless, all
vendors (often implicitly) depend on relatively
aggressive memory models to enable common
compiler optimizations for explicitly parallel pro-
grams, hence exposing those programmers to
relaxed semantics anyway. In addition, program-
mers who write sequential or implicitly parallel
programs (i.e., automatically parallelized by com-
piler) are not exposed to the underlying hardware
memory model and yet can benefit from imple-
mentations that support a relaxed model.

In contrast to aggressive models proposed in
academia (WO and RC), commercial models (i.e.,
Alpha, PSO, RMO, PowerPC) convey ordering
information through explicit fence instructions as
opposed to using operation labels. Even though
operation labels convey more information, this
choice is understandable because of the difficulty
of incorporating labels into existing instruction
sets. In addition, most commercial models have
opted to support atomic behavior for all writes
(which leads to simpler semantics). This is a viable
approach given the prevalence of invalidation-
based cache coherence protocols and the ease of
supporting atomic writes in such protocols. Com-
mercial models also have to deal with non-trivial
issues such as specifying the ordering semantics of
I/0 device operations, exception events, etc. (Sec-
tion 4.5 in [5]). Finally, commercial models remain
system-centric. This is primarily because program-
mer-centric models do not specify semantics for all
possible programs and are considered to be speci-
fied at too high a level to convey a specific architec-
ture. Nevertheless, the programmer-centric
abstraction can still be used to simplify the task of
reasoning about commercial models; for example,
the high-level program information can be used to
determine where explicit fence instructions are
needed (Section 4.4 in [5]).

Commercial fence-based implementations can
be improved in a number of ways. First, an explicit
fence incurs an extra instruction fetch, and often

has a non-negligible latency associated with it. It is
important to minimize such costs especially for
applications with frequent fences (e.g., database
workloads [3]). Second, fence-based implementa-
tions do not provide an efficient platform for pro-
grammers who insist on stricter models such as
sequential consistency. To remedy this, it is rela-
tively easy to provide separate modes in an imple-
mentation (e.g., specified on a per process basis)
that would implicitly impose the extra orderings
required by the stricter model.

Advice for Aspiring Memory Model
Designers

Coming up with a new memory consistency
model is quite trivial. After all, it is just a matter of
picking and choosing the set of orders that must be
maintained among shared memory operations.
The real design challenge lies in providing a bal-
anced solution. Choosing or designing a relaxed
model requires considering questions such as:

* What is the target environment, including the
types of programmers, applications, and archi-
tectures?

¢ Are the semantics of the model defined pre-
cisely? How difficult is it to reason and program
with the model? How restrictive is the model
with respect to different programming styles?

¢ What are the practical implementation optimiza-
tions that motivate the model? How difficult is it
to efficiently implement the model?

* What are the performance gains (at hardware
and compiler level) from using this model rela-
tive to alternative models? And most impor-
tantly, do the performance gains justify the
additional programming and implementation
complexity?

Addressing the above issues is non-trivial
since it involves considering complex trade-offs
and interactions, in addition to dealing with subtle
correctness issues.

Our hope is that the framework and intuition
developed by our research pave the way for future
advances in this area.

References

[1] S. V. Adve. Designing Memory Consistency Models for
Shared-Memory Multiprocessors. ~ PhD thesis,

Computer Sciences Department, University of

70

9]

[10]

[11]

[12]

Wisconsin-Madison, December 1993. Available as
Technical Report #1198.

S. V. Adve and K. Gharachorloo. Shared memory
consistency models: A tutorial. IEEE Computer,
29(12):66-76, December 1996. Extended version
available as Western Research Laboratory Research
Report 95/7.

L. A. Barroso, K. Gharachorloo, and E. D. Bugnion.
Memory system characterization of commercial
workloads. In Proceedings of the 25th International
Symposium on Computer Architecture, June 1998.

S. Dwarkadas, P. Keleher, A. Cox, and W.
Zwaenepoel. Evaluation of release consistent
software distributed shared memory on emerging
network technology. In Proceedings of the 20th
Annual International ~Symposium on Computer
Architecture, pages 144-155, May 1993.

K. Gharachorloo. Memory Consistency Models for
Shared-Memory — Multiprocessors. PhD thesis,
Stanford University, December 1995. Also available
as Western Research Laboratory Research Report
95/9.

K. Gharachorloo, A. Gupta, and J. Hennessy.
Performance evaluation of memory consistency
models for shared-memory multiprocessors. In
Fourth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 245-257, April 1991.

K. Gharachorloo, A. Gupta, and J. Hennessy. Two
techniques to enhance the performance of memory
consistency models. In Proceedings of the 1991
International Conference on Parallel Processing, pages
1:355-364, August 1991.

K. Gharachorloo, A. Gupta, and]J. Hennessy.
Hiding memory latency using dynamic scheduling
in shared-memory multiprocessors. In Proceeding of
the 19th Annual International Symposium on
Computer Architecture, pages 22-33, May 1992.

K. Gharachorloo, A. Gupta, and]. Hennessy.
Revision to “Memory consistency and event
ordering in scalable shared-memory
multiprocessors”. Technical Report CSL-TR-93-568,
Stanford University, April 1993.

A. Krishnamurthy and K. Yelick. Optimizing
parallel programs with explicit synchronization. In
Conference on Program Language Design and
Implementation, pages 196-204, June 1995.

V.S. Pai, P. Ranganathan, S. V. Adve, and T. Harton.
An evaluation of memory consistency models for
shared-memory systems with ILP processors. In
Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 12-23, October 1996.

D. J. Scales and K. Gharachorloo. Towards
transparent and efficient software distributed
shared memory. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles, Oct.
1997.

RETROSPECTIVE:

Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers

Norman P. Jouppi

Western Research Laboratory
Digital Equipment Corporation, Palo Alto, CA 94301
jouppi@pa.dec.com

Motivation

The work in this paper was initially motivated
by the BIPS project at Digital Equipment Corpora-
tion’s Western Research Lab. This project started in
1988 with the goal of building a processor that
could execute over one billion instructions per sec-
ond [1]. As an early part of the design process, the
performance of various possible system configura-
tions were simulated. We found that for many con-
figurations most of the potential performance was
being lost in the memory system. This led to an
effort to create a more efficient memory system
given the expected resources (i.e., transistor
counts, pin bandwidth, etc.) that would be avail-
able.

Just prior to this work, Mark Hill had been
investigating tradeoffs involving cache set-associa-
tivity at the University of California at Berkeley.
Mark classified cache misses into the now famous
three C’s: conflict, capacity, and compulsory misses
[2]. Mark also showed that direct-mapped caches
could give better overall system performance than
set-associative caches in some situations because
they had a faster access time.

Many advances in science are the result of new
methods of measuring things. In this case, Mark
Hill’s measuring of the causes of cache misses led
to my investigations of ways to reduce each type of
cache miss. The miss caches and victim caches pre-
sented in the paper were proposed to reduce con-
flict misses, assuming a direct-mapped cache was
used for its smaller access time. Stream buffers
were proposed as a method for reducing primarily
compulsory and capacity misses. The net result
was a memory system with higher performance for
a given transistor count.

71

Elaboration

Immediately after the 1990 ISCA paper I wrote
a follow-up paper and submitted it to ASPLOS-III.
This paper showed four things. First, it presented
an enhancement to stream buffers which could
supply prefetch data from any position in the
stream bulffer, resulting better utilization of data in
the stream buffer and higher stream buffer hit
rates. Second, it demonstrated that stream buffers
were more effective than any of the hardware
prefetching techniques that had been discussed in
Smith’s cache survey [7]. Third, it showed that
stream buffers were more effective in reducing
cache misses than victim caches. Fourth, and per-
haps most interesting, it presented the effective
cache size increase resulting from adding multiple
stream buffers to a baseline cache design. In many
situations, the combination of baseline cache and
stream buffers could give miss rates equivalent to
those of caches many times larger than the baseline
design. Since stream buffers can eliminate compul-
sory misses, for some larger caches there was no
cache size that had miss rates as low as the baseline
cache plus stream buffers. Just as adding stream
buffers can make a cache appear larger, adding vic-
tim caches can effectively provide fractional
amounts of cache associativity (e.g., a miss rate
equal to a 1.2-way set associative cache). This
paper was not accepted to the conference and I
never revised it or sent it anywhere else. As part of
writing this retrospective I've turned it into WRL
tech note TN-53 and put it on the web (see
http:/ /www.research.digital.com/wrl/
techreports/pubslist.html).

One point of confusion for the reviewers of the
ASPLOS submission was something that has come
up many times since. In the original ISCA paper, it
was not directly and explicitly stated in the text of

the paper that data values in the stream buffer or
victim cache are not available for use by the pro-
cessor in the same cycle that data accessed from the
cache would be available. However, all the block
diagrams in the paper show that the victim caches
and stream buffers are only connected to the mem-
ory refill side of the caches, and the text states that
a cache line can be transferred from the stream
buffer or victim cache to the primary cache in the
cycle following the cache miss. Since the appear-
ance of the ISCA paper, many people have
assumed that a large multiplexor exists in the
cache access path of the processor, and that this
large multiplexor can select between the result of
the cache probe and the contents of a stream buffer
or victim cache all within the cache access time.
This is certainly not the case, as can be seen from
the diagrams in the paper. If there was such a large
multiplexor, the access of the primary cache
(direct-mapped in these examples) would become
much slower. By placing a multiplexor on the
cache refill path it is moved out of the critical cache
access path at the cost of another cycle of delay.
This cycle of delay is much shorter than a full
cache miss penalty, so misses served from a stream
buffer or victim cache still result in a significant
win.

Evolution

Stream buffers and miss or victim caches have
appeared in a number of systems, although their
use is by no means widespread. The most compel-
ling application remains prefetching instructions
with instruction stream buffers; this is because of
the highly sequential nature of instruction miss
streams. Instruction prefetch buffers have
appeared in a number of microprocessor designs.

One data-side application was a combined
2KB miss cache and stream buffer which was
placed on the HP PA7100 microprocessor [3] while
the primary caches remained off-chip. In this sys-
tem they wanted large off-chip caches for good
performance on large application programs. Off-
chip caches are difficult to make set-associative
because of limited microprocessor pin counts, and
there was not enough space on the die for large
caches, so they placed a combined prefetch buffer
and miss cache on-chip instead. Because the com-
bined miss cache and prefetch buffer was on chip,
it can be accessed in parallel with the off-chip
cache.

72

The Cray T3D and T3E also used stream buff-
ers on the data side, as a replacement for a second-
ary cache. Because many real numeric applications
use non-unit strides, support for non-unit stride
prediction and allocation filters to reduce the mem-
ory bandwidth requirements were studied by Pala-
charla and Kessler [4]. As a result of this study
allocation filters were implemented in the Cray
T3E.

More recently, stream buffers have been stud-
ied in the context of more modern processor
designs. Farkas et. al [5] found that stream buffers
were useful in statically scheduled processors with
non-blocking loads and speculative execution.
Although dynamically scheduled processors are
better at tolerating unpredictable memory latency
than statically scheduled processors, they too can
benefit from stream buffers as Farkas et. al. showed
in [6].

In [6] improved per-load stride prediction and
a variation of stream buffers called incremental
stream buffers were also proposed. Incremental
stream buffers do not attempt to fill the whole
stream buffer on a miss, but rather extend the
number of lines they try to prefetch if earlier
prefetches are used. This reduces the amount of
bandwidth wasted in cases where prefetching far
beyond the initial miss is not useful. However, it is
much better for short streams than methods that
require several subsequent misses before allocating
a stream buffer. Moreover, for long streams the
additional startup overhead is insignificant.

Futures

Although miss caches and victim caches are
typically more popular ideas than stream buffers,
stream buffers are a more important and lasting
contribution. Even with the system configurations
of the initial paper, stream buffers made a larger
contribution to system performance. As caches get
larger, the percentage of misses which are due to
conflicts goes down while the percentage due to
compulsory misses go up. This further increases
the importance of stream buffers at the expense of
miss and victim caches. With technology scaling,
the latency ratio between off-chip and on-chip
cache access increases. This makes sacrificing some
cache hit speed for increased cache hit rates (i.e.,
implementing true cache set-associativity) even
more worthwhile. Finally, more recent system
innovations such as dynamic scheduling which

reduce temporal and spatial locality of reference
streams require set-associative caches for good per-
formance.

As technology integration increases, I believe
stream buffers will still be important for obtaining
the best system performance for ever-limited cache
resources. And I believe there is still room for fur-
ther advances in hardware prefetching.

Acknowledgments

Keith Farkas provided helpful comments on a
draft of this retrospective as well as insightful
work on stream buffer enhancements.

References

[1] Norman P. Jouppi, et. al.,, “A 300MHz 115W 32b
Bipolar ECL Microprocessor,” in the IEEE Journal of
Solid-State Circuits, November 1993.

Mark D. Hill, Aspects of Cache Memory and
Instruction Buffer ~ Performance, Ph.D. Thesis,

University of California Berkeley, 1987.

(2]

73

[3]

[4]

[7]

Ehsan Rashid, et. al., “A CMOS RISC CPU with
On-Chip Parallel Cache”, in the Proceedings of the
1994 International Solid-State Circuits Conference,
pages 210-211.

Subbarao Palacharla and Richard Kessler,
“Evaluating Stream Buffers as a Secondary Cache
Replacement”, in the Proceedings of the 21st
International Symposium on Computer Architecture,
pages 24-33, April 1994.

Keith Farkas, Norman P. Jouppi, and Paul Chow,
“How Useful are Non-blocking Loads, Stream
Buffers, and Speculative Execution in Multiple
Issue Processors?” in the Proceedings of the Ist
Conference on High-Performance ~ Computer
Architecture, January, 1995.

Keith Farkas, Paul Chow, Norman P. Jouppi, and
Zvonko Vranesic, “Memory-System Design
Considerations for Dynamically-Scheduled
Processors” in the Proceedings of the 24th Annual
International Symposium on Computer Architecture,
June 1997.

A. J. Smith, “Cache Memories”, ACM Computing
Surveys, vol. 14, no. 3, pp. 473-530, 1982

RETROSPECTIVE:

Monsoon: An Explicit Token-Store Architecture

Gregory M. Papadopoulos

Sun Microsystems, Inc.
gregp@corp.sun.com

Introduction

Certainly much has changed over the decade
since we first prototyped Monsoon. Over that time,
dynamic out-of-order instruction execution con-
strained only by data dependences, with firing
rules far more complex than anything we consid-
ered practical, became commonplace in micropro-
cessor design. Threads became standard at the
operating systems level and incorporated as an
intrinsic part of new programming languages.
Surely, it would be nice to think of this paper as
essential to it all, just ahead of its time. Besides
being inaccurate, such a view fails to capture the
ideas in this paper that may still have future
importance.

Clearly, this paper did not establish dataflow
as the dominant principle in instruction set design,
nor place functional languages at the center of
modern programming. If anything, it was the
beginning of the end of dataflow, as it demystified
the approach. The Explicit Token Store model
established a simple correspondence between
dataflow graphs and the spectrum of conventional
instruction sets. It provided a clear separation of
what should occur above the instruction set level
(storage management) and what could occur
below it (dynamic instruction scheduling). The
Monsoon machine demonstrated that the dataflow
firing rule was captured by a simple mechanism:
state-dependent instruction completion. In doing
so it placed the body of thought associated with
dataflow models into a familiar context where its
ideas could be more readily harvested.

We decided to structure this retrospective
around what we saw to be the four big ideas for
the future lurking between the lines. These are out-
lined in the following sections.

David E. Culler

Computer Science Division

University of California, Berkeley, CA 94720

74

culler@cs.berkeley.edu

Don’t be afraid to build

Monsoon stands as demonstration that a small
group of motivated individuals can build complete
systems, even from scratch, that differ in funda-
mental ways from the paths of industry. As a com-
munity we seek revolutionary ideas, and these will
not come about through incremental variations on
well-established techniques, or lighthearted paper
studies. You need to live and breathe a new para-
digm, and even then it may not come to pass.

Monsoon did work. It was a complete data-
flow computing system, in which even the operat-
ing system, complete with I/O and storage
reclamation, was written in Id and compiled to
ETS (Monsoon machine language) code. Routinely,
several thousand threads executed concurrently in
the machine. A number of systems were built in
collaboration with Motorola Cambridge Research
Laboratory. Sixteen processor systems were placed
at Los Alamos National Laboratory and the MIT
Lab for Computer Science, and only recently have
they been retired.

A Monsoon processor was able to process 5 to
10 million messages per second. This is still a very
respectable rate.

It demonstrated that threads could be dynami-
cally spawned and terminated at this same rate,
where threads share registers, as long as the com-
piler manages the storage in which these threads
operate. Many developments in threaded run time
systems, including TAM, P-Risc, Filaments,
Choros, and Cilk build upon this concept,
although recent work has advanced the techniques
for managing the scheduling data structures to
provide storage guarantees.

We took the dataflow paradigm seriously,
lived it, breathed it, and built accordingly. The
shortcomings of Monsoon, as well as its successes,
were real; they were not artifacts of a “merely aca-
demic” investigation.

Evolution of Instruction Sets

One of the clear shortcomings of Monsoon was
the power, or lack thereof, of its basic instructions.
Conventional instruction sets have evolved over a
sequence of steps allowing more and more state to
be accessed in each instruction in a single thread.
Accumulator based machines gave way to 2-
address and 3-address general purpose register
instruction sets. We are beginning to look at as
many as 128 registers associated with a single
thread of control.

Threads are a key agent within all modern
machines, and yet there are no operations defined
on them at the machine level. Thread operations,
such as create and terminate are implemented in
software by the operating system and are com-
bined with large storage allocations.

Architects have worked harder and harder to
find enough parallelism in a program that has a
single control thread to keep the many function
units busy; we expand the architected registers
through renaming, look far ahead and execute
speculatively across even multiple branches. In the
window of instructions behind the instruction
fetch, execution of many small operations is
sequenced dynamically according to data depen-
dences. Effectively, modern microprocessors con-
struct a small window of dynamic dataflow
execution on-the-fly.

ETS showed that when dataflow graphs are
used as an instruction set, rather than an internal
scheduling mechanism, they correspond to a single
accumulator architecture that has advanced in the
orthogonal direction of allowing many threads to
deal with the architected machine state. The accu-
mulator-style of instruction set meant that basic
operations in threads — fork and rendezvous —
were very efficient, but evaluating simple arith-
metic expressions suffered.

Clearly, there is a whole space of designs
between these two major axes of evolution: state
per operation, and thread expressiveness. We
expect that future architectures will support multi-
threading of fairly stateful instruction sets (e.g.,
Tera). In this pursuit, we hope that the design point
of Monsoon — threads being efficiently virtualized
— will not be overlooked because of the lack of
power in the operations of individual threads. The
authors are still of the belief that threads should be
given first-class status and not be viewed merely as
a state multiplexing mechanism for latency toler-
ance.

As we begin to explore the space between the
two axes of instruction set evolution, a fundamen-
tal question is how efficiently we are able to
encode parallelism at the machine level. Both
extremes — a single thread with many register

75

names or many threads with few register names —
are surely suboptimal.

Program the Memory

One of the important ideas lurking in the Mon-
soon paper is that of programming the memory.
Again, it is useful to look at this in light of the evo-
lution of instruction sets. It used to be that memory
references were a piece of an instruction. Typically,
an instruction specified an addressing mode with
each operand and in many cases the addressing
mode could include one or more memory refer-
ences. In load-store architectures a memory refer-
ence is a full instruction. If an instruction is going
to access data in memory, it says so right in the
opcode and does not try to do anything else. This
approach recognizes that memory references are
slow and complex relative to arithmetic process-
ing; by calling them out specially it is possible to
optimize around them in order to hide latency and
resolve dependences. Indeed, today a memory
operation involves extremely complex protocols at
several levels that far exceed the actual time to
access the bits on the memory chip. Issues of when
these operations complete, when their effects
become visible, and when dependent operations
can proceed are quite subtle.

ETS took an important step in treating every
memory reference as multiple instructions. Each
memory reference was split-phase, so there was an
explicit point where the reference was issued and a
point where it completed. Given the threaded exe-
cution model, it was natural for the compiler to
deal with spreading these apart and determining
what could take place in between. The memory
access itself was performed by processor instruc-
tions local to the memory module, so a reference
could be multi-phase with protocol processing (for
synchronization or coherence) along the way. A
restricted form of this we see today in the context
of application specific cache coherence protocols in
the Flash and Typhoon work.

Given how the complexity of memory systems
is increasing and how processing rates are increas-
ing relative to access times and transfer latencies, it
is likely that in the future you will think about
memory references the way you think about mes-
sages today. They are issued to an external sub-
system, carried out asynchronously with some
probability of failure, and complete with a well-
defined event.

Program the Scheduler

There was one area where Monsoon and ETS
was perhaps not radical enough. The underlying

machine had the concept of state-based instruction
execution. For example, the behavior of an instruc-
tion depended on the state of the frame slot that it
referenced. It was straightforward to map dataflow
graphs into deterministic instruction sequences.
What we did not explore was the power offered by
allowing the compiler to generate instruction
sequences that were nondeterministic, in that the
behavior depended strongly on the order in which
events occur within the machine. We explored this
idea a little in the Multithreading workshop at
Supercomputing 91. Imagine in a conventional
instruction set architecture that the register reser-
vation bits are exposed in the instruction set, so it
would be possible to branch on the result of a load
being ‘not yet present’. Or, you might have the
ability to branch on a cache miss. In TAM we had
the idea that an executing thread could adjust the
scheduling of threads by modifying the scheduling
data structure. As memory hierarchies become
more complex, as lock-up free operation becomes
more common, threading becomes more widely
used, compiler-based prefetching more common
and as adaptive programming techniques become
better developed, we may well find that programs
behave more like control systems, adjusting the
load they place on the machine in response to
observed temporal behavior of the machine.

The Future?

The authors remain passionate about deep
integration of threading, cheap synchronization,
and split-phase memory transactions. It may well
be that the continued divergence of processor and
memory latencies and the increasing intensity of
threads and automatic storage management will
lead to a “rediscovery” of the fine-grained, explic-
itly managed frame model of Monsoon.

Where did the people go?

At the time this paper was published, Greg
and David had recently finished their PhDs at MIT.
Greg stayed with the dataflow project at MIT, first
as a research staff member and then as an Assistant
Professor. He later went to Thinking Machines
Corporation as Senior Architect designing the fol-
low-on to the CM-5. He is now Chief Technology
Officer for Sun Microsystems, Inc.

David became an Assistant Professor at UC
Berkeley, where he did TAM, Active Messages,
Split-C, LogP, and NOW while working through
the academic ranks. He is now a Professor and Vice
Chair of Computing and Networking and consults
for the CTO of Sun Microsystems.

76

Acknowledgments

The Monsoon and ETS work would not have
been possible without strong federal and industrial
support; the Defense Advanced Research Project
Agency and Motorola made bold investments in a
truly experimental architecture. The National Sci-
ence Foundation made possible further investiga-
tion through PYI and PFF support. The project all
started with Arvind’s vision of a better basis for
computer architecture, which attracted an incredi-
bly talented group of young individuals. We espe-
cially want to thank Andy Boughton, Ken Traub,
Steve Heller, Vinod Kathail, Keshav Pingali, Rich-
ard Soley, and Jamie Hicks.

Related References

[1] G.Papadopoulos and K. Traub, “Multithreading: A
Revisionist View of Dataflow Architecture,” Proc.
18th Annual Symposium on Computer Architecture,
pp- 342-351, May 1991.

D. Culler, A. Sah, K. Schauser, T. von Eicken and J.
Wawrzynek, “Fine-grain Parallelism with Minimal
Hardware Support: A Compiler-Controlled
Threaded Abstract Machine,” Proc. of the 4th
International Conf. on Architectural Support for
Programming Languages and Operating Systems, pp.
164-75, Oct. 1991.

R. Nikhil, G. Papadopoulos and Arvind, “*T: A
Multithreaded Massively Parallel Architecture.,”
Proc. 19th Annual Symposium on Computer
Architecture, pp. 156-167, May 1992.

T. von Eicken, D. Culler, S. Goldstein, and K.
Schauser, “Active Messages: A Mechanism for
Integrated Communication and Computation,”
Proc. 19th Annual Symposium on Computer
Architecture, pp. 256-266, May 1992.

M. Fillo, S. Keckler, W. Dally, N. Carter, A. Chang,
Y. Gurevich and W. Lee, “The M-Machine
Multicomputer,” Proc. of the 28th Annual
International Symposium on Microarchitecture, pp.
146-56, Nov. 1995.

G. Sohi, S. Breach and T. Vijaykumar, “Multiscalar
Processors,” Proc. of the 22nd Annual International
Symposium on Computer Architecture, pp. 414-25,

[2]

Jun. 1995.
[7]1 D. Tullsen, S. Eggers and H. Levy, “Simultaneous
Multithreading: Maximizing On-Chip

Parallelism,” Proc. of the 22nd Annual International
Symposium on Computer Architecture, pp. 392-403,
Jun 1995.

R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K.
Randall and Y. Zhou, “Cilk: an efficient
multithreaded runtime system,” Fifth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pp. 207-216, Aug.
1995.

G. Alverson, P. Briggs, S. Coatney, S. Kahan and R.
Korry, “Tera Hardware-Software Cooperation,”
Proc. of the 1997 ACM/IEEE SC97 Conf., Nov. 1997.

RETROSPECTIVE:

IMPACT: An Architectural Framework for Multiple-Instruction Issue
Wen-mei W. Hwu

Computer & Systems Research Laboratory
University of Illinois at Urbana-Champaign, Urbana, IL 61801
hwu@crhc.uiuc.edu

Background

The IMPACT Architecture Framework project
started in 1987 at the University of llinois, Urbana-
Champaign. The goal was to develop an architec-
tural framework and its enabling compiler technol-
ogy for instruction-level parallel processing
microprocessors. The project was founded based
on three fundamental assumptions about the
future of microprocessor architectures that were
rather controversial at the time. First, the level of
intrinsic instruction-level parallelism (ILP) in gen-
eral applications should be much higher than that
accepted by most researchers in the 1980’s. The
accepted standard was that fewer than two instruc-
tions per cycle could be sustained in non-numeri-
cal applications. Second, the compiler’s role would
be critical at achieving the increased levels of ILP
in general applications. At this time, most
researchers viewed advanced hardware mecha-
nisms, such as out-of-order execution and branch
prediction, as the only means to extract increased
ILP. These assumptions have both been shown to
be true through extensive evidence generated by
many academic researchers and industrial groups,
including the IMPACT team. Finally, industry
would be able to implement high issue rate micro-
processors at very high clock frequencies. As of
1995, the third assumption has been verified by
successful products such as the Digital Alpha
21164.

Fundamental Approach

The IMPACT project took a very different
approach than that followed by industry at the
time. Traditionally, computer architects would pro-
pose instruction architecture features and evaluate
the merits with machine language programming.

77

After the processor is designed, a compiler team
would attempt to produce compilers that generate
code of similar quality to that of the hand code.
Unfortunately, this goal was seldom reached due
to the inherently different natures of automatic
compilation and hand machine code program-
ming.

John Cocke at IBM and John Hennessy at Stan-
ford pioneered co-design of compilers and instruc-
tion architectures in the early 1980’s. Their work
resulted in the first generation of RISC micropro-
cessors where features such as sizable register files
and versatile but primitive instructions allowed a
backend optimizer to eliminate redundant compu-
tation and a register allocator to remove unneces-
sary memory accesses. The RISC work at IBM and
Stanford was focused on making efficient use of a
pipeline designed to execute one instruction per
cycle.

The IMPACT project applied the same com-
piler and architecture co-design methodology to
the design of multiple-instruction-issue micropro-
cessors. During the development of the compiler
technology, the IMPACT project team members
identified several major inhibitors to producing
code with a high level of ILP. Many of the inhibi-
tors could be removed by clever compiler transfor-
mations. One of the inhibitors, however, turned
out to be difficult to do without architectural sup-
port: exception conditions generated by control
speculative instructions. The architecture support
for this aspect became the core concept of the

paper.

Ground Work

The amount of work done for the paper was
tremendous. The first major hurdle was to estab-
lish the fact that the compiler base was as good as,

or better than, existing product compilers. Typi-
cally, research compilers have two fundamental
problems. One is the inability to compile large pro-
grams. Two is the lack of advanced optimization
capabilities to generate code of comparable or bet-
ter quality than production compilers. Over ten
people-years went into establishing a base com-
piler. In the paper, the IMPACT compiler was able
to compile UNIX utilities and generate MIPS code
that ran faster on a DEC-3100 workstation than the
code generated by the MIPS and GNU compilers at
their highest level of optimization. In the process,
the team ran into tedious issues such as compati-
bility with the MIPS assembler, which was not well
documented for external users.

The second hurdle was to develop and verify
compiler optimizations that utilize architecture
features not available on existing machines. The
new compiler optimizations focused on a suite of
ILP enhancing optimizations to generate efficient
code for multiple-instruction-issue processors. In
addition, an instruction scheduler that aggres-
sively employed control speculation to move
instructions across basic block boundaries to
achieve a compact schedule was constructed. The
verification process used was to emulate the pro-
posed architecture features by translating the code
generated for the new hypothetical architecture
into code sequences executable on the DEC-3100
workstation. The execution of the code sequences
then generates a trace of the original hypothetical
machine code to drive a trace driven simulation.
Although the emulation was conceptually simple,
it was extremely difficult to debug when handling
large applications. Unlike most architecture experi-
ments where traces were generated on vendor
machines using vendor production quality soft-
ware, the entire software and hardware emulation
tool chain was produced by the IMPACT team.
Any bug exposed by a benchmark in the tool chain
makes it impossible to conduct the experiments
with that benchmark.

This paper signified an important milestone in
the IMPACT project. It was the first time the com-
plete compiler in conjunction with the emulation
and simulation tools had been successfully utilized
to conduct a system level architectural experiment.
The abilities to vary the machine model and retar-
get the compiler to utilize different architectural
features was a novel experimental framework. The
infrastructure that was developed for this paper
served as the foundation for much of the future
work done in the project.

78

Intellectual Contributions

It has been seven years since the paper was
first written. From the numerous feedback
received to date, two contributions consistently
stand out. First the paper was the first to establish
that a compiler can generate highly efficient code
from general applications with enough instruction
level parallelism to utilize a four-issue machine. It
changed many people’s minds about the viability
of high issue rate microprocessors as general pur-
pose machines. This is especially an accomplish-
ment considering the fact that the mainstream
microprocessors of the day the paper was written
issued up to one instruction per cycle and the fact
that many researchers published pessimistic stud-
ies on the available instruction-level parallelism
using existing product compilers.

The second frequently mentioned contribution
is the understanding that exception handling sup-
port for control speculative instructions is key to
the success of instruction-level parallel architec-
tures [1]. The non-trapping instructions were later
added to several RISC architectures, including
SPARC and HP PA-RISC. In the research arena,
this paper was followed by a series of work on Sen-
tinel scheduling that allow the hardware to accu-
rately detect and recover from exceptions
generated by control speculative instructions [2]. A
similar feature was incorporated into the 1A-64
architecture.

Potential Improvements

In retrospect, the paper could be improved
with additional real code examples to motivate,
illustrate, and analyze the proposed non-trapping
instructions. In terms of experiments, the addi-
tional cache misses and TLB misses, and page
faults due to speculative instructions should be
characterized to provide more insight into the pro-
posed features.

By-products

The IMPACT Compiler and IMPACT Architec-
ture Framework Emulation Tools have become a
heavily used research infrastructure at several
major corporations. The IMPACT software has
since been completely redeveloped to provide
comprehensive support for predicated execution.
Licenses have been issued to major corporations

including Intel, Hewlett-Packard, Advanced Micro
Devices, IBM, SUN Microsystems, and Lucent
Technologies. They have been used by industry
research and advanced development groups for
the purpose of designing new microprocessor
architectures. A new program at the University of
Illinois was started in 1997 to release parts of the
IMPACT software environment to academic
research institutions worldwide.

Authors

Pohua Chang graduated in 1991 and joined the
Intel corporation. He was the author of many orig-
inal IMPACT compiler modules. He published
numerous journal articles and conference articles
in the area of architecture support and compiler
techniques for control speculation.

Scott Mahlke further developed the IMPACT
architecture and compiler support for predication
and control speculation in his Ph.D. dissertation
work. He graduated in 1996 and joined Hewlett-
Packard Laboratories. He published numerous
papers in the area of architecture and compilation
support for predicated execution. He also has
major publications on the subject of accurate
exception detection and recovery from exceptions
in control speculated code.

William Chen pursued data speculation in his
Ph.D. dissertation work. He graduated in 1993 and
joined the Intel Corporation. He has major publica-
tions and holds key patents in the area of data
dependence speculation.

Nancy Warter pursued isomorphic control
flow transformations in her Ph.D. dissertation
work. She graduated in 1993 and joined the faculty
of California State University at Los Angeles. She
has published major conference and journal papers

79

on the subject of supporting cyclic and acyclic code
scheduling with isomorphic control flow tech-
niques.

Wen-mei Hwu was promoted to the rank of
Professor at the University of Illinois in 1996. He
became an IEEE Fellow in 1997 for contributions to
high performance compilers and microarchitec-
ture. He also received the 1993 Eta Kappa Nu Out-
standing Young Electrical Engineer Award, the
1994 Xerox Award for Faculty Research, the 1994
University Scholar Award of the University of Illi-
nois, and the 1997 Eta Kappa Nu Holmes Mac-
Donald Outstanding Teaching Award for his work
in research and teaching.

Acknowledgment

The research reported in this paper was sup-
ported by the National Science Foundation under
the Research Initiation Award program, NCR (Dr.
Lee Hoevel), and AMD (Dr. Mike Johnson). Their
generous support was critical to the quality of this
work.

References

[1] “Three Architectural Models for Compiler-
Controlled Speculative Execution”, P. P. Chang, N.
J. Warter, S. A. Mahlke, W. Y. Chen, and W. W.
Hwu, IEEE Transactions on Computers, Vol. 44, No.
4, April 1995, pp. 481-494.

“Sentinel Scheduling: A Model for Compiler-
Controlled Speculative Execution”, S. A. Mahlke,
W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W.
Hwu, B. R. Rau, and M. S. Schlansker, ACM
Transactions on Computer Systems, Vol. 11, No. 4,
November 1993.

RETROSPECTIVE:

The DASH Prototype: Implementation and Performance

Daniel E. Lenoski

Silicon Graphics
lenoski@sgi.com

@ur paper entitled “The DASH Prototype:
Implementation and Performance” was given at
the 19th ISCA in Gold Coast, Australia in May of
1992. This paper outlined our implementation
experience and initial performance details of
DASH, the first hardware implementation of the
ccNUMA architecture. DASH was a large multi-
faceted research project at Stanford University led
by John Hennessy, Anoop Gupta, Monica Lam,
and Mark Horowitz. The overall goal of DASH
was to break the scalability barrier of bus-based
SMP machines and provide the massive parallel-
ism of distributed memory while maintaining the
shared-memory paradigm. While there had been
previous switch-based SMPs built in the early
1980s (e.g., the Cray X-MP, Univ. of Illinois Cedar,
BBN TC-1000, and IBM RP3), DASH added hard-
ware support for global cache coherence. Hard-
ware cache coherence improved processor
performance and removed the burden of coher-
ence from the user or compiler. During the late
1980’s our group was not alone, there were efforts
at MIT (Alewife and J-Machine), University of Wis-
consin (Multicube), Encore Computer (Gigamax),
Kendall Square Research, and the IEEE Scalable
Coherent Interface (SCI) standards effort, but ours
was the first to build a hardware implementation
of this new class of machine.

The high-level structure of DASH was a collec-
tion of nodes, each including one or more proces-
sors and a portion of the global memory, connected
by a scalable interconnect (a 2-D mesh). Directory-
based coherence, originally proposed by Censier
and Feautrier in the late 1970s, was employed since
it removed the need for the global bus found in
snoopy systems. While the original directory
schemes used a central memory/directory, moving
to a distributed organization scaled memory band-
width naturally with the number of processors.

80

James P. Laudon

ZSP Corporation
laudon@zsp.com

With this fundamental system structure in mind,
and previous studies showing the potential of dis-
tributed-directories (see the Agarwal/Hennessy
paper on directories in this collection), work began
on the DASH prototype.

DASH Prototype Goals and Timeline

Scaling the cache-coherent SMP model to hun-
dreds of processors raised many questions in the
area of processor and system architecture, operat-
ing systems, compilers, programming languages,
and parallel applications. We chose to build an
actual hardware prototype of the architecture to
address these questions as well as to:

* Understand the hardware complexities of actu-
ally building this type of machine.

¢ Provide more insight into the performance
attributes of a real ccNUMA machine.

* Allow a comparison of real applications’ com-
plexities and performance (not simply small
simulated kernels) among highly parallel
shared-memory programs and their message-
passing counterparts.

The difficulty of implementing a distributed
directory protocol was of serious concern since it
amounts to replacing the software controlled net-
work interfaces on message-passing machines
with hardware control for sending network mes-
sages to fetch remote memory and maintain cache
coherence. At the time, it wasn’t clear if this hard-
ware complexity was tractable, and even if it was,
would the performance of a ccNUMA be competi-
tive with message-passing systems?

We began detailed architecture work on the
system in fall of 1988. Early on, we made a choice
to leverage an existing SMP system as our base

node because these machines provide the neces-
sary hooks for controlling the processor caches
from their bus interfaces. We were anxious to uti-
lize a RISC-based SMP, and the recently
announced SGI 4D /240 series was the only such
machine on the market at the time. This choice
turned out to be very fortuitous, since utilizing an
existing system allowed us to leverage much of the
system hardware and software and concentrate
our efforts on the unique ccNUMA hardware and
software.

Initial power-on of the prototype system was
in the Fall of 1990 and a 16 processor system was
stable in the Spring of 1991. We then started work
on a larger 64 processor system, which resulted in
a stable 48 processor prototype in the Spring of
1992. Nagging problems with our ribbon-cabled
mesh links prevented us from reaching the goal of
64 processors in a single system (a 4x4 mesh of 4
processor nodes), but we were able to learn much
from the 48 processor prototype.

Innovations in DASH

During the architecture phase of the project,
our focus was on the coherence protocol and mech-
anisms that would minimize memory latency and
maximize memory bandwidth. In addition, we
realized that hiding memory latency would also be
key since the distributed structure of a large
ccNUMA would invariably lead to longer memory
latency. Likewise, support for large-scale parallel-
ism demanded that we pay attention to synchroni-
zation and inter-processor communication. Being
one of the first to tackle these problems in the con-
text of a ccNUMA machine, these goals led to
many innovative solutions. These included:

¢ Software-controlled non-binding cache line
prefetch to hide latency and increase memory
pipelining.

* Release-consistency support with fence/mem-
ory barriers to help hide store latency.

* Queue-based test-and-set locks to allow efficient
contended spin-locks.

e Fetch&Inc and Fetch&Dec (borrowed from the
NYU Ultracomputer, but without combining)
for support of efficient barrier synchronization
and distributed queues.

e Update coherence and deliver instructions
which provide low latency inter-processor word
and cache line communication respectively.

81

The actual hardware implementation phase
also demanded innovative solutions such as:

* An efficient “forwarding” coherence protocol
which minimized latency for accessing dirty
data and writing to shared cache lines.

e Support for both invalidate and update coher-
ence within the same directory protocol.

* Separate request and reply paths that prevented
dead-lock on the normal memory requests
together with retry mechanisms that handled
race conditions in the distributed directory pro-
tocol.

* A high-bandwidth DRAM directory access path
which performed read-modify-write cycles
under the shadow of the main memory’s fetch of
16-byte memory blocks.

¢ One of the first lock-up-free caches that imple-
mented a remote access cache to track outstand-
ing memory references and supplement the
processor caches with features such as prefetch.

Lessons Learned

As one would expect, building and using the
DASH prototype led to many new insights and les-
sons that were both positive and negative. The
most positive result was that it was feasible to
build a ccNUMA machine and to achieve good
performance on highly parallel shared-memory
applications. Furthermore, by analyzing the logic
in the directory and network interface, the proto-
type demonstrated that adding hardware cache
coherence added only 10% additional hardware
over a non-coherent MPP system structure.
Another lesson was that with close attention, it
was possible to keep remote-to-local memory
latency to within a 3 to 1 ratio. Several features
included in the prototype proved very successful.
Operations such as prefetch proved to be very
powerful in hiding memory latency and improv-
ing the pipelining of memory operations.
Fetch&Op performed at memory also greatly
reduced the overhead of barrier-type synchroniza-
tion by reducing the serialization time for atomic
counter operations.

Other features that did not yield as much per-
formance improvements as expected were queue-
based locks and update and deliver operations.
While these operations could greatly aid in specific
low-level communication, the overhead of general
communication associated with inter-processor

data sharing tended to swamp out the incremental
enhancements that these operations provided. This
was especially true on the prototype hardware
where our remote access cache was as close as we
could get the data to the processor (thus reducing
latency by no more than a factor of 3).

Another somewhat unexpected result was the
negative impact of using a bus-connected inter-
node interface. Since memory operations needed
to cross the processor’s local bus twice and mem-
ory home’s bus once, the resulting memory band-
width when all processors are accessing remote
memory was no better than one-third that of local
memory. In fact, DASH’s bus-bandwidth was a
greater limit on global remote memory bandwidth
than network bisection bandwidth. While not
inherent to ccNUMA systems, this issue illustrated
the limitations of simply extending a bus-based
SMP with a ccNUMA network interface card.

The advantages of leveraging an existing SMP
was also one of the indirect, but very positive, les-
sons from the DASH project. Using an existing
SMP allowed a small university team to focus their
attention on the important task of architecting and
designing the hardware necessary to implement a
ccNUMA machine. In addition, the choice of the
SGI 4D /240 as the base node helped in the quick
development of DASH, as its modest level of inte-
gration (by today’s standards) allowed us to work
primarily at the board level with PALs and FPGAs.
Working at this level of integration reduced both
design and debug time. There were some compro-
mises due to leveraging an existing machine, but it
reduced the time from concept to running real
applications under Unix to less than 2.5 years. This
increased the impact of the actual DASH hardware
and helped validate the feasibility of the ccNUMA
architecture.

Conclusions

The impact of the DASH project has been felt
both in the academia and industry. Scalable
shared-memory multiprocessors continue to be a

82

hot topic of research. DASH helped validate the
viability of the ccNUMA approach and provide a
baseline to evaluate improvements in coherence
protocols, scalable directory storage, and alterna-
tive system architectures such as COMA. ccNUMA
systems have now been commercialized by a num-
ber of vendors including HP/Convex, Silicon
Graphics, Sequent, Hal, and Data General. The
DASH prototype helped pave the way for these
commercial developments by detailing many of
the fundamental design problems with ccNUMA
machines and demonstrating that the shared-
memory paradigm could be scaled and realize
both good performance and good cost-perfor-
mance.

Building the DASH prototype would never
have been possible without the hard work of a
number of individuals. These included our co-
authors: Truman Joe, David Nakahira, Luis
Stevens, Anoop Gupta, and John Hennessy. Addi-
tional contributions to the hardware development
were made by Kourosh Gharachorloo, Wolf-
Dietrich Weber, Mark Horowitz, Tom Chanak, John
Maneatis and Monica Lam. Help from Silicon
Graphics, namely Jim Barton, Forest Baskett, John
Burger, Doug Solomon and John Carlson, was also
instrumental. Dan Lenoski was supported by Tan-
dem Computers during his graduate work. John
Toole and Gil Weigand at DARPA provided the
funding to support the greater team and build the
DASH prototype.

For additional details on DASH see:

[1] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L.
Stevens, A. Gupta, and]J. Hennessy, “The DASH
Prototype: Implementation and Performance.,”
IEEE Trans. on Parallel and Distributed Systems,
4(1)41-61, January 1993.

D. Lenoski and W.-D. Weber, Scalable Shared-
Memory Multiprocessing, Morgan Kaufmann

Publishers, San Francisco, CA 1995

RETROSPECTIVE:

Active Messages: A Mechanism for Integrating Computation and
Communication

David E. Culler
University of
California at Berkeley
culler@cs.berkeley.edu

Thorsten von Eicken
Cornell University

tve@cs.cornell.edu

’][;w impact of Active Messages on the many
facets of parallel computing surprised even us.
Surely this success had an element of articulating
the right concept at the right time. Like most good
ideas, in hindsight it was present in some form or
another in many places, and it certainly had roots
in the architectural discussion of the time. Simplic-
ity, flexibility, high-performance, combined with a
clear cost model, were key in the acceptance of the
Active Messages approach in many arenas. The
underlying idea was simple: each message names a
handler at the destination and on message arrival
the handler is executed with the message as an
argument. The handlers must execute quickly and
cannot block. Their sole purpose is to extract the
message out of the network and incorporate it into
the on-going computation. Active Messages pro-
vides flexibility since handlers can be customized
to particular communication instances, or less gen-
erally, to communication protocols or program-
ming models. Active Messages implementations
achieve high-performance because they eliminate
complicated buffer management and simplify
deadlock considerations.

Active Messages grew out of our work of com-
piling implicitly parallel dataflow languages, in
particular 1d90, to commercial large-scale parallel
machines. Such languages require extremely fine-
grained communication and therefore a communi-
cation infrastructure supporting very low over-
head messages is essential. In the 1990-91 time
frame, industry was building interesting machines
on the scale of a thousand processors, but the
architecture community took surprisingly little
notice. Mostly these machines were used to dem-
onstrate that message passing costs were very
high, but would be much lower on proposed
designs — just as soon as they got built. We did not
want to wait. Moreover, in looking closely at the
commercial architectures, the hardware was
clearly capable of far better communication perfor-
mance than what was delivered. Thus, Active Mes-
sages was born of expediency: we sought to define
a simple, flexible communication primitive that
would match what large parallel machines actually
did well. This would serve as an instruction set

Klaus Erik Schauser Seth Copen Goldstein
University of California Carnegie Mellon
at Santa Barbara University

schauser@cs.ucsb.edu

83

sethg@cs.cmu.edu

extension for communication and be used as a
compilation target for languages that allowed fine-
grain communication.

We had a straightforward goal: we wanted to
measure interesting programs on a large scale and
were ready to compile all the way down to the net-
work on large parallel machines to cut down the
communication overhead. The challenge we faced
was that the basic communication operations
available needed to deal with a large number
issues, including routing, address translation, pro-
tection, buffering, output buffer full, deadlock free-
dom, event notification and more. Those thousand
instructions in the commercial message passing
layers were doing quite a bit. Although many
machines could initiate a transfer to or from the
network in a couple instructions, it took extremely
careful engineering to address all of these issues in
only a few more. While working on Active Mes-
sages, the handler-based messages of the J-
machine and Monsoon were fresh in our minds,
but our view was that the communication instruc-
tion set should operate with fixed storage
resources.

There are several reasons for the success
Active Messages enjoyed. Timing and technologi-
cal advance were certainly important factors. Hav-
ing completed the nCUBE implementation, we
were in a unique position to appreciate and exploit
the capabilities of the CM-5 as soon as it appeared.
Getting the overhead down to 2 ps made Active
Messages on a commercial machine competitive
with the contemporary research machines, and it
was only a matter of downloading a small library.
Within a few months of release it was installed on
CM-5s throughout the world. Later, it was incorpo-
rated into commercial products by Thinking
Machines, it was implemented on the Paragon and
incorporated into the OSF release, and recently it
was incorporated into the IBM SP product. AM
became the basis for much of the high performance
cluster work and the recent standardization effort
in the Virtual Interface Architecture. Without the
caliber of the initial implementation and the will-
ingness to distribute and support the code, Active
Messages would probably not have enjoyed the

impact it has.

The wuniversal communication mechanism
underlying Active Messages provided a flexible
tool for building the substantial protocols involved
in message passing and shared memory program-
ming models. Several research groups needed just
such a tool. Extensions of CC-NUMA designs were
being considered with elaborate protocols, or even
application specific protocols. Active Messages
gave them a common vocabulary and a framework
for tackling this problem. A protocol could be
defined by a collection of handlers and triggered
by a hardware initiated request message. The
debate was on what the handlers did and whether
a subset of them was cast in silicon. New parallel
object oriented languages were being developed
around C++; Active Messages gave them an effi-
cient remote method invocation. Many new librar-
ies were being developed to provide distributed
data structures, numerical routines, scheduling,
and so on; here too Active Messages provide a
qualitatively better implementation technique than
traditional message passing. Even the MPI effort to
standardize conventional message passing had to
explain that it was not exposing Active Messages
to its users.

We did not expect Active Messages itself to
become a programming model; it was intended as
a compilation target and as a means of implement-
ing the protocols associated with programming
models. However, many programmers preferred to
use Active Messages directly. The basic remote
procedure call implemented by Active Messages
was convenient. It also made it easy to reason
about the inherent communication costs of a paral-
lel algorithm because there was little happening
outside the programmer’s control. Such program-
matic use, rather than the controlled usage within
a communication library or compiler run-time, cre-
ated a tension for the evolution of Active Mes-
sages. If the storage model was relaxed or handlers
ran as first class threads they could do much more,
however, the same level of performance and pre-
dictability could not be assured. Also, whether
handler execution was truly interrupt driven or
just implicit in touching the network came to be an
issue, because the ways of dealing with variables
that are shared between handlers and computation
was slightly different in the two models. General
application use lead us to provide a generic Active
Message interface, rather than a specific one for
each platform, as when it was viewed as a commu-
nication instruction set.

One thing that stands out in our minds is that
much of the success of Active Messages came from
our research model: the actual building of systems
influenced by both compiler writers and architects.
Although the ideas in the paper for how AM
would be implemented on a processor have not
come to pass, it has influenced parallel languages,

84

compilers, machines, libraries, networks, network
interfaces, and theory. The Threaded Abstract
Machine that drove our view of compiling to the
network continues to influence work on multi-
threading and light-weight threads packages and
most message passing libraries have an AM-like
underlying transport layer. Probably the most clear
legacy will be the Virtual Interface Architecture
(VIA) that promises to bring low overhead com-
munication to clusters of PCs and workstations.
VIA follows UNet in forgoing the remote handler
discipline in favor of exposing the remote queues,
but retains the view that user applications have
direct, protected access to the network and can
build up their own protocols. In the coming years
we will see the impact of fast communication on
large commercial applications.

The “implement to understand” point is
worth reiterating. Active Messages was not born as
a “neat idea” that was then implemented to evalu-
ate its performance. We only understood which
features really were as simple as we thought when
we tried to implement a number of alternatives.
Also, we were only compelled to develop Active
Messages after carefully analyzing the implemen-
tations of alternatives by other researchers. The
complexities of the dataflow model, of the message
driven processor, or of distributed cache coherence
state machines only become apparent in real
implementations. In the near future we will get a
wealth of experience with mainstream applications
on top of VIA and memory-based interfaces to fast
cluster interconnects, while the transistor budget
continues to explode, compilers technology
focuses on dynamic languages with broad use of
threads, and network routers become more active.
It seems clear that the question of how to efficiently
integrate communication with computation will
continue to be a crucial one.

We would like to thank the agencies and indi-
viduals that made such a difference in the impact
of Active Messages. The work was supported by a
collection of “exploratory” funding sources: the
NSEF PYI program, an IBM fellowship, Sandia Lab-
oratory, and a Semiconductor Research Corpora-
tion fellowship. We managed to squeeze time on
the nCUBE at Sandia; nCUBE loaned us a little
machine and helped out with the Vertex kernel;
Thinking Machines Corp. found a way to get an
early machine to UCB at a discount and Moose
answered our questions at midnight PST. The
flame was kept burning by several people that
built follow-on Active Message layers, including
Alan Mainwaring, Adam Greenberg, Rich Martin,
Lok Tin Liu, Chad Yoshikawa, Chris Scheinman,
Anindya Basu, and Matt Welsh. We thank our
good friends at MIT for the work on Id90, Mon-
soon and the J-Machine, which stimulated this
investigation.

RETROSPECTIVE:

The Turn Model for Adaptive Routing
Lionel Ni

Department of Computer Science
Michigan State University, East Lansing, MI 48824
ni@cps.msu.edu

& shen the Caltech Cosmic Cube [1] was

implemented in 1981, it triggered a new wave on
parallel processing and refreshed interest in hyper-
cube topology. The research community has stud-
ied various direct network architectures, especially
the k-ary n-cube, and their topological properties.
Based on the underlying graph-theoretical model,
many new theories and properties, such as routing
paths and graph embedding, were discovered for
various network topologies.

From the practical aspect, the demand of low
communication latency had inspired the design of
new switching mechanisms. In 1985, the wormhole
routing (now also called wormhole switching or
cut-through switching) was implemented in the
torus routing chip [2]. While the wormhole routing
can significantly reduce the communication
latency, it can also introduce a unique deadlock sit-
uation, which is quite different from those in other
traditional switching mechanisms, such as the
store-and-forward switching. Although the con-
cept of virtual channels was proposed in [3] as a
possible approach to avoid deadlock, early multi-
computers used fixed routing paths, mainly based
on dimension order routing, to avoid deadlock due
to cost and performance reasons from virtual chan-
nels or multiple physical channels. The channel
dependence graph model [3] was considered as the
theoretical foundation to develop deadlock-free
routing algorithms.

In January 1991, I offered a graduate-level
course on Advanced Computer Systems at Michi-
gan State University. Due to our past research
interest in multicast communication on multicom-
puters, message routing was a focus in the course.
When studying the 2D mesh network, I mentioned
that if we could double the number of channels in
both X and Y dimensions, it would support fully

85

adaptive routing. As a homework problem, stu-
dents were asked to prove that the adaptive rout-
ing in 2D mesh networks could be supported by
doubling only the channels in either X or Y dimen-
sions. Students had to find out a total ordering of
those channels to prove the deadlock-free property.
As an open question, students were asked to think
about what is the minimum number of channels
required to support adaptive routing.

Chris, now Dr. Glass, was a Ph.D. student
looking for his dissertation research topic. Due to
the similarity between the routing algorithm and
his interest in the street-walking algorithm (how to
walk most quickly from one location to another
along the rectilinear streets of a city), Chris chose
this topic as his term project. In March 1991, he
completed the technical report entitled “Adaptive,
Deadlock-Free, Wormhole Routing in k-ary n-
cubes.” The concept of turn model was first pre-
sented in this report. Chris attempted to use a sys-
tematic approach to develop the most flexible
routing algorithms without adding extra channels.
This elegant turn model then became the core of
his Ph.D. dissertation research. He developed a flit-
level network simulator to further verify and eval-
uate different routing algorithms. We were sur-
prised to find out that under uniform traffic,
adaptive routing does not provide better perfor-
mance than static dimension order routing. We
first thought that something was wrong with the
simulator. However, we then realized that there
was nothing wrong with the simulator or our
results. In his dissertation research, Chris demon-
strated how to apply the turn model to various
topologies. In the case of hypercube, the turn
model helped to develop a new partially adaptive
routing algorithm. He also showed the influence of
various input and output channel selection policies

on the network performance. Finally, he proposed
the first fault-tolerant wormhole routing algorithm
that can handle dynamic faults [4].

Significant research has since been engaged in
the design of new and improved adaptive worm-
hole routing algorithms, fault-tolerant wormhole
routing algorithms, and routing algorithms for
other network topologies including irregular net-
work topologies. Some new theories were pro-
posed. The most notable one was the sufficient and
necessary condition for deadlock-free wormhole
routing [5]. Some aggressive routing algorithms
based on deadlock detection and recovery were
proposed. The turn model was also applied to the
development to multicast routing algorithms. This
research area has grown rapidly and almost
reached a level of maturity. A comprehensive treat-
ment of these important topics and engineering
issues in the design of interconnection networks
can be found in the recent book [6]. Adaptive
wormhole routing was adopted in later generation
parallel computers. Research interests in this area
have moved to other important topics, such as effi-
cient network interface design, and to other related
areas, such as cut-through switch architecture in
high-speed networks.

86

References

(1

2]

C.L. Seitz, “The Cosmic Cube,” Communications of
the ACM, vol. 28, no. 1, pp. 22-33, January 1985.

W.J. Dally and C.L. Seitz, “The torus routing chip,”
Journal of Distributed Computing, vol. 1, no. 3, pp.
187-196, October 1986.

W. J. Dally and C.L. Seitz, “Deadlock-free message
routing in multiprocessor interconnection
networks,” IEEE Trans. on Computers, Vol. C-36, No.
5, pp- 547-553, May 1987.

C.J. Glass and L. M. Ni, “Fault-tolerant wormhole
routing in meshes,” Proc. of the 23rd International
Symposium on Fault-Tolerant Computing, pp. 240-
249, June 1993.

J. Duato, “A necessary and sufficient condition for
deadlock-free adaptive routing in wormhole
networks,” IEEE Trans. On Parallel and Distributed
Systems, vol. 6, no. 10, pp. 1055-1067, October 1995.

J. Duato, S. Yalamanchili and L. M. Ni,
Interconnection Networks: An Engineering Approach,
IEEE Computer Society Press, 1997.

RETROSPECTIVE:

Alternative Implementations of Two-Level Adaptive Training Branch
Prediction

Tse-Yu Yeh

Intel Corporation,
Santa Clara, CA
tyyeh@mipos2.intel.com

ri]Ew Two-Level Adaptive branch predictor was
conceived at Michigan during October, 1990. At
the time, we and Mike Butler, another Michigan
Ph.D. student in the HPS research group, were col-
laborating extensively with Mike Shebanow, Mitch
Alsup, and Hunter Scales, all of Motorola, on a
paper showing that Instruction Level Parallelism
was greater than two [1].

The collaboration was initiated by Mike She-
banow, a designer of Motorola’s MC88120. She-
banow was one of the original inventors of the
HPS execution model, which attempted to obtain
performance by wide-issue instruction supply and
multiple deep pipelines with out-of-order execu-
tion to prevent blocking. He had shown as early as
1984 that more than 1/3 of the potential perfor-
mance of an HPS microengine was lost due to
branch prediction misses, and had proposed [2] his
Autocorrelation Predictor as a way to improve on
the saturating two-bit up-down counter [3], which
was the most accurate predictor at that time. As
part of that collaboration, Tse-Yu Yeh and Mike
Butler worked with Shebanow at Motorola the pre-
vious summer, and Yale Patt visited Motorola reg-
ularly. Our studies that summer, based on the HPS
paradigm, confirmed that the amount of work that
would be thrown away due to a branch mispredic-
tion was prohibitively far too large. Thus, anything
less than a very aggressive dynamic branch predic-
tor was unacceptable.

The outgrowth of that summer resulted in the
Two-Level Adaptive Branch Predictor. It was first
published in Micro-24, in November 1991 [4], fol-
lowed by the more comprehensive study in ISCA-
1992 [5].

Tse-Yu Yeh presented the concept at the Uni-
versity of Michigan Industrial Affiliates meeting
(IPoCSE) in Ann Arbor, in April, 1991, with repre-
sentatives of Intel in attendance. At the time, Intel

Yale N. Patt

Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109

87

patt@eecs.umich.edu

was already strongly considering a wide-issue,
deeply pipelined implementation of the x86 archi-
tecture, and knew that the two-bit saturating
counter mechanism would not provide sufficient
prediction accuracy. Their reaction to the Two-level
predictor was one of excitement. They subse-
quently adapted the model to their needs in what
came to be the Pentium Pro microprocessor. The
Two-Level predictor has continued to evolve since
its beginnings in 1990, by its originators at Michi-
gan and by other researchers at many major uni-
versity and industrial research centers. Pan et. al.
[6] introduced the GAs predictor, which took
advantage of correlation among branches in the
same equivalence class. McFarling [7] modified the
use of the history register for indexing into the Pat-
tern History Tables, reducing negative interfer-
ence. He called his branch predictor gshare. Nair
[8] suggested the History Register keep track of the
history of the path of previous branches, rather
than the history of their directions. Chang [9] aug-
mented the set of Pattern History Tables of two-bit
counters with a table of target addresses to handle
indirect branches. Several authors have suggested
combining compile-time information with the
dynamic predictor. Chang [10] suggested classify-
ing branches at compile time so that the dynamic
predictor would only be used on non-unidirec-
tional branches, reducing interference. Sechrest
[11] investigated the role of adaptivity in the PAg
Two-Level predictor. Young [12] proposed using
profiling and code restructuring to allow static pre-
diction while achieving prediction accuracies
approaching that of a dynamic Two-Level predic-
tor. Recently, Evers [13] has begun to study exactly
how many of the branches in the History Register
really contribute to predictions, and which simply
get in the way.

In summary, in 1990, it was clear to us that if
the HPS paradigm, with its wide-issue instruction
supply and multiple deep pipelines, was to be suc-
cessful, then a very accurate branch predictor
would have to be developed, since at that time,
none existed. The result of our work was the Two-
Level predictor. Today, the Two-Level predictor
has been implemented in multiple commercial
microprocessors, and branch prediction papers
extending the predictor appear at virtually every
major conference from research groups at many
major universities.

Tse-Yu Yeh received his Ph.D. from Michigan
in EECS in 1993 and has been at Intel since then.
He is currently a microarchitecture manager work-
ing in the Merced project. Yale Patt continues to
teach both freshmen and graduate students and
direct the research of Ph.D. students at Michigan in
high performance computer implementation. Mike
Shebanow is now CTO and Vice President of HAL
Computer Systems in Campbell, CA, where he is
responsible for the development of very aggressive
high performance microprocessors. The early
research was supported by Motorola, NCR and
Intel. Particular acknowledgment is due to Dave
Mothersole of Motorola, Lee Hoevel, formerly of
NCR, and Fred Pollack, Konrad Lai and Bob Col-
well of Intel for believing in and supporting the
early work.

References

[1] M.Butler, T-Y Yeh, Y. Patt, M. Alsup, H. Scales, and
M. Shebanow, “Single Instruction Stream
Parallelism is Greater than Two,” Proc. 18th
International Symposium on Computer Architecture,
May, 1981.

Michael C. Shebanow, “Autocorrelation Branch
Prediction,” unpublished technical report, 1984.
James E. Smith, “A Study of Branch Prediction

Strategies,” Proc. 8th International Symposium on

(2]
3]

88

[6]

[7]

[10]

[11]

[12]

[13]

Computer Architecture, pp. 135-148, 1981.

Tse-Yu Yeh and Yale N. Patt, “Two-Level Adaptive
Branch Prediction,” Proc. 24th International
Symposium on Microarchitecture, pp. 51-61, 1991.
Tse-Yu Yeh and Yale N. Patt, “Alternative
Implementations of Two-Level Adaptive Branch
Prediction,” Proc. 19th International Symposium on
Computer Architecture, pp. 124-134, 1992.

S.-T. Pan, K. So and J. T. Rahmeh, “Improving the
Accuracy of Dynamic Branch Prediction Using
Branch Correlation,” Proc. 5th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 76-84, 1992.
Scott McFarling, Combining Branch Predictors,
Technical Report, TN-36, Digital Western Research
Laboratory, June, 1993.

Ravi Nair, “Dynamic Path-Based Branch
Correlation,” Proc. 28th International Symposium on
Microarchitecture, pp. 15-23, 1995.

Po-Yung Chang, Eric Hao and Yale N. Patt,
“Predicting Indirect Jumps using a Target Cache,”
Proc. 24th International Symposium on Computer
Architecture, pp.274-283, 1997.

Po-Yung Chang , Eric Hao, Tse-Yu Yeh and Yale N.
Patt, “Branch Classification: A New Mechanism for
Improving Branch Predictor Performance,” Proc.
27th International Symposium on Microarchitecture,
pp-22-31, 1994.

Stuart Sechrest, Chih-Chieh Lee and Trevor
Mudge, “The Role of Adaptivity in Two-Level
Adaptive Branch Prediction”, Proc. 28th
International Symposium on Microarchitecture, pp.
264-269, 1995.

Cliff Young and Michael D. Smith, “Improving the
Accuracy of Static Branch Prediction Using Branch
Correlation,” Proc. 6th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp.232-241, 1994.

Marius Evers, Sanjay J. Patel, Robert S. Chappell
and Yale N. Patt, “An Analysis of Correlation and
Predictability: What Makes Two-Level Branch
Predictors Work”, Proc. 25th International
Symposium on Computer Architecture, 1998.

RETROSPECTIVE:

The Cedar System

A. Veidenbaum*
C. D. Polychronopoulos*

D. H. Padua*

P-C. Yew" D. J. Kuck**

K. Gallivan™

* Authors are with CSRD of the University of Illinois at Urbana-Champaign (**Emeritus)
00 Author is with the Dept. of Computer Science at the University of Minnesota, Minneapolis
(D Author is with the Dept. of Computer Science at Florida State University

Project Goals

The Cedar project was officially started in 1984
following many years of research by our group in
parallelizing compilers, parallel algorithms, and
vector and multiprocessor architecture. At the
time, multiprocessing was not universally
accepted as a way to speed up the execution of a
single program. The primary goal of the Cedar
project was to “demonstrate that the supercomput-
ers of the future can exhibit the general-purpose
behavior and be easy to use” . We felt that major
advances in the state of hardware technology,
architecture, compilers, and parallel algorithms
made such a demonstration possible. A two-phase
approach was advocated: the construction of a 32-
processor prototype followed by a production sys-
tem with thousands of processors. We stated that
“the prototype design must include the details of
scaling the prototype up to a larger, faster produc-
tion system”. Both “architectural and technological
upward” scalability was required. Another goal
was to have the prototype “achieve Cray-1 speeds
for programs written in high-level languages and
automatically restructured” by a compiler. Finally,
“an integral part of the design... was to allow mul-
tiprogramming”.

1. The quotes are from the [GKLS83] reference in
the 1993 ISCA-20 paper.

This research was supported by the Depart-
ment of Energy under Grant No. DE-FG02-85ER25001
and by the National Science Foundation under Grants
No. US NSF-MIP-8410110 and NSF-MIP-89-20891, an
NSF PYI grant NSF-CCR-89-57310, and support from
several industrial affiliates including Alliant, IBM, AT&T,
DEC, and CDC.

89

General Programming Model

Cedar was to be a scalable shared memory
multiprocessor to achieve programmability. To
avoid problems with control of a parallel computa-
tion and high synchronization overhead that had
proved fatal in some of the previous systems, “a
hierarchy of control” was to be used and a macro-
dataflow model of computation was defined. A
program was to be decomposed into a set of tasks,
a dataflow graph of the tasks built and directly
executed. A ready task in the macro-dataflow
graph could be scheduled on one or more clusters.

The architecture was to be constructed as a
hierarchy as well and consist of “processor clus-
ters”, each with a local memories, switch, and
“synchronization unit”. The clusters were con-
nected to shared memory and had an ability to
overlap cluster computation with shared to local
memory moves. The “processor cluster” was to be
a basic schedulable unit. The memory was to be
organized as a hierarchy and a compiler was to
assist in managing it. In particular, a form of soft-
ware-managed caching of shared memory data in
cluster local memory was to be provided.

Original Architecture Requirements

The architecture definition of the Cedar system
was driven by the above considerations. The sys-
tem architecture requirements were distilled to the
now familiar list below.

* Shared memory. To achieve high bandwidth it
was to use:

2

¢ an “interleaved” design, separate from
cluster memory and with its own
network,

¢ high-bandwidth, low latency
interconnect. A multistage design was
to be used to avoid latency problems of
the earlier, mesh-connected computers.

¢ Support for multiple levels of program parallel-
ism

e Lfficient synchronization and scheduling support via
a processor in memory

® Memory hierarchy, with software-controlled data
“caching” in cluster memory

¢ Data and code prefetching

® Scalability to a larger number for processors
Implementation

Some original implementation ideas were
modified in the course of the project in light of
schedule and/or hardware constraints. For exam-
ple, hardware control of macro-dataflow schedul-
ing was shifted to software with efficient hardware
synchronization support. Some of the more com-
plex memory-based synchronization primitives
were not implemented. Finally, the degree of mem-
ory interleaving was reduced by a factor of 2. Even
so the resulting board size, packaging complexity,
and the need for new surface-mount packaging
pushed the limits of technology and delayed
project completion.

Architecture/Hardware

The emergence in 1983-84 of small, high per-
formance multiprocessors, such as Alliant and
Elxsi, allowed us to avoid building our own “clus-
ters” but also limited some of our architectural
options. The Cedar team designed and built the
Omega networks, shared memory/synchroniza-
tion processor boards, network interface boards,
and performance monitoring hardware. Our hard-
ware linked four Alliant “clusters” into the shared-
memory multiprocessor. The resulting system led
the introduction of many new architecture and
software ideas now commonly found in scalable
MPs and even small symmetric MP systems. These
are described next, followed by our retrospective
view on improving them.

® Shared memory. Word-interleaved, UMA shared
memory was part of the virtual address space
and directly accessible via processor instruc-
tions. It was not cached and was physically sep-
arate from cached “cluster” memory. Shared
memory is now implemented in three out of
four U.S.-made scalable MP systems, with mes-
sage passing architectures in retreat. If allowed
to change one thing about our implementation it
would be to provide a direct path between

shared and cluster memories, which was diffi-
cult due to our use of Alliant clusters.

* Shared memory-based synchronization. Read-mod-
ify-write indivisible operations commonly used
in bus-based system are extremely inefficient in
large-scale systems due to interconnect latency
and contention. Cedar implemented Test-And-
Set and other Fetch-and-Op primitives via a fast
processor in memory. A 32-bit Fetch-And-Add
operation cost two extra clocks over a regular
read.

* Omega network interconnect. The network used a
buffered, self-routing design. Measurements on
the actual hardware helped to better understand
the effect of multi-word requests, such as vectors
or cache lines, and of a processor’s limit on the
number of outstanding requests on network per-
formance. Simple traffic throttling at the net-
work interface would have been the most
valuable addition. This type of network is now
used in IBM'’s SP2 systems.

* Per-processor strided block prefetch unit and a tagged
storage buffer. ~ This unit, operating indepen-
dently of its processor could fetch and re-order
up to 8KBytes of data. It was limited by lack of
address translation. Prefetching is now widely
supported by commercial scalable MPs. The
most valuable change would have been to
prefetch into cluster memory as originally
planned and to wuse multiple prefetch
units/buffers.

* Weak shared memory consistency. To improve pet-
formance, Cedar allowed buffering of reads,
writes and prefetches and had out of order
memory request completion due to the intercon-
nect. The interface hardware “blocked” the issue
of synchronization operations until all previ-
ously issued shared memory requests com-
pleted. Relaxed consistency models are now
widely used in commercial systems.

* Use of clusters. Alliant was chosen for its basic
processor performance and similarity in pro-
gramming model, the latter due to Alliant’s
founders having been influenced by interaction
with our group. An 8-processor Alliant “cluster”
efficiently supported vector/parallel computa-
tions and we extended parallelism by another
level. As a result, Cedar could support three
levels of parallelism, memory, and synchroniza-
tion hierarchy in hardware.

Software

The Cedar system software supported an
explicit parallel API which included nested
DOALLSs, task management, data placement as pri-
vate/shared, and synchronization. Many of the

API features have now been incorporated in
OpenMP, a portable parallel programming stan-
dard. Standardization of the interface will
undoubtedly help to speed up the acceptance of
parallel programming.

A single system image for parallel programs
was provided by the Xylem OS kernel running on
top of a cluster’s Unix system. Xylem implemented
global, dynamic task creation and scheduling the
assigning of tasks to available clusters. A single
shared memory virtual address space was sup-
ported, across all clusters, while private memory in
each cluster was individually managed. File sys-
tems in each cluster were made available to the
user as a single abstraction. The single system
image OS for parallel computers is still a research
topic and is another area where standardization
would help make parallel processing more usable.

Cedar automatic compilation goals were very
ambitious and were only partially met during the
project. Many of the ideas have since been imple-
mented in other compilers for both uni- and multi-
processors. In particular, automatic detection of
parallelism and management of the memory hier-
archy made great strides during and since the
project. The concept of compiler-based coherence
was widely explored and program restructuring to
optimize for a cache hierarchy is now widely used.

Macrodataflow ideas of the Cedar project led
to many novel scheduling algorithms for arbi-
trarily nested loops and for general task-graph
program models. A more lasting impact came from
some of our research work on the efficient and
transparent combination of parallel processing and
multiprogramming (or equivalently, multithread-
ing and multiprogramming). Results of that work
were incorporated in a number of commercial
compilers and operating systems, with the latest
being the SGI Irix 6.5.

In addition, parallel algorithm design during
the project made great strides in understanding
and optimizing for a complex parallel/memory
hierarchy, with some of the ideas now appearing in
compilers and numerical libraries. For example,
the BLAS3 were first implemented for the Cedar
linear algebra applications.

Performance evaluation

At the start of the project, Livermore loops
were a standard benchmark used by the commu-
nity. An important effort spearheaded by the
Cedar staff was the creation of a user group to
define a standard set of application benchmarks.
This led to the “Perfect Club” benchmark suite.
The group was later merged with the SPEC consor-
tium and the codes became the first version of the
SPEC-HPG benchmarks. Cedar performance was

91

carefully evaluated using these and other bench-
mark applications/algorithms. It led to better
understanding of architecture, compilation, and
application programming through hardware and
software performance monitoring. The original
performance target of the project, Cray-1 perfor-
mance on a wide range of high-level language pro-
grams, was demonstrated. In many cases
performance scalability matched that of the later
Cray model, 8-processor YMP.

Finally, during the project a set of practical par-
allelism tests was defined to quantify how well a
parallel system performed. In particular, they
stressed delivered performance, scalability, and
programmability. These tests are still very relevant
today and having today’s multiprocessors pass the
tests remains a great challenge.

Conclusion

The multiprocessor design space is very large
and has not yet been sufficiently explored. We
believe there is a continuing need to study scalable
MP systems, especially in light of current and
future hardware and software capabilities. Archi-
tectural ideas cannot be studied in isolation and
require an interdisciplinary team of hardware,
architecture, system and application software
experts to collaborate. Such a team cannot settle for
simulation studies; it needs to develop and experi-
ment with real systems. Testing ideas via imple-
mentation, especially their interdisciplinary
verification is a key to developing successful archi-
tectures. In particular, this avoids the benchmark-
ing syndrome of replacing all
application/algorithm experience with simple
codes. It also allows the actual concerns, modes of
operation, and preferences of one group of experts
to be communicated to the others concretely.
Finally, ‘overlapped’ development and research
nurture each other and greatly accelerate progress.
Most of the above happened on the Cedar project
and was both a major achievement and a key to
our success.

The potential to speed up program execution
by increasing the number of processors continues
to hold great promise. This has now been demon-
strated by several large production systems on a
number of applications. It is also becoming com-
mon-place as a cost-effective means of enhancing
desk-top performance via parallelism. However,
widespread use of parallel programs is still being
hampered by programming and performance tun-
ing complexity, architectural bottlenecks, and by
their high cost additionally limiting availability of
scalable systems. Overcoming these obstacles
remains a grand challenge.

RETROSPECTIVE:

Virtual Memory Mapped Network Interface for the SHRIMP
Multicomputer

Matthias A. Blumrich
Cezary Dubnicki

Department of Computer Science,
Princeton University, Princeton, NJ 08544

Introduction

This paper is the first paper reporting the
SHRIMP project at Princeton [1]. It describes the
design of a network interface that implements a
virtual memory-mapped communication model
for protected, user-level communication.

The vision of the SHRIMP project was to inves-
tigate how to use commodity PCs and commodity
software (including operating systems) as building
blocks to construct scalable, inexpensive servers
that can deliver performance comparable to or bet-
ter than custom-designed multicomputers. A chal-
lenge was to deliver communication performance
to applications that was close to the hardware
limit. This paper was the result of our effort to
design network interfaces to support protected,
user-level communication.

In this retrospective, we would like to describe
where our ideas came from, how the research
project started, how we wrote the paper, how well
the ideas worked out, and the current state of the
SHRIMP project.

Lessons from the PRAM Project

The most significant influence on our network
interface design was the lessons learned from the
Pipelined RAM (PRAM) project [2, 3], an effort
from the Massive Memory Machine project at Prin-
ceton. The PRAM prototype used a physical mem-
ory-mapped network interface and a broadcast
switch to connect multiple machines together.

The prototype PRAM network interface used
32 Kbytes of dual-ported SRAM, where one port of
the SRAM connected to the I/O bus and the other
connected to the broadcast network. A 4-port
broadcast network switch was built, and a cluster
of four PCs was operational between 1987 and
1990. The one-way latency to move data between
the SRAM memories of two 386 PC’s over the

Kai Li
Edward W. Felten Jonathan Sandberg"

92

Richard D. Alpert

Ei\/[organ Stanley,
1585 Broadway, New York, NY 10036

PRAM network interfaces and the broadcast
switch with optical links was about 10 microsec-
onds.

Kai Li and Jonathan Sandberg discussed les-
sons learned from the PRAM effort on several
occasions in 1989 and 1990. They felt that the mem-
ory-mapped communication model is good
because it is simple and imposes very little over-
head. On the other hand, physical memory-
mapped communication has several limitations.
First, it does not allow multiple processes to use
the network simultaneously. Second, the PRAM
network interface used an <address, data> pair for
every remote update. Therefore, the communica-
tion mechanism was inefficient for large block
transfers since half of the bandwidth was used by
addresses. Third, using a relatively small dual-
ported SRAM on the network interface made the
implementation simple, but required copying on
both the sending and receiving sides to support
applications. Fourth, PRAM offered a variant of
shared memory, but it was not very easy to pro-
gram. Finally, it is difficult to scale up a broadcast
network.

These lessons led us to develop a list of
requirements (or a wish list) for the network inter-
face we would like to build. We thought an ideal
network interface should have the following fea-
tures. First, it should use a virtual memory-
mapped communication model, instead of a physi-
cal memory-mapped communication. The virtual
memory-mapped communication model can take
advantage of the virtual memory management
unit to support multiprogramming. Second, the
network interface should transfer data between the
host main memories (as opposed to dedicated
memories on the network interfaces). Third, the
network interface should combine updates to con-
secutive addresses into a single packet to utilize
the network well. Fourth, the network interface
should support an efficient, remote DMA mecha-
nism that could move data from one virtual

address space to another across the network. Fifth,
one should use a modern routing network rather
than a broadcast network. Finally, the network
interface should support shared virtual memory
well. This long list laid the foundation of the net-
work interface we designed for the SHRIMP multi-
computer.

Starting the SHRIMP Project

A combination of several factors started the
project in the fall of 1992. At a DARPA PI meeting
at Daytona Beach in September 1992, Chuck Seitz
gave an inspired talk on the chipsets his research
group was trying to build at Caltech, based on
their Caltech Router and Mosaic multicomputer.
Afterwards, David DeWitt, Kai Li, Richard Lipton,
and Jeffrey Naughton talked about building PC
clusters using a scalable network. They got
together with then DARPA program managers
Brian Boesh and Gil Weigand to discuss the idea,
and received encouragement to submit a white
paper. At the DARPA PI meeting, Kai Li spoke
with graduate student Matthias Blumrich about
the vision of the project. Blumrich was very inter-
ested, and decided that he wanted to design the
network interface hardware. Blumrich and Li
started investigating the tradeoffs involved in
using Caltech routers, including chip testing and
switch designs.

Kai Li presented the idea to several people at
Intel including Paul Close, George Cox, Konrad
Lai, Fred Pollack, and Justin Rattner, and discussed
the tradeoffs of using the Caltech routing chips, the
Intel Delta multicomputer routing backplane (built
with the Caltech routers) and using the Paragon
multicomputer routing backplane. The best choice
was to use the Paragon routing backplane and
Intel Supercomputer Systems Division agreed to
provide the routing backplane and technical help.

Kai Li, Richard Lipton, David DeWitt and Jef-
frey Naughton wrote a white paper and submitted
it to DARPA at the end of 1992. This white paper
contained the original vision of the SHRIMP
project, design tradeoffs, and a project plan. A col-
league of DeWitt and Naughton, Michael Carey,
contributed the acronym SHRIMP for Scalable
High-performance Really Inexpensive MultiPro-
cessor. According to the white paper, the Pls at
Princeton would lead the effort of building the
multicomputer, and the PIs at Wisconsin would
use it in their parallel database research.

We began the design work on the network
interface at the end of 1992, though the project was
formally underway in 1993. In that year, Cezary
Dubnicki and Richard Alpert joined to help on the
software side. Cezary eventually implemented

93

most of the system software, and Richard imple-
mented the NX message-passing library. In the fall
of 1993, Doug Clark and Ed Felten joined Princeton
faculty and started working together on the
project.

We were developing two network interfaces at
that time. The first one was called SHRIMP-I, a
“quick-and dirty” design that would allowed us to
rapidly build a system to support virtual memory-
mapped communication [4]. We soon found out
that it was too much of a distraction in a relatively
small project to have two hardware efforts, so we
discontinued the SHRIMP-I effort. The second net-
work interface is the one described in the paper
and has been sometimes referred to as SHRIMP-II,
or just SHRIMP.

Writing the Paper

The network interface for the SHRIMP multi-
computer contains everything we had in the
requirement list mentioned above. Towards the
end of 1993, the design was complete and we had
detailed hardware simulation with Mentor CAD
tools.

We had several discussions about whether we
should write the paper at that time or wait until
the hardware was working. The main argument
against writing the paper was a desire to wait until
we had some experimental experience. There were
several arguments for writing the paper. First, we
wanted to share our ideas in a timely fashion with
the ISCA community, where several groups were
creating related projects (UC Berkeley started their
NOW project toward the end of 1993, for example).
Second, the network interface design was complete
and we had simulated the hardware with CAD
tools. Third, we had also built a simulator based on
PVM for software development and used it to
show that the communication model worked well.
Based on these arguments, we decided to write the
paper.

Douglas Clark contributed to the network
interface design but he decided to remove his
name from the co-author list. He felt that his con-
tributions were not substantial, though we felt dif-
ferently. In retrospective, we should have insisted
further having him as a co-author.

Did the ideas hold up?

There are several ideas in the paper. The main
idea was to use the network interface to support
the virtual memory-mapped communication
model. This idea was successfully confirmed with
working prototypes later [5,6].

The idea of using automatic update to perform
“zero-overhead” communication and to support
shared virtual memory also worked out well,
according to our experience implementing the
AURC shared virtual memory protocol [6,7].

After publishing the ISCA ‘94 paper, we found
that although the deliberate update mechanism
that used a single instruction to initiate a data
transfer was efficient, it was too restrictive in some
ways. Most significantly, it required a static, many-
to-one mapping from send buffers to a receive
buffer, whereas many libraries and applications
need the ability to initiate a data transfer from any
send buffer to any remote receive buffer, at any off-
set. We later changed the implementation with a
technique called User-level DMA or UDMA [8],
which requires a two-instruction sequence to ini-
tiate a protected user-level block data transfer, but
remedies the limitations of the mechanism
described in the paper.

The SHRIMP project served as an umbrella for
a lot of varied systems research at Princeton, work
that was described in several ISCA papers [5,6,9]
as well as papers published elsewhere.

Now the cycle is turning again. Drawing on
the lessons of SHRIMP, we have built new systems
based on more modern PCs, SMPs and Myrinet
network interface hardware, combined with a cus-
tom firmware implementation of the virtual mem-
ory mapped communication model [10,11].

Acknowledgments

The SHRIMP project is sponsored in part by
DARPA under grant N00014-95-1-1144, by NSF
under grant MIP-9420653, and by Intel Corpora-
tion.

We would like to thank Paul Close, George
Cox and Justin Rattner for helping us access the
routing network technology used in the Intel Para-
gon multicomputer, David Dunning and Roger
Traylor for patiently helping us understand the
details of the Intel MRCs and NICs, Konrad Lai
and Wen-Hann Wang for helping us understand
the memory subsystem of Pentium, and Malena
Masarina for her help in designing the “SHRIMP-
I” network interface. We also would like to thank
David DeWitt, Richard Lipton, and Jeffrey Naugh-
ton for their help to start the research project, and
Michael Carey for his contribution of the acronym
SHRIMP.

94

References

(1]

[7]

[11]

Matthias A. Blumrich, Kai Li, Richard Alpert,
Cezary Dubnicki, Edward W. Felten and Jonathan
Sandberg, “Virtual Memory Mapped Network
Interface for the SHRIMP Multicomputer,” Proc. of
21st Annual International Symposium on Computer
Architecture, April 1994. Pages 142-153.

Richard J. Lipton and Jonathan S. Sandberg,
“PRAM: A Scalable Shared Memory,” Technical
Report CS-TR-180-88, Princeton University,
September 1988.

Jonathan S. Sandberg, “The Design of the PRAM
Network.,” The 2nd IEEE Symposium on Parallel and
Distributed Processing, December 1990. Pages 367-
372.

Matthias A. Blumrich, Cezary Dubnicki, Edward
W. Felten, Kai Li and Malena R. Mesarina, “Virtual
Memory Mapped Network Interfaces,” IEEE
MICRO, 15(1): 21-28, February 1995.

Edward W. Felten, Richard D. Alpert, Angelos
Bilas, Matthias A. Blumrich, Douglas W. Clark,
Stefanos N. Damiankis, Cezary Dubnicki, Liviu
Iftode and Kai Li, “Early Experience with Message
Passing on the SHRIMP Multicompute,” Proc. 23rd
International Symposium on Computer — Architecture,
May 1996. Pages 296-307.

Matthias A. Blumrich, Richard D. Alpert, Yuqun
Chen, Douglas W. Clark, Stefanos N. Damianakis,
Cezary Dubnicki, Edward W. Felten, Liviu Iftode,
Kai Li, Margaret Martonosi and Robert A. Shillner.,
“DesignChoicesintheSHRIMPSystem: AnEmpirical
Study.,” Proc. 25th Annual International Symposium
on Computer Architecture, June 1998.

Liviu Iftode, Cezary Dubnicki, Edward W. Felten
and Kai Li, “Improving Release-Consistent Shared
Virtual Memory using Automatic Update.,” Proc.
2nd International Symposium on High-Performance
Computer Architecture, February 1996, pp. 14-25.
Matthias A. Blumrich, Cezary Dubnicki, Edward
W. Felten and Kai Li, “Protected, User-level DMA
for the SHRIMP Multicomputer,” Proc. 2nd
International ~ Symposium on High Performance
Computer Architecture, February 1996, pp. 154-165.
http:/ /www.cs.princeton.edu/shrimp

Cezary Dubnicki, Angelos Bilas, Kai Li and Jim F.
Philbin., “Design and Implementation of Virtual
Memory-Mapped Communication on Myrinet,”
Proc. 11th Int. Parallel Processing Symposium, April
1997.

Cezary Dubnicki, Angelos Bilas, Yuqun Chen,
Stefamos N. Damianakis and Kai L, “SHRIMP
Project Update: Myrinet Communication,” IEEE
Micro, 18(1):50-52.

RETROSPECTIVE:

The Stanford FLASH Multiprocessor
Jeffrey S. Kuskin

Computer Systems Laboratory
Stanford University
jsk@moijave.stanford.edu

Since the publication of the initial FLASH paper
in the proceedings of ISCA 1994, the underlying
architecture and goals of the FLASH system and of
the MAGIC chip have remained essentially as
described: to design a multiprocessor node control-
ler (MAGIC) based on a flexible, programmable
protocol processor core while minimizing the pro-
tocol processing overhead caused by using a flexi-
ble, rather than a hardwired, protocol engine.

Although this basic architectural goal remains,
our perspective on the utility of flexibility has
changed over the course of the design. In addition,
as MAGIC and the other parts of the FLASH
machine have moved from paper proposals to
microarchitectural specifications to actual hard-
ware — as of this writing a FLASH system is oper-
ational — we have developed some perspective on
the trials and tribulations of building hardware in
a university environment.

The sections that follow describe the current
project status, our new insights on the benefits of
flexibility, and offer some comments on how to
best approach hardware construction in a univer-
sity.

Project Status

Implementation of the MAGIC chip was the
focus of the FLASH design effort. Initial plans
called for a collaborative development effort with
the Supercomputer Systems Division of Intel. The
Stanford team was to handle the design, Verilog
coding, and most of the verification, and the Intel
team was to handle the physical implementation.
Unfortunately, for business reasons rather than
technical, joint development ended in early 1994
and the team at Stanford assumed responsibility
for physical implementation of MAGIC. We
selected LSI Logic’s LCB500K ASIC process and,

95

much later than hoped, sent MAGIC to LSI for fab-
rication in early 1997. The MAGIC die is 16x16mm,
contains approximately 750K gates, and has 451
signal pins and 700 total pins.

We received MAGIC chips from LSI in late
October of 1997 and successfully booted UNIX on
the first silicon of MAGIC in January 1998. Multi-
processor UNIX booted soon thereafter. As of this
writing, debugging of the multiprocessor configu-
ration continues and plans to construct a 64-proces-
sor FLASH machine are underway. We have
identified only a few minor bugs in MAGIC, most
related to diagnostic functionality; none was seri-
ous enough to impede bring-up activity or com-
promise system operation.

Flexibility

The original paper argued that the main bene-
fit of flexibility was that it allowed a single node
controller design to provide integrated support for
both message passing and cache-coherent shared
memory. Integration of these two communication
mechanisms offers the opportunity to combine in a
single application the fine-grained, unstructured
communication efficiency of cache-coherent shared
memory with the bulk data transport and commu-
nication-computation overlap capabilities of a
message passing system.

With a programmable protocol engine,
MAGIC is able to support both of these communi-
cation mechanisms using the same underlying
hardware simply by loading the appropriate proto-
col code. Indeed, integration of the two protocols is
desirable even if programmers rarely employ both
protocols in the same application. For example, the
FLASH message passing protocol is built on top of
the cache coherence protocol, allowing it to exploit
the deadlock avoidance and performance optimi-

zations present in the cache coherence protocol
and avoiding the need to duplicate much of the
lower-level protocol support code.

Although these observations about the benefits
of flexibility are still valid, as the FLASH design
progressed it became evident that flexibility offers
a second, perhaps more important, benefit: it
allows the node controller to adapt to the system
size and application characteristics. Several perfor-
mance investigations demonstrated that best per-
formance on both small- and large-scale machines
is not achieved with a single cache-coherence pro-
tocol and directory organization. Small-scale
machines, for example, often benefit from a simple
directory format — such as the ubiquitous bitvec-
tor — that minimizes protocol processing over-
head. As the system size scales, however, the
inherent quadratic growth in bitvector’s directory
memory requirements becomes untenable. Degra-
dation into a coarsevector format sacrifices the
ability to maintain precise sharing information and
can increase message traffic and lead to a degrada-
tion in overall system performance. Rather than
continuing to employ a bitvector-like directory for-
mat and protocol, then, larger systems are best
served with a directory format — such as dynamic
pointer allocation — that is inherently more scal-
able in terms of directory memory usage and can
track sharing information precisely even at large
processor counts.

In general, flexibility in protocol choice can
allow a single architecture to achieve robust per-
formance across a range of application and
machine sizes. Because protocols differ substan-
tially in their directory formats, inter-node mes-
sages, and implementation structures, providing a
hardwired implementation of even a small set of
protocols would consume an unacceptable number
of gates. Instead, a flexible solution is desirable
since it permits the system cache coherence proto-
cols, directory formats, and other aspects of low-
level internode communication to be tailored to
the system size and, potentially, the application
mix.

In addition to its ability to support a variety of
communication protocols, MAGIC's flexibility also
has proven extremely useful in system debugging.
One of the first activities during FLASH system
bringup was to implement an interface between a
workstation and MAGIC via the FLASH node
board’s serial port. Protocol code executing on
MAGIC’s protocol processor can read from the
serial port and write to it using a version of the C
“printf” function that runs on MAGIC. This func-

96

tionality has greatly aided bringup by allowing
MAGIC to monitor its own operation and to detect
and report errors to the bringup team.

The cache coherence protocol code, for
instance, is augmented with normal C “assert”
statements. A failing assertion invokes the printf
code to report the problem, and the resulting error
message appears in a window on the workstation.
Indeed, much of the debugging capability present
in the simulation environment used for MAGIC
design verification is available in the actual hard-
ware as well. Flexibility is a critical component of
this feature, since it enables low-level testing and
monitoring of MAGIC and of the protocols it is
running without requiring dedicated hardware
support and with the ability to remove any over-
heads associated with the additional debugging
code when system operation is stable. These capa-
bilities are likely to be extremely difficult to
achieve in a hardwired node controller design
without dedicating considerable hardware
resources solely to debugging support.

Building Hardware in a University
Setting

The design and implementation of FLASH was
a large undertaking, particularly in a university
environment. MAGIC’s complexity and imple-
mentation technology are comparable to contem-
porary industrial projects; the SGI Origin 2000
node controller (the “Hub” chip), for example, was
developed at the same time as MAGIC and has
comparable gate count, ASIC implementation
technology, and target cycle time.

Although completion of the MAGIC design
undeniably took longer than we had planned, in
the end the chip booted UNIX on first silicon, an
achievement even by industrial standards. Several
aspects of the MAGIC implementation effort have
been especially helpful in allowing a small group
of students — as is the case in most university
hardware development efforts — to tackle such a
large design. Surely other academic teams who
have undertaken similarly ambitious (some might
say foolhardy) designs could expand this list.

1. Focus on one design task. For us, this was the
MAGIC chip.

For the rest of the design, leverage as much as
possible from industry, adapting the design to
accommodate what industry can provide. But
make sure what is leveraged will be used and

actively supported by the industrial partner as
well.

. Ensure that at least some design team members
have prior industry experience. Knowledge of
general ASIC, printed circuit board, and system
packaging design and manufacturing proce-
dures is invaluable.

. Take the time up front to build a solid, main-
tainable design infrastructure. This includes
design automation tools, simulation and verifi-
cation frameworks, design methodologies, and
other tools that ultimately will improve the
overall hardware design productivity and qual-

ity.

. Take verification seriously. “If it wasn’t tested, it
won’t work” is accurate. Resist the temptation
to sacrifice verification thoroughness in the
interest of finishing the design sooner.

. Accept that the overall rate of progress in a aca-
demic setting will be slower than in industry.
The comparative lack of resources, experience,

97

and people inevitably leads to longer design
times; schedule accordingly.

Ensure that the project has experienced,
detailed, day-to-day management. If a faculty
member plans to manage the project, be sure he
or she appreciates the time commitment.

Despite these hurdles, designing real hardware
is well within the capabilities of a university team.
MAGIC was a long but ultimately very satisfying
project, and the lessons learned from working
under the constraints of actual hardware — partic-
ularly how these constraints affected the FLASH
system architecture and the architecture and
implementation of MAGIC — were invaluable.

Our ultimate goal is to use a larger FLASH sys-
tem to significantly advance the capabilities of
multiprocessor design research. FLASH permits a
researcher to perform investigations on a real
machine, using realistic problem sizes and an
actual operating system, yet with the ability to con-
trol and monitor the lowest levels of system opera-
tion. These capabilities are not easily achieved with
traditional simulation environments and are a key
benefit of the MAGIC architecture.

RETROSPECTIVE:

Tempest and Typhoon: User-Level Shared Memory

Steven K. Reinhardt*, James R. Larus, and David A. Wood

*EECS Department
University of Michigan
1301 Beal Avenue
Ann Arbor, M1 48109-2122
stever@eecs.umich.edu

Intr oduction

Tempest and Typhoon have emerged as among
the most influential contributions of the Wisconsin
Wind Tunnel project, a collaborative effort with
Prof. Mark D. Hill, several staff members, and a
large group of graduate students. This retrospec-
tive focuses on the origins of the Tempest and
Typhoon ideas and their subsequent evolution.

The Beginnings

The seeds of the project began to germinate in
late 1990 and early 1991 with our effort to rapidly
prototype large-scale shared-memory multiproces-
sors. Because other research groups had a one- to
two-year lead in their prototyping efforts—and
considerably more resources—our project started
with the goal of exploiting the parallel computers
that our department was acquiring with funding
from NSF’s Institutional Infrastructure program.

During this exploratory phase, we made the
essential observation that shared-memory systems
permit a continuum of implementations, ranging
from full hardware support to software simula-
tion/emulation on a message-passing platform.
Moreover, in the middle lies a rich collection of
mixed hardware/software design alternatives.

An internal research note, dated July 9, 1991,
roughly classified these alternatives into five lev-
els:

Level O: Software simulation/emulation. At this
level, shared-memory programs execute on an
unmodified message-passing parallel platform. A
program’s loads and stores are replaced with calls
to routines that simulate the shared-memory
behavior of the proposed design.

98

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street

Madison, WI 53706
wwt@cs.wisc.edu

Level 1: Shared virtual memory. This level incor-
porates Kai Li’s observation that address transla-
tion hardware can be used to map shared memory
references to local pages and detect non-local refer-
ences, albeit at coarse granularity.

Level 2: Fine-grain shaed virtual memory. This
level makes the observation that shared virtual
memory can be implemented at a finer granularity
given a mechanism—such as fine-grain “presence”
bits—to detect when cache blocks are not stored
locally.

Level 3: Local hardware support.This level begins
to blur the distinction between a test-bed and a
prototype. It extends level 2 with hardware sup-
port to initiate requests and handle responses on
misses to remote data.

Level 4: Remote hardvare support.The final level
adds hardware support to handle external requests
to a node’s memory—that is, a directory controller.
This last level encompasses all-hardware imple-
mentations.

Initially, we considered these approaches
solely as alternatives for evaluating the hardware
of interest, a highly integrated hardware-centric
system. This discussion lead to the development of
the Wisconsin Wind Tunnel (WWT), the parallel
simulation system that gave our project its name
[9]. The original version of WWT used a parallel
message passing machine (a Thinking Machines
CM-5) to simulate a hypothetical shared memory
machine. WWT is a hybrid of levels 0 and 2, and
uses the CM-5’s ECC bits to implement fine-grain
valid bits. Memory references that access non-local
shared memory cause a trap, because of either a
page fault or an intentionally set ECC error. Fine-
grain access control allowed direct execution of
shared-memory programs, which resulted in a
very fast simulator that permitted rapid evaluation
of hypothetical shared-memory implementations.

Cooperative Shaed Memory

WWT was originally developed to evaluate an
architectural approach called Cooperative Shared
Memory (CSM) [4]. CSM’s central premise was
that hardware and software could cooperate to
support shared memory efficiently. This coopera-
tion took two forms. First, a programming perfor-
mance model helped programmers identify
expensive operations (so they could avoid them
when possible) and helped hardware designers
identify common cases (so they could optimize
them). Second, CSM encouraged hardware design-
ers to concentrate expensive hardware resources
on optimizing frequent operations and to fall back
to software for complex, less frequent cases.

Our programming performance model was
called Check-In/Check-Out (CICO). It asked pro-
grammers to issue an advisory check_out direc-
tive before the expected first use of shared data
followed by a check_in directive after the
expected last use. We further proposed Dir{SW, a
minimal directory protocol that supported CICO-
conforming programs efficiently (i.e., entirely in
hardware). Violations of the CICO model, which
often required more complex protocol operations,
were handled correctly but less quickly by trap-
ping to software. A later version of Dir;SW, called
Dir;SW+, handled some common CICO violations
in hardware as well [12].

Cooperative Shared Memory provided the
philosophic underpinnings of Tempest and
Typhoon. Hardware and software should cooper-
ate to achieve good shared-memory performance.
Programmers should be able to optimize perfor-
mance by exploiting hardware mechanisms. Hard-
ware designers should focus on providing efficient
hardware mechanisms, and, as much as possible,
leave policy to software.

WWT as a Shaed Memory Machine

While designing and developing the Wiscon-
sin Wind Tunnel, we met developers of the emerg-
ing generation of MPPs, the Intel Paragon and
Thinking Machines CM-5. During these meetings,
a frequent misconception was that WWT was a
“real” shared-memory system, not just a test-bed.
Students running programs on WWT also tended
to blur this distinction.

In early 1993, we recognized that WWT was an
interesting fine-grain shared-memory system in its
own right, an observation that led to two parallel
efforts. First, we began to develop a performance-

99

oriented shared-memory system for the CM-5,
simply by removing from WWT the components
that calculated the performance of the hypothetical
hardware. This effort led to the Blizzard systems
(discussed further below).

Second, we realized that a small amount of
hardware support might allow a message passing
machine to achieve competitive shared memory
performance. Our first step in this direction was a
joint project with Thinking Machines and NimBus
to develop an enhanced memory controller (EMC)
that provided first-class fine-grain access control.
The short-term goal was to eliminate the complex,
relatively slow “hacks” required by WWT to
manipulate ECC and synthesize a fine-grain read-
only state via page protection. The longer term
goal was to develop a “smart NI” that could han-
dle the most frequent cases of a simple Dir;SW-like
coherence protocol—most likely with a program-
mable processor. The EMC chip was designed and
fabricated by NimBus. Sadly, Thinking Machines
never used it in a product, largely because of the
additional product risk posed by the enhanced fea-
tures.

Typhoon

Typhoon emerged as the follow-on to the EMC
and “smart NI” approach. To minimize our expo-
sure to Thinking Machines’s marketing decisions,
we envisioned a single ASIC that would not inter-
fere with “normal” operations within a local node.
The ASIC would provide hardware snooping sup-
port for fine-grain access control, an embedded
protocol processor to implement some or all of the
coherence protocol, and a closely coupled network
interface.

A major goal of Typhoon was to increase pro-
gramming flexibility beyond CSM, allowing pro-
grammers to optimize known communication
patterns aggressively. The approach that we chose
was to give programmers direct access to the raw
mechanisms underlying shared-memory proto-
cols. An important difference between Typhoon
and our earlier Dir{SW work came from our real-
ization that many protocols we envisioned needed
flexibility on the requester side, not just on the
directory side. This approach fit well with the
“smart NI” model that called for using a program-
mable processor or controller to access the network
interface. We refer the reader back to the original
paper for the rest of the motivation and design.

Tempest
Programmers needed an abstraction of
Typhoon’s shared-memory mechanisms to

develop protocols. Initially, we borrowed from the
internal WWT interfaces and assigned each mem-
ory block an access control tag. Accesses that con-
flicted with the referenced block’s tag invoked a
user-specified handler. We initially referred to this
abstraction simply as the “tagged block model”.

Two important changes occurred in late 1993.
First, we recognized the fundamental importance
of the programming abstraction. The tagged block
model applied equally well to the nascent all-soft-
ware Blizzard system as to Typhoon, and it clearly
made sense to support the same protocol program-
ming interface on both systems. Although our
original intent was merely to develop a simple
abstraction for Typhoon, we ended up with a pow-
erful abstraction for which Typhoon was just one
implementation. Second, we gave the abstraction a
“first class” name to reflect our appreciation for its
importance. We chose Tempest, in keeping with
the Wind Tunnel group’s practice of naming nearly
everything after a wind (fortunately, children have
been unaffected by this practice).!

Subsequently, the Tempest interface [5] became
the focus of much of the WWT group’s research.
Tempest’s stable, powerful abstractions enabled
parallel, synergistic research on both sides of the
interface. On the system side, we began to explore
the broad range of possible Tempest implementa-
tions. Other group members simultaneously inves-
tigated the implications of a flexible protocol
interface for applications, programmers, and com-
pilers. A key goal emerged to have Tempest pro-
vide application portability across a diverse range
of implementations, each with different cost/per-
formance objectives.

Blizzard: An All-softwar e Tempest System

The Blizzard systems are a family of Tempest
implementations that run on stock hardware [11].
One variant, Blizzard-E, uses WWT’s “ECC hack”
to provide fine-grain access control. Another vari-
ant, Blizzard-S, uses executable editing [7] to add
explicit in-line checks. Both versions were initially
implemented on the CM-5 and later ported to the
Wisconsin COW, our cluster of 40 Myrinet-con-
nected Sun SparcStation 20s. Our research on the

1. Thispracticecreatedanunnecessargmountof con-
fusionamongthe meteorologicallychallengedwho
could not tell a €mpest from ayiphoon.

100

applications of Tempest benefited greatly from the
availability of a real (not simulated), relatively sta-
ble Tempest platform.

Typhoon-0: Minimal Hard ware for Tempest

A key aspect of the Typhoon design is the
(ab)use of existing snooping cache coherence pro-
tocols to provide hardware fine-grain access con-
trol on an otherwise unmodified platform. We
decided to demonstrate the feasibility of this
approach by implementing a prototype access con-
trol board for the Sun SparcStation and populating
the 40 nodes of the COW. The resulting system,
Typhoon-0 [10], can be viewed either as a proto-
type of the more highly integrated Typhoon or as a
minimal-hardware = Tempest implementation.
Unlike Typhoon, Typhoon-0 relies on off-the-shelf
devices for each node’s network interface and pro-
tocol processor. In the process of our design and
analysis of Typhoon-0, we recognized the benefits
of an intermediate design, Typhoon-1 [10], that
integrates the network interface (but not the proto-
col processor) with Typhoon-0’s access control
unit.

Custom Protocol Demonstrations

One of our early experiments investigated the
performance gains made possible by writing cus-
tom, application-specific protocols [3]. The perfor-
mance improvements for three application kernels
on the 32-node Blizzard/CM-5 system ranged
from 1.4-16 times, which strongly encouraged us
to extend this approach. Subsequent experiments
[8] also demonstrated the value of custom proto-
cols in running parallel irregular applications.
However, the efforts of many students showed that
writing custom protocols was difficult and time
consuming.

Programming Support

In response to these problems, the project
investigated programming languages and tools to
support custom protocol development. One effort
lead to the Teapot language for writing and verify-
ing custom protocols [2]. This language halved the
size of a protocol, but more importantly, enabled
use of automatic verification tools, drastically
reducing the time and effort to produce a working
protocol.

Another attack on the difficulty of writing pro-
tocols was to shift the burden of exploiting them
from a programmer to a compiler. Several efforts
clearly showed that compilers for high-level pro-

gramming languages could exploit custom proto-
cols, to produce code with robust parallel
performance that in many cases exceeded hand-
written code. Initially, this work focused on
research parallel languages, such as C**, in which
Tempest supported a novel parallel programming
model [6]. However, with the assistance of the
Portland Group, we were also able to show that
custom protocols could greatly expand the range
of High Performance Fortran (HPF) programs that
ran well [1].

Summary

The Tempest and Typhoon paper was the first
of a broad collection of Tempest-related papers
from the Wisconsin Wind Tunnel project (see
http://ww. cs. wi sc. edu/ ~wwt). Its impact
within Wisconsin has been considerable, contribut-
ing to 8 Ph.D. dissertations and 8 Masters degrees.
We suspect its impact beyond Wisconsin has also
been considerable, but we leave that evaluation to
others.

Acknowledgments

Many have asked about the absence of Mark
Hill as an author of the Typhoon papers. Mark has
been a constant co-leader and contributor to the
Wind Tunnel project, including the Tempest and
Typhoon research. In mid-summer 1993, Mark uni-
laterally distanced himself from the Typhoon
effort—against our objections—to help potential
tenure letter writers differentiate our contributions
from his own. Despite staying at arm’s length,
Mark made numerous contributions to this work
and has been actively involved in the Tempest fol-
low-on projects.

Many students have contributed to the Tem-
pest work. We would like to single out one, Rob
Pfile, for his efforts to implement the Typhoon-0
prototype.

This work received financial support from a
number of sources. Initial support came from the
National Science Foundations PYI/NYI program
(grants CCR-9157366 and CCR-9357779). Primary
support for Typhoon came from Michael Foster of
the NSF’s Experimental Systems program (grant
MIP-9225097). Gil Weigand and Bob Lucas of the
Defense Advanced Research Projects Agency sup-
ported the Blizzard implementations (ARPA Order
Number B550). Dave Douglas, Bob Zak, and Greg
Papadopolous provided technical and financial
support from Thinking Machines Corporation and
later Sun Microsystems. Additional support was

101

provided by a Univ. of Wisconsin Graduate School
Grant, a Wisconsin Alumni Research Foundation
Fellowship, an AT&T Ph.D. Fellowship, and dona-
tions from Digital Equipment Corporation, Xerox
Corporation, the Portland Group. Our Thinking
Machines CM-5 and Wisconsin COW were pur-
chased through NSF Institutional Infrastructure
Grant CDA-9024618 with matching funding from
the Univ. of Wisconsin Graduate School.

About the Authors:

Steven K. Reinhardt completed his PhD at the
University of Wisconsin on the Typhoon imple-
mentations of the Tempest interface. He is cur-
rently an Assistant Professor of Electrical
Engineering and Computer Science at the Univer-
sity of Michigan, where he is conducting research
on parallel computer architectures and systems.

James R. Larus is an Associate Professor of
Computer Sciences at the University of Wisconsin—
Madison. His research includes programming lan-
guages and compilers, the design and program-
ming of shared-memory parallel computers,
program profiling and tracing, and program exe-
cutable editing.

David A. Wood is an Associate Professor of
Computer Sciences and Electrical and Computer
Engineering at the University of Wisconsin-Madi-
son. His research spans computer architecture,
emphasizing parallel computer design, implemen-
tation, and evaluation.

References

[1] S.Chandra and J.R. Larus. Optimizing
communication in HPF programs on fine-grain
distributed shared memory. In Sixth ACM
SIGPLAN Symposium on Principles & Practice of
Parallel Programming, pages 100-111, June 1997.

S. Chandra, B. Richards, and J.R. Larus. Teapot:
Language support for writing memory coherence
protocols. In Proceedings of the SIGPLAN’96
Conference on Programming Language Design and
Implementation (PLDI), May 1996.

B. Falsafi, A. R. Lebeck, S. K. Reinhardt, I. Schoinas,
M. D. Hill, J. R. Larus, A. Rogers, and D. A. Wood.
Application-specific protocols for user-level shared
memory. In Proceedings of Supercomputing’94, pages
380-389, Nov. 1994.

M. D. Hill, J.R. Larus, S. K. Reinhardt, and D. A.
Wood. Cooperative shared memory: Software and
hardware for scalable multiprocessors. ACM
Transactions on Computer Systems, 11(4):300-318,
Nov. 1993. Earlier version appeared in ASPLOS V.
M. D. Hill, J. R. Larus, and D. A. Wood. Tempest: A
substrate for portable parallel programs. In

2]

[6]

[7]

(8]

[0l

Proceedings of COMPCON'95, pages 327-332, San
Francisco, California, Mar. 1995.

J. R. Larus, B. Richards, and G. Viswanathan. LCM:
Memory system support for parallel language
implementation. In Proceedings of the Sixth
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS VI), pages 208-218, Oct. 1994.

J.R. Larus and E.Schnarr. EEL: Machine-
independent executable editing. In Proceedings of
the SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), pages
291-300, June 1995.

S.S. Mukherjee, S.D. Sharma, M.D. Hill, J.R.
Larus, A. Rogers, and J. Saltz. Efficient support for
irregular applications on distributed-memory
machines. In Fifth ACM SIGPLAN Symposium on
Principles & Practice of Parallel Programming
(PPOPP), July 1995.

S.K. Reinhardt, M.D. Hill, J.R. Larus, A.R.
Lebeck, J.C. Lewis, and D.A. Wood. The
Wisconsin Wind Tunnel: Virtual prototyping of
parallel computers. In Proceedings of the 1993 ACM

102

[10]

[11]

[12]

Sigmetrics Conference on Measurement and Modeling
of Computer Systems, pages 48-60, May 1993.

S.K. Reinhardt, R.W. Pfile, and D.A. Wood.
Decoupled hardware support for distributed
shared memory. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture,
pages 34-43, May 1996.

1. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt,
J.R. Larus, and D.A. Wood. Fine-grain access
control for distributed shared memory. In
Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS VI), pages 297-306,
Oct. 1994.

D. A. Wood, S. Chandra, B. Falsafi, M. D. Hill, J. R.
Larus, A.R. Lebeck, J. C. Lewis, S.S. Mukherjee,
S. Palacharla, and S. K. Reinhardt. Mechanisms for
cooperative shared memory. In Proceedings of the
20th Annual International Symposium on Computer
Architecture, pages 156-168, May 1993. Also
appeared in CMG Transactions, Spring 1994.

RETROSPECTIVE:

The MIT Alewife Machine: Architecture and Performance

Anant Agarwal

Laboratory for Computer Science
Massachusetts Institute of Technology
agarwal@mit.edu

The MIT Alewife project evolved out of
exploratory work at Stanford on directory schemes
for cache coherence [1] (also included in this collec-
tion). Using data from small bus-based multipro-
cessors, this early work demonstrated that
directory schemes were as efficient as bus-based
snooping protocols, and that by distributing direc-
tories along with main memory, they could pro-
vide the foundations for a cache-coherent shared-
memory multiprocessor based on an interconnec-
tion network. This paper further recognized the
scaling limits of bit-vector directories — they con-
sumed memory proportional to the square of the
number of processors — and speculated that vari-
ants such as limited Fointer directories or limited
broadcast directories” might be attractive scalable
alternatives. The paper, however, stopped short of
demonstrating the feasibility of limited directories,
largely because of the lack of either address traces
or parallel programs written for a scalable coherent
shared-memory system. This lack of data was not
surprising given that such a machine had not been
invented yet!

Exploration

The Alewife project was born out of a desire to
build a shared-memory multiprocessor that was
truly scalable (see the section “Perspectives and
Summary” in the Alewife paper in the Proceedings
of the Workshop on Scalable Shared Memory Mul-

1. A limited pointer directory maintainspointersto a
fixed numberof cachedcopiesof data. A limited
broadcastirectory dividesthe processorsnto sets,
and maintainsa pointer to eachset of processors,
sending broadcastinvalidations to the entire set
when needed.

103

tiprocessors, Kluwer Academic Publishers, 1991, to
get a sense of our early thinking). Although scal-
able message-passing multicomputers had been
around for years, they were known to be notori-
ously hard to program. We believed that shared
memory was easier to program, and accordingly,
we chose early on to offer no compromise on the
shared memory programming model.? Notice that
our early Alewife thinking offered no plans to
expose message passing to the software system.

For scalability, we chose to borrow heavily
from the message passing machines conceived by
researchers such as Seitz and Dally. Message pass-
ing machines achieved their scalability by distrib-
uting constant per-processor resources over a
point-to-point interconnect and exposing this dis-
tribution to the programmer. Accordingly, we
decided early on to distribute memory and proces-
sors over a point-to-point mesh network (as
opposed to a uniform-access multistage network)
and strove to keep per-node costs more or less con-
stant. We believed that scaling to even tens of pro-
cessors required support for locality management

2. During the early Alewife days,the notion of shared
memorywith wealker memorysemanticdradnot yet
beenformally defined.Therefore,we took sequen-
tially consistensharedmemoryasa given. As dis-
cussedater, we choseto usecontet switchingasa
way of toleratinglateny. Whenthe wealer models
began to appearin a sequenceof path-breaking
papersrom USC,WisconsinandStanfordwe were
facedwith the choice of adoptinga wealer model.
At this point, we decidedto supportthe sequentially
consistentmemory model since it did not require
compromising the shared memory programming
abstraction,and since our investigations revealed
thatthe performanceof weak consisteng wascom-
parable to other forms of latgntolerance.

from schedulers and compilers. As we discovered
years later, (for example, see Nussbaum’s PhD the-
sis), software management of interconnect locality
in a cache-based system became important only for
systems that exceeded many hundreds of proces-
sors.> We also learned later that the real benefit of
mesh networks for few tens of processors was their
low cost, modularity, and ease of packaging.

When the project started, we believed limited
directories offered the solution to scalable memory
requirements, since their per-processor costs scaled
as the log of the number of processors. The discus-
sion below tells why our initial optimism with
regard to limited directories was completely mis-
placed, and how Alewife avoids their deficiencies.

Adhering to our shared-memory program-
ming discipline, we wanted to avoid exposing
locality to the programmer at all costs. Alewife
does expose locality to the software system, and
we believed we could develop limited-directory-
based hardware and an accompanying software
system that could exploit the underlying locality
for scalable performance, while providing an
uncompromising shared memory abstraction to
the programmer. Our challenge was to build such a
system and to demonstrate that the twin goals of
programmability and scalability could be met.

Notice that in the very early Alewife days
(Spring, 1988), the following features were chosen:
a point-to-point mesh interconnect that exposed
locality to the software, a limited directory distrib-
uted with memory among the processing nodes,
and a shared-memory programming model. Fea-
tures such as context switching, fine-grain syn-
chronization, message passing, and in fact, the
name Alewife itself, came later — each with an
interesting history of its own. Our early research
addressed two major questions, both related to
scalability. Could shared memory systems tolerate
the latencies of mesh interconnects? Could limited
directories scale?

Although architects today do not think twice
about using networks with non-uniform commu-
nication latency for shared memory, interestingly,
we spent a lot of time worrying about their “pro-
grammability,” that is, whether their non-uniform
latency and bandwidth were mismatched with the

3. A key reasornis thatevenwith efficiently engineered
interfaces, a significant componentof the remote

accesslateng is attributable to overheadsat the
source and destination.

104

demands of the uniform-access shared memory
abstraction. Anecdotally, we were able to find
some email from Agarwal to Hennessy in April of
1988 that talks of the tradeoffs in using a mesh net-
work: “There are certainly a lot of problems [with
mesh networks], and perhaps the main one is the
issue of programmability. But if we are to get any-
where building large machines, this issue of local-
ity (proximity) must be made visible to the
compiler/scheduler (or to the programmer as in
message passing machines or connection
machines) in some graceful way.”

Even more interestingly, the multithreading
solution to the latency problem adopted by Ale-
wife was inspired by the following response from
Hennessy two days later. “When thinking about
how to scale a shared memory machine above a
few hundred processors, the difficulty becomes tol-
erating the latency. I tried to think how the mes-
sage passing folks deal with their horrible latencies
and it occurred to me — they context switch. Sup-
pose you could build a machine that could context
switch quickly (easy for a MIPS-style RISC
machine, just use multiple register sets). Suppose
you knew when a memory request would take a
long time — simply context switch.”

We chose to use context switching on cache
misses as a mechanism to tolerate the latencies of
mesh networks. We also began talking to Bert Hal-
stead at MIT, whose group was exploring the
design of a multithreaded processor called March.
Like HEP, March used fine-grain multithreading
(context switching on each cycle) to tolerate mem-
ory latency. March also included tag support for
Multilisp Futures and fine-grain synchronization.
Alewife’s processor, Sparcle, (initially named
April, for it followed March!), inherited many of
the features of March, and improved upon it in
many ways.* We believed single thread perfor-
mance was key to the competitiveness of multi-
threaded processors. Accordingly, Sparcle context
switched only on cache misses to remote memory
and synchronization failures (both large latency
events). Infrequent context switches allowed the
architecture to exploit traditional pipeline optimi-
zations for good single thread performance. It also
enabled a simple implementation of Sparcle, since
infrequent context switches are tolerant to rela-
tively long context switch times (about 10 cycles).

4. Kranz and Nussbaumworked on the March project
and later joined Alife.

Taking a minimalist approach, we also simplified
the tag support architecture for fine-grain synchro-
nization.

Realizing that building a multiprocessor sys-
tem was a massive effort, we began to explore
potential collaborations that could reduce our own
effort. The first of such collaborations was with LSI
Logic. We realized in the Summer of 1989 that the
Sun Microsystems’ SPARC architecture could yield
a simple path to implementing the Sparcle proces-
sor (Sparcle was actually named following our
decision to use SPARCs). We met with Gene Hill of
LSI Logic, then the head of the SPARC division,
and he agreed to help us implement Sparcle by
modifying LSI's SPARC implementation. A fruitful
collaboration with LSI and Sun followed this initial
discussion.

We explored a collaboration with Tom Knight
on interconnects. Knight was interested in devel-
oping a high-speed circuit-switched multistage
interconnect, including a packaging technology
using “fuzz button” pressure connectors in a liquid
cooled system. Given our focus on communication
locality, Knight offered to provide short-circuit
feedback paths in the multistage interconnect to
support fast near—neisghbor communication in the
multistage network.” We ultimately decided to
stick with the mesh interconnect for many reasons.
We felt the interconnect technology introduced too
many additional failure modes into what was
already an ambitious and risky project. The mesh
network was a better match to Alewife’s pedagogy.
Early simulation results indicated that packet
switching provided better performance than circuit
switching for our system parameters. Finally, and
perhaps most importantly, we were also able to
obtain working Mesh Routing Chips (MRCs) from
Chuck Seitz at Caltech, thereby eliminating (or so
we thought) a major risk factor.

It turned out that the self-timed protocol of the
MRC was both a blessing and a problem. It helped
us in that we did not have to worry about clock
synchronization across the entire machine. It also
allowed us to conduct sensitivity experiments on
the Alewife machine by varying the processor
clock for the same network speed. These sensitivity
experiments were critical in determining the ratios

5. The nameAlewife itself cameup in 1988 during a
discussiornwith Knight. Alewife wasa recentlycon-
structedstationon the red line in Bostons subway
system. Knight's interconnect project continued
under the nameransit.

105

of processor to network clock speed under which
either shared memory or message passing was
optimal. Their asynchronous nature resulted in
some nightmarish testing and debugging prob-
lems, turning many Alewife researchers into trans-
mission line hackers. The asynchrony also required
some creative test methodologies. Overall, we
believe we came out well ahead by using the
MRCs, and we are beholden to Chuck Seitz for
making them available to us. On the other hand,
the Alewife implementors will be very wary of
asynchronous logic in the future.

By the Fall of 1989, the Alewife architecture
had evolved to the following: Its fast context-
switching Sparcle processors would be based on
SPARCs and its mesh network would use Caltech
MRCs. The Sparcle processor would support fine-
grain full/empty bit synchronization. We, how-
ever, were beginning to weaken on the limited
directory, and message passing had not shown up
yet.

Design

Extensive simulations against address traces
for large numbers of processors obtained by run-
ning several parallel programs from IBM, MIT, and
Stanford during 1989 and 1990 began to lead us to
the conclusion that limited directories were simply
not robust. Although all programs exhibited pre-
dominately limited data sharing, disquietingly,
almost every program included at least a small
number of widely-shared (but mostly read-only)
variables. Initially, we hypothesized compiler and
software system passes that would automatically
detect such widely shared objects and fix the prob-
lem, and thereby obtained fairly positive results
out of our simulators by subtracting the effects of
these errant references. For example, we believed
we could eliminate widely shared variables in bar-
riers by using scalable software combining trees.

Simulator hacks can only take you so far when
you have undertaken to build a real working sys-
tem, so we began to develop the hypothesized soft-
ware passes needed for widely shared references.
Unfortunately, each new program encountered a
new type of optimization that had to be per-
formed. The growing list of optimizations made
the system extremely fragile, and gradually, our
resolve weakened as evidence mounted on the fal-
libilities of limited directories. As a result of dis-
cussions with David James and Guri Sohi, we
began to explore alternatives such as pointer

chains that could still yield a constant cost per
node. (Pointer chaining techniques, which were
adopted for the IEEE Scalable Coherent Interface,
linked cached copies using pointer chains rooted at
the home memory node). We were concerned
about the long latencies of single pointer chains
and the complexities of the doubly linked alterna-
tives. We also looked at purely software-based
approaches using traps and software allocation of
pointers in garbage-collected heap storage, and
discarded them as being too expensive, at least for
the processor-memory speed ratios at that time.

During this time of uncertainty in the project,
Kubiatowicz had begun to design a system-level
message interface so Alewife could perform 1/0O
operations efficiently. It then occurred to us that we
could take advantage of software-injected mes-
sages and a trap-based processor interface to
extend the limited-directory mechanism into soft-
ware in the rare case that a widely shared item
caused a limited directory overflow. By gracefully
extending the directory into garbage-collected
heap storage and maintaining it as a software hash
table with linked lists, we could allow widely
shared objects to revert to the software structures.
We named this scheme LimitLESS — limited direc-
tories locally extended with software support —
and designed a unified message abstraction across
both the software and the hardware. The Limit-
LESS scheme was particularly appealing because it
enabled building an experimental system that
allowed us to vary the number of hardware point-
ers from five to zero, zero being the all-software
case in which all remote memory operations were
being handled in software.

We believed that experimenting with the zero
pointer case was important because it afforded a
system with minimal hardware support for shared
memory. As demonstrated by Chaiken in his PhD
thesis, the all-software case was only about a factor
of two or three off from the hardware case. Kirk
Johnson’s PhD thesis took the all-software
approach one step further and explored the feasi-
bility of a coherent shared memory system called
CRL built on top of an efficient message passing
substrate. Interestingly, this thesis articulates a key
benefit of interrupt-driven delivery of messages:
interrupts are better than polling when asynchro-
nous messages invoke handlers that are unrelated
to the computations being performed on the
receiving processors.

Although the software-based LimitLESS
approach had been conceived to solve the scalabil-
ity problem of directories, we learned soon enough

106

that it had other appealing properties such as flexi-
bility and adaptability. Chaiken’s thesis discusses
several such adaptive protocols — for example,
those that switch between individual invalidates
and software broadcasts — and presents experi-
mental data on their performance. Our instinct
about the all-software case proved to be abun-
dantly true as the flexibility and scalability of soft-
ware approaches have all but shut out hardware
directory approaches in more recent research
projects.

The LimitLESS case study highlights perhaps
the two most important reasons for building real
systems in research environments. First, unlike
simulators, real working systems seldom hide seri-
ous flaws. And second, when a research group has
undertaken to build a novel system, they will
invent the necessary mechanism and do whatever
it takes to make it work. Such an environment of
necessity that breeds invention is impossible to
simulate.

The messaging interface changed the face of
Alewife and rapidly established the value of inte-
grating both messaging and shared memory.
Recall, during the early Alewife days, shared
memory and cheap messages were provided
largely in exclusion in previous systems. Even in
Alewife, messages were first introduced as a
means of performing efficient I/O. They were then
extended to provide the foundations for a soft-
ware-based directory architecture. The message
interface also allowed cost-effective solutions to
deadlock problems caused by limited buffering in
the network hardware. As the message mechanism
was exposed to system software it rapidly per-
vaded the run-time system, since many operations
such as scheduling and synchronization were best
performed with messages.

Since the initial message interface was avail-
able only at system level, user-level software
incurred a heavy overhead in using messages. The
software folks campaigned for the same function-
ality to be available at user level, and convinced
the architects to provide a user-level message send.
Although it may seem that implementing both
takes a kitchen-sink approach to the architecture, it
turns out that shared memory systems require
much of the underlying hardware functionality
anyway. The additional requirements are to expose
this functionality to the software. Kubiatowicz’s
thesis has a solid analysis of the extent to which
resources can be shared between shared memory
and message passing.

Implementation and Evaluation

We decided to use an application-specific inte-
grated circuit (ASIC) for the Alewife cache and
memory management unit (CMMU). This chip
provided most of the hardware support for mes-
saging and coherence. At this point we discovered
that ASIC vendors were hardly tripping over each
other to obtain our ASIC business. In fact, most
ASIC vendors will not support a research chip
project even with a high NRE (non-recurring
expense — a one-time charge paid to the vendor)
because the production chip volumes are usually
quite low compared to the numbers they are used
to. Continuing our relationship with LSI, we estab-
lished contact with Brian Halla, then the general
manager of the ASIC division at LSI (currently
CEO of National), who graciously agreed to sup-
port our chip building efforts.

The chip design involved writing more simula-
tors. The early phases of Alewife involved trace-
driven simulators. These were replaced by ASIM,
an instruction-level simulator. As the CMMU chip
design started, ASIM was itself replaced by NWO
(which stood for New World Order), which was
faithful to the real design. NWO, in fact, incorpo-
rated some of the control logic directly from the
real design. Testing and validation of the CMMU
was done using LSI’s simulators, augmented with
a TCP interface to NWO. NWO also ran on Think-
ing Machine’s CM-5, a configuration that facili-
tated software validations and architectural
studies.

Looking back, the implementation effort was a
process of incremental discovery in itself, and we
happened upon several interesting discoveries
along the way. As discussed earlier, the integration
of message passing and shared memory was one of
the most important ones. Another was the discov-
ery of the “window of vulnerability” problem.
Although we had known that several livelock sce-
narios and some deadlock scenarios existed in the
presence of multi-phase memory transactions, we
had never encountered them in our initial simula-
tions. Soon enough, however, we ran into the first
of these, namely a livelock scenario that arises
when both an instruction and its associated data
item map to the same cache line. Our initial solu-
tion involved additional state in the cache tags to
recognize and correct this problem by temporarily
locking down cache lines. However, as the imple-
mentation progressed, it became clear that locking
down cache lines introduced deadlocks in the pres-

107

ence of message-passing and LimitLESS traps.
Naturally, we had to make the system work, and
shortly thereafter we developed an algorithm
called “associative thrashlock” and a unified hard-
ware framework called the transaction buffer for
solving these problems in general.®

The transaction buffer mechanism helped
solve yet another problem that we encountered, or
more truthfully, took upon ourselves. Late in the
design phase, we chose to modify our coherence
protocols to support misordering of messages in
the network. Our reason for doing this was to
develop a more generally applicable solution than
that required for our own network (which did
deliver messages in order). It turned out that
minor modifications to the protocols in concert
with the transaction buffer mechanism enabled us
to make this significant improvement to our proto-
cols. We also took advantage of the reordering pro-
tocols to create a software-based network overflow
solution, thereby eliminating the need for multiple
networks or virtual channels.

As the implementation progressed, a large
body of software was written to make the machine
usable. New synchronization and scheduling algo-
rithms were among these (see Lim’s and Nuss-
baum’s PhD theses). Interestingly, —some
discoveries came about through limitations in the
prototype. Alewife did not support virtual mem-
ory, since we believed we could answer our
research questions without it’. Barua and Kranz
developed a software method called software
address translation in which the compiler inlined
customizable translations into the code. This
method did not see much use when first devel-
oped, but we believe that its flexibility combined
with the emergence of user-customizable operat-
ing systems like Exokernel and SPIN will make it
appealing in the future as a replacement or an
adjunct to hardware TLBs.

6. Chaiken’s Masters thesis discussesthe thrashing
problemsandone of our early solutions.Kubiatav-
icz’'s PhDthesiselaboratesn thewindow of vulner-
ability and the transaction buffer solution.
Kubiatavicz’s thesisalso containsa nice discussion
of the chip design,implementatiorand test efforts,
and the futility of chip redbrication in a unersity.

Ken Mackenzieand othersbuilt the Fugu systema
few yearslater to explore the issuesof protection
and virtual memory

Our collaboration with LSI on the Sparcle pro-
cessor worked out very well. There was a scary
period, though, when Gene Hill left LSI, and the
question of why Sparcle was being supported
arose. With help from our technical counterparts at
LSI and Sun, Godfrey D’Souza at LSI and Mike
Parkin at Sun, we were able to obtain the support
of Amnon Fisher at LSI, and our Sparcle efforts
continued smoothly. As depicted in the timeline in
the figure, working Sparcle chips arrived from LSI
in early 1992.

We also initiated a collaboration on packaging
with Bob Parker, Jeff LaCoss, and Diane Delute at
the advanced packaging technology (APT) group
at ISI in California. Inspired by Tom Knight’s work
on pressure connectors, we came up with a proto-
type design with Jeff LaCoss. This “cool” design
had two key features: it did not involve backplane
boards, and it was highly compact. Its biggest
problem was that the replacement of a single board
involved decompressing all the connectors,
thereby violating the basic tenet of successful sys-
tem building — if it ain’t broke, don’t touch (sic) it.
Fortunately, we jettisoned this packaging technol-
ogy for much less risky technology: passive back-
planes, node boards, and traditional connectors.

We first designed and built a node board at
MIT. This design was built with a large number of
probe points and optimized for table-top debug-
ging. Then, APT turned this prototype board
design into a more compact production quality
design and also designed the backplane boards.
They also came up with the power distribution
and cooling design. MIT added the designs for
clock distribution and JTAG support.

The following figure shows the progress of our
implementation effort. Perhaps the most signifi-
cant feature of our schedule was our gross under-
estimation of the time it would take to test the
CMMU chip. Fortunately, we got working parts
back, and our aggressive software effort that ran
concurrently with the chip design paid off hand-
somely. We had 2 nodes working together in a
week, 8 nodes in two weeks, and 16 nodes in a
month and a half.

As the machine came online, our evaluation
process began. The effort got a massive infusion of
enthusiasm and energy when Ricardo Bianchini
came to work with us over the summer. Following
Ricardo’s energetic efforts, we had a large number
of the Splash applications ported to Alewife within
months. The results from our evaluations are
reported in the Alewife paper included in this
issue. As we conclude in the Alewife paper, the

108

basic shared memory programming abstraction
augmented with mechanisms such as explicit mes-
saging, fine-grain synchronization and context
switching, provided both use-performance (ease of
use and reasonably good performance) and means
for further tuning.

Sparcle spec

CMMU spec
Sparcle nets run first program

Sparcle layout begins

I

CMMU nets execute "Hello World"

92 Sparcle chips return

93] CMMU base wafer tapeout
CMMU metal layout begins
CMMU chips (3) return May 4
Alewife at 32 MHz (2 nodes) May 8

J 9 CMMU chips arrive

——" 8-node Alewife runs Water May 17

ﬁ 10 CMMU chips arrive

16-node Alewife runs June 17
Looking Back

40 CMMU chips arrive
70 assembled boards
32-node Alewife

~Nov 4
~Nov 8

Although it is a little early to look back and
assess a project that came to fruition four years
ago, it is instructive to do so nonetheless. In partic-
ular, it is useful to discuss features that did not
deliver on their promise. As might be expected, we
grew to love all of Alewife mechanisms, despite all
their warts, so it is always difficult to knock any
one of them. However, the reader can take a less
than enthusiastic response about a feature as a sign
of a negative result. Furthermore, as discussed pre-
viously and further on in this writeup, many of the
features turned out to be useful in unanticipated
ways, so the negative results really are often in the
context of the anticipated uses.

Perhaps, most importantly, the answers to the
two key questions we set out to answer at the initi-
ation of the project, namely, how to exploit locality
in a mesh network and how to build a truly scal-
able directory system, turned out to be of lesser
importance than some of the other contributions of
the project. The software approach to directories
and the integration of message passing and shared
memory turned out to have the bigger impact. We
further observe that although software-based
directories and integrated messaging seem to have
impacted other research projects, this impact has
not been felt in industry at this time.

It is interesting to speculate on why the issues
of scalability we thought so important ten years
ago turned out not to be so significant. With the
enabling technologies of shared memory program-
ming and cost-effective mesh networks open to
scalable machines, we believe their usability and
bill-of-materials cost are no longer the issue. We
speculate that the reason lies in the nonexistence
(at least at this time) of a large class of problems
that demand scalable machine performance. Con-
sequently, only a relatively small percentage of the
computing world really cares about large-scale
multiprocessors. As in the past, a select cadre of
users — who are willing to hand-tune their appli-
cations — expend extraordinary effort to meet
their computational needs. The business case for
addressing the needs of this relatively small mar-
ket remains as elusive today as it was a decade
ago.

There are other practical factors that relate to
the scalability and applicability of LimitLESS
directories in either their hardware-software form
or in a purely software form. Although our results
demonstrated the compelling cost-performance of
two-pointer directories by balancing the hardware
and software components of a multiprocessor, we
doubt there will ever be commercial or research
machines that combine hardware and software like
LimitLESS. Since Alewife was an experimental
machine, it made sense to implement a few point-
ers in hardware since we could explore the degra-
dation suffered in going from several pointers to
zero pointers. As our results indicated, the five
pointer case was competitive with an all-hardware
system, and the all-software case was between a
factor of two or three worse.

In the commercial environment present at the
time of this writing, it makes sense to build all-
hardware systems since the hardware overhead is
not significant for systems with few tens of proces-
sors, and since this approach does not involve
modifying existing processor interfaces. Further-
more, multigrain systems allow modest-sized sys-
tems to be built by composing smaller machines
using software page-based coherence between the
components. For these relatively small systems, we
will likely see a transition from the hardware
approach to a software approach (probably using a
separate protocol processor in the short term and a
unified processor in the longer term) as the increas-
ing latency gap between the processor clock and
main memory makes software attractive.

109

If Moore’s Law ever breaks down, however,
scalability will be applicable to mainstream com-
puting (as opposed to marketing hype), and it is
very possible that the same market forces might
dictate a different tradeoff between software and
hardware. Assuming that a new computing para-
digm does not emerge, LimitLESS-style coherence
could well become appealing for its scaling proper-
ties.

One of the surprises after Alewife was built
was that many applications written using shared-
memory were found to be competitive with the
same applications written using message passing.
While this was a significant and unanticipated
result in favor of shared memory, it was counter to
our intuition. A sensitivity analysis revealed later
that the state of technology plays a major role in
determining which is better. It turns out that
shared memory is competitive or better than mes-
sage passing when the processors are slow com-
pared to the interconnect, and the opposite is true
when the processor clocks increase relative to net-
work speeds. We further observed that asynchro-
nous message notification is inherently better
suited to operating system-like applications such
as CRL.

One of the questions we asked ourselves was
whether building was necessary in the face of our
sophisticated simulation technology. Not surpris-
ingly, for the applications that ran on our simula-
tors, our results from the real prototype were not
qualitatively different from our detailed simula-
tors. However, the availability of the real prototype
allowed us to develop a large number of applica-
tions and obtain results for realistic problem sizes
rapidly. Since there were no major surprises, run-
ning these applications and large problem sizes
served to validate our conclusions.

And of course, as discussed earlier, many of
the key Alewife mechanisms would not have been
invented otherwise. Taking the example of inte-
grated messaging, we doubt Kubiatowicz would
have even contemplated the introduction of a real
message-based 1/O mechanism for a simulator.
Finally, the simulators could not have reached their
level of sophistication had we not been on an
implementation path. As a case in point, NWO
leveraged many of the same control state machine
specifications used in the real hardware. As one of
us is fond of saying, if there had been a way to
hypnotize ourselves into believing that we were
working on a real machine, we could have saved a

year spent in design verification whose major
value could be measured not in terms of the contri-
butions to science but in value to the soul.

What of fine-grain synchronization and con-
text switching? The insignificant value of hardware
support for fine-grain synchronization was one of
the salient negative results from the project. As
reported by Donald Yeung in his Master’s thesis,
the means for expressing fine-grain parallelism in
the source language is of considerable importance,
while the special hardware support for full-empty
bits is of marginal value.

The jury on context switching is still out. Con-
text switching is intended to improve the perfor-
mance of applications with a lot of parallelism that
suffer low processor utilization due to their poor
cache behavior. Context switching is most useful
when the network has a large latency but can
deliver high bandwidth. Context switching deliv-
ered on its promise for applications with poor
memory performance such as MP3D. A dedicated
context for handling asynchronous message inter-
rupts without disrupting the computational state
on the processor was also valuable. However our
applications exhibited reasonable cache behavior,
and therefore a reasonable processor utilization.
Clearly, MP3D is an exception.8

The open question, then, is whether there will
be sufficient applications that exhibit poor cache
behavior when written in a natural manner under

8. One might be temptedto speculatethat mary of
theseapplicationsveredevelopedfor DASH or Ale-

wife, both cache-basedmnachines,and therefore

coded in a cache-friendly style.

110

shared memory by average programmers. Looking
back, although Bianchini and Lim have done some
follow up evaluation of context switching on Ale-
wife,” we have been remiss in not expending the
effort to find more applications and fully evaluat-
ing context switching.

Alewife leveraged many of the advances of
previous research such as wormhole-routed low-
dimension interconnects, directory based coher-
ence, and efficient message interfaces. In turn, in
advancing the notions of software-based directo-
ries and integrating messaging and shared mem-
ory, we hope it contributed in modest measure to
this cycle of research.

References

[1] Anant Agarwal, Richard Simoni, John Hennessy,
and Mark Horowitz. An Evaluation of Directory
Schemes for Cache Coherence. In Proceedings of the
15th International ~ Symposium on Computer

Architecture, pages 280-289 June 1988.

9. Bianchini and Lim evaluatedcontext switching on
Alewife and publishedtheir findingsin the August
1996issueof JPDC.They concludethat “prefetch-
ing is preferableover multithreadingfor machines
with low remoteaccesdatenciesand/orapplications
with poor locality and consequentlyshort run-
lengths.Theperformancef bothtechniquess com-
parable for applicationswith high remote access
latenciesand/orgoodlocality.” They alsoamguethat
contt switching has addedvalue in microkernel
ervironments.

RETROSPECTIVE:

Multiscalar Processors

Gurindar Sohi

Computer Sciences Department
University of Wisconsin
sohi@cs.wisc.edu

Background

We started thinking about the basic multiscalar
ideas in about 1988-89: we had been studying out-
of-order superscalar processors based upon our
RUU design (see paper in this collection) during
1986-1989 [1], and our experiments had given us a
lot of insight into the operation of such a machine.
We started looking for ways in which we could
“simplify” the RUU mechanism. Our main point of
attack was the logic needed to implement the
instruction scheduling and wakeup functions: we
felt that a large centralized instruction window
was not a long-term solution.

In October 1989, IEEE Spectrum published the
“Microprocessors circa 2000” article [2], with pro-
jections of a 100 million transistors on a chip. This
article played a very important role in focusing our
thoughts. We asked ourselves: how might we use
these resources to speed up computation? What
would be the architectural paradigm for such a
chip? The Intel proposal was what amounted to a
4-way multiprocessor on a chip. We did not feel
comfortable with this proposal, since it appeared
unlikely that parallelizing compiler technology
would be able to automatically parallelize a major-
ity of applications in the foreseeable future.

Developing the ideas

We started out by defining what we consid-
ered to be desirable attributes of a circa 2000 micro-
processor. These included: (i) easy hardware
growth path from one generation to the next, (ii)
easy software growth path from one generation to
the next, (iii) ability to extract high levels of ILP,
across a wide range of applications, with clock
speeds comparable to “simple” processors of that
era. This implied the need for a microarchitecture

111

built from replicated components, without any
(high-utilization) centralized resources that could
become a bottleneck from one generation to the
next.

We started our search for a circa 2000 para-
digm by looking at the dataflow model. We really
liked the concepts — thinking about the RUU-
based superscalar processor as a dataflow engine
had allowed us to get good insight into its opera-
tion. However, we were not willing to adopt the
model in its entirety. In particular, we were not
willing to give up sequential programming seman-
tics, since it appeared unlikely that inherently par-
allel languages were going to be adopted widely
any time soon. This meant that we would have to
achieve a dataflow-like execution for a serial pro-
gram. Rather than consider this a drawback, we
considered this an asset: we felt that the inherent
sequentiality could be exploited to create localities
in the inter-operation communication which could
be exploited to decentralize the inter-operation
communication mechanism (aka token store in a
dataflow machine).

In our experiments with the RUU, we also real-
ized that, though increasing the RUU size would
allow more parallelism to be exploited, much of
the parallelism was coming from points that were
“far apart” in the RUU — there was little parallel-
ism from “close by”. Since increasing the RUU size
entailed significant overheads, that were not “scal-
able”, we felt that the localities of communication
could be exploited to come up with decentralized
RUU designs.

We also looked very seriously at the VLIW
model. We were quite intrigued by all the parallel-
ism-enhancing transformations that were devel-
oped by the VLIW community, but were very
uncomfortable with the execution model: the basic
model did not expose and exploit localities of com-

munication that we felt were very important to
exploit. Moreover, it suffered from the “software
problem” in going from one generation to the next.
A partitioned VLIW would allow localities of com-
munication to be exploited, but that would mean
dividing the parallelism into dependent operation
slices (i.e., “vertical slices” vs. “horizontal slices”),
and if that had to be done eventually, what was to
be gained by packing the operations into a hori-
zontal slice? Why not pack them into vertical
slices?

At about the same time Jim Smith introduced
me to an interesting microarchitecture he had
become aware of several years before. He referred
to it as a “dependence architecture”, and it was
based on an early, never-completed version of the
Cray-2. This machine consisted of 8 independent
units, each with an accumulator, and collectively
backed by a shared register file. Sequences of
dependent operations were submitted to each unit,
where they would execute in parallel.

The above led us to conceive an architecture in
which the instruction window (aka RUU) could be
split, and all important aspects of the machine
could be decentralized. We considered four impor-
tant aspects: instruction supply, instruction sched-
uling, inter-operation communication, and
memory data supply. Our experiments with regis-
ter traffic [4] convinced us that splitting the
instruction window would also allow us to decen-
tralize the inter-operation communication and the
instruction scheduling. The next issue was that of
instruction supply: how should these sub-win-
dows be fed? To decentralize instruction supply, it
made sense to start filling the sub-windows from
different points in the instruction stream, and so
we proposed multiple sequencers to do this. And
since the different windows would be operating
independently, loads would need to execute before
the identities of prior stores (in a different window)
were known. This would require a significant
rethinking of how memory operations are to be
carried out, and we did not arrive at a solution for
this problem (the Address Resolution Buffer, or
ARB) until the Summer /Fall of 1991.

Manoj Franklin started working on the multi-
scalar ideas in Fall 1990, and by Spring 1991 we
had a simulator to test out the basic concepts.

In May 1991, I gave a talk about the multiscalar
ideas at Cray Research, and in June 1991, I gave a
talk at DEC, Marlboro. After the talk, I had a long
conversation with Joel Emer and Bob Nix (and one
other person whose name I can’t remember), about
the memory system aspects of such a machine.

112

They told me that they had a solution, in the con-
text of a VLIW processor, but were unable to give
me details. This led us to think more about the
issue, and come up with the ARB in Summer /Fall
1991. (Later, it turned out that the solutions, and
the problems they were solving, were entirely dif-
ferent, but there is no doubt in my mind that
knowing a solution was possible helped us find
one.)

Very early on we realized the need to have
code blocks (or ergons as Dionisios Pnevmatikatos
and T. N. Vijaykumar called them) that were
greater than a basic block. This would require
novel prediction techniques that were able to go
beyond multiple branches simultaneously, as well
as the ability for the machine to resolve multiple
branches simultaneously. For this, Pnevmatikatos
and Franklin developed the concept of control flow
prediction [5].

In Fall 1991, Franklin built a complete simula-
tor, including an ARB, and we submitted a paper
to ISCA92 [3], which was accepted. I had also vis-
ited several companies to give talks, and had dis-
cussed our ideas with many people. In particular,
had detailed discussions with, and received cri-
tiques from Mitch Alsup, Jim Smith, and Bob Rau.
These discussion were crucial in the development
and refinement of the ideas.

In January 1992 I gave the first public presenta-
tion at HICSS, at a session organized by Wen-Mei
Hwu. I got a lot of hard questions from the small
audience, which included Mike Flynn, Andy
Heller, Peter Hsu, Wen-Mei Hwu, Yale Patt, and
Bob Rau.

In the summer of 1992, Mark Hill convinced us
to come up with a name for the concept; the term
“Expandable Split Window” was not sufficiently
catchy. After trying several variations of scalar, 1
came up with the name “Multiscalar”.

Franklin continued with experiments of the
concept in 1991-93. While we had a simulator, we
had no compiler: Franklin’s simulator collected all
the information needed for multiscalar-execution
from an existing MIPS binary. Perhaps the first per-
formance impediment that we faced was squashes
dues to memory data dependences: in many cases
the MIPS compiler would spill a register (assum-
ing it would be a cache hit) and reload it shortly
afterwards — this would cause data dependence
squashes. Franklin tried to alleviate this problem
by implementing selective squashing: only the
offending load and its dependent slice of instruc-
tions would be restarted. However, this required
all the instructions of the task to be in the process-

ing unit. This, and other restrictions placed artifi-
cial constraints on task selection: code was divided
at arbitrary points, for example, after half the load
of a double-word load or after a lui, half-way
through building an address (this aggravated data
dependences). Moreover, tasks could not be large
since loops and function calls could not be
included in a task. Overall, we felt comfortable
with the basic ideas — Franklin wrote his Ph.D dis-
sertation on it in September 1993, but we felt that
we needed to rethink our decisions assuming we
could get help from software (many of the prob-
lems we were facing with hardware task selection
were easily solved with software task selection) as
well as from hardware.

In 1992 Scott Breach and T. N. Vijaykumar (or
Vijay) started working with me and we started
thinking about how we could implement the con-
cepts better than we had. In particular, we wanted
to see if we could get high levels of ILP with simple
processing cores (which were more likely than
sophisticated cores to meet our objective of “com-
parable” clock), even though with simple cores we
might have to sacrifice other performance aspects
(for example, the ability to selectively squash or
restart instructions). And we wanted to see the
power of the multiscalar concept if we had flexibil-
ity in both the software and the hardware.

Scott and Vijay jointly took on the responsibil-
ity of defining the Multiscalar architecture; Scott
took responsibility for the simulator and Vijay the
compiler. In 1993-94, we defined a multiscalar
architecture, built a simulator and compilation
infrastructure (compiler, assembler, linker, disas-
sembler) based upon the GNU tools, and wrote the
ISCA95 paper. This was truly an enormous task:
we had neither a compiler that could generate a
multiscalar binary, nor a simulator that would exe-
cute one. Both were developed simultaneously,
and when something went wrong, it wasn’t clear
whether the bug was in the compiler or in the sim-
ulator. It took many hours of painstaking effort to
get the tools to a point where we could compile
and simulate arbitrary C programs and get reliable
performance numbers out of the simulations.

When we were writing the ISCA ‘95 paper, the
compiler and simulator were still in their infancy,
and we were just starting the process of analyzing
and understanding the results. While we were get-
ting impressive results for some benchmarks (at
least as compared to other proposals of that time),
the extra instructions that the compiler generated

113

for the gcc benchmark, and the microarchitectural
parameters chosen, caused a slowdown. We were
sorely tempted to remove this result from the
paper, with an excuse that our compiler was still
unable to compile and generate good code for gcc
(a problem that many other research compilers
shared). I am really glad we did not. We had
always tried to be conservative in our choice of
parameters (and the resulting performance num-
bers) in our simulations and publishing a negative
result underlined this philosophy.

An important concept that we discovered after
the paper was published (in the 1995-96 time
frame) was the notion of data dependence predic-
tion and synchronization. Since our decision to do
away with selective squashing ability in the pro-
cessing cores, performance loss due to data depen-
dence squashes had become an important
component of the total performance loss. Andreas
Moshovos (along with Scott and Vijay) came up
with the idea of predicting if a dependence viola-
tion was going to occur, and synchronizing the
offending operations [6]. This greatly improved
performance for many benchmarks.

The Kestrel Project

In Fall 1994, Jim Smith returned to Wisconsin.
He became excited about the concept, and we
approached the NSF Experimental Systems Pro-
gram and DARPA for funding to test out the feasi-
bility and practicality of the concept. We were
funded, and we initiated the Kestrel project. The
size of the research group grew, with students
exploring all aspects of the problem: compiler, sim-
ulator, a Verilog implementation (and synthesis) of
a sample multiscalar configuration, as well as
exploring microarchitectural components of a mul-
tiscalar processor, and thinking of alternate imple-
mentations. The project continues at the time this
retrospective was written. To date we have learned
that there are no technical barriers to the imple-
mentation of the multiscalar paradigm.

People who have contributed to various
aspects of the Kestrel project include: Scott Breach,
T. N. Vijaykumar, Andreas Moshovos, Eric Roten-
berg, Quinn Jacobson, Jeremy Williamson, Paul
Thayer, Selim Bilgin, Matt Kupperman, Subra-
manya Sastry, Amir Roth, Sridhar Gopal, Matt
Mergener, Craig Zilles, Atsushi Okamura, Anand
Kamannavar and Padmaja Nandula.

Summary

In 1998, almost 10 years after we first started
thinking about the basic multiscalar concepts, we
continue to study, develop, and refine them, as we
continue our research on microprocessors of the
next millennium. Our experience to date with the
concepts suggests they are quite promising indeed.
We continue to work on related issues at Wiscon-
sin. It is also very exciting to see several related
research projects starting out elsewhere.

Acknowledgments

I would like to thank Mike Foster and Zeke
Zalcstein of NSF, Gary Koob of ONR (now of
DARPA), Bob Parker and Bob Lucas of DARPA,
and Konrad Lai of Intel for funding our work in
multiscalar processors.

References and Related Papers

[1] G. S. Sohi and S. Vajapeyam, “Instruction Issue
Logic for High-Performance, Interruptible
Pipelined Processors,” Proc. 14th International
Symposium on Computer Architecture, pp. 27-34, June
1987.

P. P. Gelsinger, P. A. Gargini, G. H. Parker, A. Y. C.
Yu, “Microprocessors circa 2000,” IEEE Spectrum,
vol. 26, no. 10, pp. 43-47, October 1989.

M. Franklin and G. S. Sohi, “The Expandable Split

2]

3]

114

[7]

[10]

Window Paradigm for Exploiting Fine-Grain
Parallelism”, Proc. 19th International Symposium on
Computer Architecture, pp. 58-67, May 1992.

M. Franklin and G. S. Sohi, “Register Traffic
Analysis for Streamlining Inter-Operation
Communication in Fine-Grain Parallel Processors,”
Proc. 25th Annual International Symposium on
Microarchitecture (MICRO-25), December 1992,

D. Pnevmatikatos, M. Franklin, and G. S. Sohi,
"Control Flow Prediction for Dynamic ILP
Processors," 26th Annual International Symposium on
Microarchitecture (MICRO-26), December 1993.

A. Moshovos, S. E. Breach, T. N. Vijaykumar and G.
S. Sohi, “Dynamic Speculation and
Synchronization of Data Dependences,” Proc. 24th
International Symposium on Computer Architecture,
pp- 181-193, June 1997.

Tom Knight, “An Architecture for Mostly
Functional Languages,” Proc. 1986 ACM
Symposium of LISP and Functional Programming, pp.
105-112, August 1986.

Robert A. Iannucci, “Toward a dataflow/von
Neumann hybrid architecture”, Proc. 15th
International Symposium on Computer Architecture,
pp. 131-140, May 1988.

D. E. Culler and Arvind, “Resource Requirements
of Dataflow Programs,” Proc. 15th International
Symposium on Computer Architecture, pp. 141-150,
May 1988.

Gregory M. Papadopoulos and David E. Culler,
“Monsoon: an explicit token-store architecture,”
Proc. 17th Amnnual International Symposium on
Computer Architecture, 1990, pp. 82-91.

RETROSPECTIVE:

Simultaneous Multithreading: Maximizing On-Chip Parallelism

Dean M. Tullsen, Susan |. Eggers, and Henry M. Levy

Department of Computer Science and Engineering
University of Washington
{eggers,levy}@cs.washington.edu
tullsen@ucsd.edu

ri]Eﬁs paper was published in 1995 and so it
seems early to do a retrospective; in fact, research
in simultaneous multithreading (SMT) is still
ongoing. The original project began in early 1994.
We were beginning to see commercial micropro-
cessors that could issue many instructions per
cycle (wide superscalars), but which rarely did so
due to dependencies and long memory latencies.
In fact, processor utilization seemed to be declin-
ing as fast as instruction issue width was increas-
ing.

We actually began by looking at targeted solu-
tions to the low processor utilization problem, such
as improved branch prediction, but quickly real-
ized that no single such mechanism was likely to
solve the overall problem we faced. The graph in
the paper attributing the many causes of lost cycles
was one key to our intuition, and made us realize
that we needed a more global, latency-tolerant
solution. This led us to the basic idea of using a
much finer-grained multithreading than had been
previously attempted as a general way to tolerate
all forms of lost utilization. The idea was surely
influenced by previous designs such as the Tera,
MIT Alewife, and M-machine projects, and by
Radhika Thekkath’s UW thesis. Several other
projects had also looked at various forms of multi-
thread, superscalar issue. However, as we exam-
ined them, each of these studies seemed to be lim-
ited in some way by the constraints of a particular
hardware architecture in which it was embedded.
None of the previous projects, to our mind, had
really explored or analyzed the total potential of
the fully-general concept we were considering, nor
had they described it in the way we were thinking
about it. We chose the name “simultaneous multi-
threading” to give this general concept a new label.

The more we thought about it, though, the
more we realized that simultaneous multithread-

115

ing (SMT) was significantly different from the tra-
ditional =~ (context-switching) multithreading
designs. In particular, there was something aes-
thetically pleasing about the concept of sharing all
processor resources every cycle: basically, just
throw all the threads in the machine, and let it
make the best dynamic decision about what
instructions to send to what functional units at
every instant. The result of this was effectively to
use thread-level parallelism to make up for a lack
of instruction-level parallelism in individual pro-
grams. This is a somewhat different goal than that
addressed by previous multithreaded designs. If
you have one or a few threads with moderate ILP
each, that's fine; many threads with a little ILP
each, that's fine; multiprogramming, that's fine.
The figure that appears in the paper, showing the
effect of “horizontal waste” and “vertical waste,”
was also a useful tool for us in understanding and
explaining why SMT was likely to work better
than the alternative schemes (superscalar and tra-
ditional multithreading, and later single-chip mul-
tiprocessors).

There were a few major goals of the work from
the start, both arising from our desire to target
mainstream processor designs. First, we were very
aware that poor single-thread performance would
not be acceptable in this market (as opposed to the
types of uses the Tera is targeting, for example);
therefore, it was crucial that single-thread perfor-
mance not be harmed by the addition of SMT. Sec-
ond, we wanted SMT to be easily implementable
on state-of-the-art microprocessors. The “state-of-
the-art” that eventually facilitated meeting this
goal was dynamic instruction issue (i.e., out-of-
order processors); in fact, we were a little ahead of
this at the time, which caused many people to
doubt that SMT was achievable. Following this
paper, we were lucky to work with colleagues Joel

Emer and Rebecca Stamm from Digital's Alpha
group, who greatly contributed to the microarchi-
tecture design and helped us to show how SMT
required only limited changes to an out-of-order
processor; we also discovered how SMT perfor-
mance could be improved significantly by fetching
from the “right” threads, ie., those making best
use of the processor. By the time our second paper
was published at the following ISCA (1996), many
people saw the appearance of out-of-order
machines and realized that once you have dynamic
instruction issue, you've already provided most of
the complexity with respect to the instruction issue
mechanism required by SMT. It was quite interest-
ing (and exciting) in retrospect to see a major
change in response to the idea of SMT that
occurred over the period of less than one year.

Acknowledgments

We would like to thank Digital Equipment
Corporation and Equator Technologies Inc. for

116

access to the Multiflow compiler. This work was
supported by the National Science Foundation
Grant No. MIP-9632977.

About the authors

Susan Eggers is Associate Professor of Com-
puter Science and Engineering at University of
Washington. Her research includes computer sys-
tems architecture, machine-dependent compiler
optimizations, and dynamic compilation tech-
niques.

Henry Levy is Professor of Computer Science
and Engineering at the University of Washington.
His research focuses on operating system design,
computer architecture, and their interaction.

Dean Tullsen finished his PhD at University of
Washington on the topic of Simultaneous Multi-
threading. He is currently Assistant Professor of
Computer Science at University of California, San
Diego, where he works on architecture and simul-
taneous multithreading.

