Area-Performance Trade-offs in Tiled Dataflow Architectures

Andrew Putnam
Andrew Schwerin

Steven Swanson

Martha Mercaldi
Mark Oskin

Ken Michelson
Susan J. Eggers

Andrew Petersen

Computer Science & Engineering
University of Washington
{swanson,putnam,mercaldi,ken,petersen,schwerin,oskin,eggers } @cs.washington.edu

Abstract:

Tiled architectures, such as RAW, SmartMemories, TRIPS,
and WaveScalar, promise to address several issues facing
conventional processors, including complexity, wire-delay,
and performance. The basic premise of these architectures
is that larger, higher-performance implementations can be
constructed by replicating the basic tile across the chip.

This paper explores the area-performance trade-offs when
designing one such tiled architecture, WaveScalar. We use
a synthesizable RTL model and cycle-level simulator to
perform an area/performance pareto analysis of over 200
WaveScalar processor designs ranging in size from 19mm?
to 378mm? and having a 22 FO4 cycle time. We demonstrate
that, for multi-threaded workloads, WaveScalar performance
scales almost ideally from 19 to 101mm? when optimized for
area efficiency and from 44 to 202mm?>when optimized for
peak performance. Our analysis reveals that WaveScalar’s
hierarchical interconnect plays an important role in over-
all scalability, and that WaveScalar achieves the same (or
higher) performance in substantially less area than either an
aggressive out-of-order superscalar or Sun’s Niagara CMP
processor.

Keywords: WaveScalar, Dataflow computing, ASIC, RTL

1 Introduction

To address a set of critical problems in processor de-
sign, including design complexity, wire delay, and fabrica-
tion reliability, many computer architects are beginning to
shift their focus away from today’s complex, monolithic,
high-performance processors. Instead, they are designing
a much simpler processing element (PE) and compensating
for its lower individual performance by replicating it across a
chip. Examples of these tiled architectures include RAW [1],
SmartMemories [2], TRIPS [3, 4] and WaveScalar [5]. Their
simple PEs decrease both design and verification time, PE
replication provides robustness in the face of fabrication er-
rors, and the combination reduces wire delay for both data
and control signal transmission. The result is an easily scal-
able architecture that enables a chip designer to capitalize on
future silicon process technologies.

Despite the high-level simplicity and regularity of the tiled
structure, good performance on these architectures—more
importantly, good performance per unit area—is achievable
only if all aspects of the microarchitecture are properly de-
signed. Architects face some of the same design issues in
these systems as in conventional, more centralized proces-
sors (e.g., ALU mix, cache hierarchy design). However,
they also face a new set of issues. For example, should ar-
chitectures have more tiles to exploit additional parallelism
or fewer, more highly utilized and possibly more powerful
ones? Where should the various data memories be located,
and to what extent should they be partitioned and distributed
around the die? Is it more important to devote area to addi-
tional processing elements or memories? How should tiles

be interconnected?

This paper explores the area-performance trade-offs en-
countered when designing a tiled architecture. The target ar-
chitecture for this study is the WaveScalar processor, a tiled
dataflow architecture. Like all dataflow architectures, each
of WaveScalar’s simple PEs execute instructions according
to the dataflow firing rule [6]. Data communication between
instructions in different PEs is explicitly point-to-point. To
reduce data communication costs, instructions that commu-
nicate frequently are placed in close proximity [7], and the
data networks are organized hierarchically. All major hard-
ware data structures are distributed across the die, including
the caches, store buffers and specialized dataflow memories
such as the token store.

To accurately conduct an area-performance study, we use
two artifacts. The first is a synthesizable Verilog model of the
WaveScalar architecture. This model synthesizes with the
latest commercial design tools to a fast clock (22 FO4) on the
latest available TSMC process (90nm). The Verilog model
can execute instructions, but it, like all RTL simulators, is
too slow for executing millions of them. For this purpose we
wrote a corresponding cycle-level simulator and application
development tool-chain.

This paper uses these tools to make two primary contribu-
tions. First, it revisits the buildability of dataflow machines
using today’s denser technology. Second, it explores a wide
swath of the area-performance design space of this dataflow
architecture.

In particular, we describe the microarchitecture for two
key parts of the WaveScalar processor: its most area-
intensive components, including those that implement its dis-
tributed dataflow capabilities, and the interconnection net-
works that localize data communication, contributing heavily
to performance. This basic architecture can be used to build
a continuum of WaveScalar processors with varying perfor-
mance and area. We detail the area budget for a particular
configuration, showing where it is crucial to optimize the de-
sign.

Then, to understand a larger design space, we use data
from our RTL synthesis to develop an area model that de-
scribes the area requirements for a range of designs. We use
the resulting model to enumerate a large set of WaveScalar
processors that could be built in modern process technol-
ogy. Our evaluation of these designs, a pareto analysis of the
design space, demonstrates that multithreaded WaveScalar
processor gerformance scales almost ideally from 19mm?
to 10lmm~ of silicon in terms of area efficiency and from
44mm? to 202mm? in terms of peak performance. Scaling
the designs by an additional factor of four yields double per-
formance. We then compare WaveScalar’s area efficiency
to an aggressive out-of-order superscalar and Sun’s Niagara
chip multiprocessor and find that WaveScalar achieves sub-

stantially more performance per unit area than either of these
designs. Finally, we analyze the effect of processor size
on the on-chip interconnect performance, and find that our
processor’s hierarchical interconnect does an excellent job
of minimizing latency by localizing communication, with
more than 98% of communication occurring within a single
WaveScalar cluster.

This paper begins in Section 2 by describing our exper-
imental infrastructure. Section 3 presents an overview of
the WaveScalar microarchitecture and its four main com-
ponents: (1) the execution tile, i.e., the processing element
(PE); (2) an interface to memory that supports imperative
languages, which we call a wave-ordered storebuffer; (3) a
conventional data-cache hierarchy; and (4) a hierarchical in-
terconnect to provide fast communication among these com-
ponents. The description of the four components is split be-
tween Section 3, which contains a basic description of their
design and architecture, and an appendix, which contains a
detailed example of PE operation. Section 4 presents results
of the area-performance analysis. Section 5 describes other
tiled-architecture work and Section 6 concludes.

2 Experimental infrastructure

In this section we describe the RTL toolchain and simula-
tion methodology that produced the area-performance results
presented throughout this paper.

2.1 The RTL model

Being a tiled dataflow processor, WaveScalar is differ-
ent enough from conventional von Neumann processors that
we cannot draw on past research, existing tools, or indus-
trial experience to understand area and cycle-time require-
ments. Since these parameters are crucial for determining
how well WaveScalar performs and how to partition the sili-
con resources, we constructed a synthesizable RTL model of
the components described in later Sections 3.2 through 3.4.

The synthesizable RTL model is written in Verilog, and
targets a 90nm ASIC implementation. Considerable effort
was put into designing, and redesigning this Verilog to be
both area-efficient and fast. The final clock speed (22 FO4)
comes from our fourth major redesign.

The 90nm process is the most current process technology
available, so the results presented here should scale well to
future technologies. In addition to using a modern process,
we performed both front-end and back-end synthesis to get
as realistic a model as possible. The model makes exten-
sive use of Synopsys DesignWare IP [8] for critical compo-
nents such as SRAM controllers, queue controllers, arbiters,
and arithmetic units. The design currently uses a single fre-
quency domain and a single voltage domain, but the tiled and
hierarchical architecture would lend itself easily to multiple
voltage and frequency domains in the future.

ASIC design flow: We used the most up-to-date tools
available for Verilog synthesis. Synopsys VCS provided
RTL simulation and functional verification of the post-
synthesis netlists. Front-end synthesis was done using Syn-
opsys DesignCompiler. Cadence FirstEncounter handled
back-end synthesis tasks such as floorplanning, clock-tree
synthesis, and place and route [9]. By using back-end syn-
thesis, the area and timing results presented here include re-
alistic physical effects, such as incomplete core utilization
and wire delay, that are critical for characterizing design per-
formance in 90nm and smaller designs.

Standard cell libraries: Our design uses the 90nm high-
performance GT standard cell libraries from Taiwan Semi-
conductor Manufacturing Company (TSMC) [10]. The li-

brary contains three implementations of cells, each with a
different threshold voltage, for balancing power and speed.
We allow DesignCompiler and FirstEncounter to pick the ap-
propriate cell implementation for each path.

The memory in our design is a mixture of SRAM mem-
ories generated from a commercial memory compiler (used
for the large memory structures, such as data caches) and
Synopsys DesignWare IP memory building blocks (used for
smaller memory structures).

Timing data: Architects prefer to evaluate clock cycle
time in a process-independent metric, fanout-of-four (FO4).
A design’s cycle time in FO4 does not change (much) as
the fabrication process changes, thus enabling a more direct
comparison of designs across process technologies.
Synthesis tools, however, report delay in absolute terms
(nanoseconds). To convert nanoseconds to FO4, we followed
academic precedent [11] and used the technique suggested
in [12] to measure the absolute delay of one FO4. We syn-
thesized a ring oscillator using the same design flow and top-
speed standard cells (LVT) used in our design and measured
FO1 (13.8ps). We then multiplied this delay by three to yield
an approximation of one FO4 (41.4ps). All timing data pre-
sented here is reported in FO4 based upon this measurement.

2.2 Cycle-level functional simulation

To complement our RTL model, we built a correspond-
ing cycle-level simulator of the microarchitecture. The sim-
ulator models each major subsystem of the WaveScalar pro-
cessor (execution, memory, and network) and is used to ex-
plore their design in more detail. It also answers basic ques-
tions, such as how the sizing of microarchitectural features
affect performance. To drive the simulations, we executed
the suite of applications described below. These applications
were compiled with the DEC Alpha CcC compiler and then
binary translated into WaveScalar assembly. The assembly
files are then compiled with our WaveScalar assembler, and
these executables are used by our simulator.

Applications: We used three groups of workloads to eval-
uate the WaveScalar processor; each focuses on a dif-
ferent aspect of WaveScalar performance. To measure
single-threaded performance, we chose a selection of the
Spec2000 [13] benchmark suite (ammp, art, equake, gzip,
twolf and mcf). To evaluate the processor’s media process-
ing performance we use rawdaudio, mgeg2encode, and djpeg
from Mediabench [14]. Finally, we use six of the Splash2
benchmarks, fft, lu-continuous, ocean-noncontinuous, ray-
trace, water-spatial, and radix, to explore multi-threaded
performance. We chose these subsets of the three suites be-
cause they represent a variety of workloads and our binary
translator-based tool-chain can handle them.

3 A WaveScalar Overview

This section provides a brief overview of the WaveScalar
architecture and implementation to provide context for the
area model and performance results presented in Section 4.
More detail about the instruction set is available in [5, 15].
Once we have set the high-level stage in the next subsection,
the following three subsections present the portions of the
execution, communication, and memory systems that con-
tribute the most to WaveScalar’s area budget. This section
describes the purpose and function of each component. The
appendix supplements this section with a step-by-step exam-
ple of PE operation.

3.1 The WaveScalar Architecture

WaveScalar is a tagged-token, dynamic dataflow architec-
ture. Like all dataflow architectures (e.g. [16, 17, 18, 19,

PE Data & Routing Network Memory Rejects

WHEHBHRYE W W

[J

=3
[Arbiter] [Arbiter] [Arbiter] [Arbiter] -g
—
— PR R e
-}
: (2]
Insér.uctlon Fire Tracker c;)c%e ngle Cg:';e o ,@,.
ore |<— Control [* Board 1 2 3 ICANe]
Unit o =2
— bl >

all

]
[
[

D
Output
Queue
D

VR B i

Data PEO .. PE7 Network Memory Rejects
Routing

Figure 1. PE Block Diagram: The processing
element’s structure by pipeline stage. Note
that the block at the end of Output is the same
as the block at the start of Input since wire de-
lay is spread between the two stages.

o
o
anoexg

Reject

Buffer

indino

]

20, 21, 22]), its application binary is a program’s dataflow
graph. Each node in the graph is a single instruction which
computes a value and sends it to the instructions that con-
sume it. An instruction executes after all its input operand
values arrive according to a principle known as the dataflow
firing rule [16, 17]. WaveScalar can execute programs writ-
ten with conventional von Neumann-style memory seman-
tics (i.e. those composed in languages like C/C++) and
correctly orders memory operations with a technique called
wave-ordered memory [5].

PEs form WaveScalar’s execution core. From the point
of view of the programmer, the WaveScalar execution model
provides a PE for each static instruction in an application bi-
nary'. Since this is clearly not practical (or efficient), the
processor contains a smaller pool of PEs and dynamically
binds instructions to PEs as an application executes, swap-
ping them in and out on demand. This binding process is
not the same as instruction fetch on conventional processors.
The key difference is that once an instruction is bound to a
physical PE, it can remain there for many dynamic execu-
tions.

Good instruction placement is critical for good perfor-
mance. In this work, we use a highly tuned placement al-
gorithm that uses depth-first traversal of the dataflow graph
to build chains of dependent instructions that execute sequen-
tially at one processing element. It then assigns those chains
to PEs on demand as the program executes. Other work [7]
describes the algorithm in detail. Figure 2 illustrates how
a program can be mapped into a WaveScalar processor for
execution.

A PE contains all the logic for dataflow execution. It has
an input interface that receives tokens containing a data value
and information that associates the value with a particular in-
struction. These tokens are stored in a matching table, which
is implemented as a small, non-associative cache. Once all
tokens for an instruction have arrived, the instruction can be

"More precisely, for each instruction in each programmer-created thread.

scheduled for execution. An ALU executes the instructions
and sends the results to an output network interface, which in
turn conveys them to consumer PEs or to the wave-ordered
store-buffer (described below). The microarchitecture of the
PE will be described in detail in the next section. An evalua-
tion of the best PE configuration (in relation to the rest of the
design) is in Section 4.

The wave-ordered store buffer manages load and store re-
quests for PEs. Its key feature is the ability to order these
operations in program order, which is critical for correct ex-
ecution of imperative languages. A description of the mi-
croarchitecture of the wave-ordered store buffer is contained
in Section 3.3.

The instruction storage system is distributed across the
PEs. The data storage system consists of a two-level cache
hierarchy backed by main memory. The first level of the hier-
archy is a collection of L1 caches that are distributed across
the WaveScalar processor. These caches are kept coherent
using a MESI-like directory protocol. A banked L2 cache
sits between the L1 caches and main memory. The L2 is dis-
tributed on the device but banked by address, so no coherence
protocol is required .

To reduce communication costs, all of these components
(PEs, store-buffers, and data-caches) are connected using
a hierarchical interconnection structure, depicted in Figure
3. Pairs of PEs are first coupled into pods which share
ALU results via a common bypass network. Pods are fur-
ther grouped into domains; within a domain, PEs commu-
nicate over a set of pipelined busses. Four domains form
a cluster, which also contains wave-ordered memory hard-
ware (in the store buffer), a network switch, and an L1 data
cache. A single cluster, combined with an L2 cache and tra-
ditional main memory, is sufficient to run any WaveScalar
program, but performance might be poor if the working set
of instructions is larger than the cluster’s instruction capac-
ity. To build larger, higher performing machines, multiple
clusters are connected by a grid-based on-chip network.

3.2 Processing Elements

A set of processing elements (PEs) form the execution re-
sources of a WaveScalar processor. We begin by describ-
ing the PE’s function and presenting a broad overview of its
pipeline stages. We then describe the structures and pipeline
stages that have the greatest impact on the PE’s area and per-
formance. The appendix contains a detailed operational ex-
ample of the PE microarchitecture.

The PE (Figure 1) is the heart of a WaveScalar machine.
It executes instructions and communicates results over a net-
work. Our RTL implementation uses a PE with five pipeline
stages; they are:

1. INPUT: Operand messages arrive at the PE either from
itself or another PE. The PE may reject messages if too
many arrive in one cycle; the senders will retry on a later
cycle.

2. MATCH: Operands enter the matching table. The
matching table contains a tracker board and operand
caches. It determines which instructions are ready to
fire and issues eligible instructions by placing their
matching table index into the instruction scheduling
queue.

3. DISPATCH: The PE selects an instruction from the
scheduling queue, reads its operands from the match-
ing table, and forwards them to EXECUTE. If the

2This is only true for single-chip WaveScalar systems, of course.

% — Domain —|

D$ | [l
" [1] JL]

A
v

I Mu\MAdu

U

&
i
1
!
t

@)

]

©@

183810

L2 L2

|T
|
[2]

L2

%

Figure 2. Three views of code in WaveScalar: At left is
the C code for a simple computation. Its WaveScalar

dataflow graph is shown at center and then mapped onto
2 8-PE domains in a WaveScalar processor at right.

destination of the dispatched instruction is local, this
stage speculatively issues the consumer instruction to
the scheduling queue.

4. EXECUTE: Executes an instruction. Its result goes to
the output queue and/or the local bypass network.

5. OUTPUT: An instruction output is sent to its consumer
instructions via the intra-domain network. Consumers
may be at this PE or at a remote PE.

An instruction store holds the decoded instructions that
reside at a PE. To keep it single-ported, the RTL design di-
vides it into several small SRAMs, each holding decoded in-
formation needed at a particular stage of the pipeline. The
instruction store comprises about 33% of the PE’s area (Ta-
ble 2).

The matching table handles instruction input matching.
Implementing this operation cost-effectively is essential to
an efficient dataflow machine. The key challenge in design-
ing WaveScalar’s matching table is emulating a potentially
infinite table with a much smaller physical structure. This
problem arises because WaveScalar is a dynamic dataflow
architecture e.g. [22, 23, 24, 19] with no limit on the num-
ber of dynamic instances of a static instruction with uncon-
sumed inputs. We use a common dataflow technique [19, 18]
to address this challenge: the matching table is a specialized
cache for a larger, in-memory matching table. New tokens
are stored in the matching cache. If a token resides there for
a sufficiently long time, another token may arrive that hashes
to the same location. In this case, the older token is sent to
the matching table in memory.

The matching table is separated into three columns, one
for each potential instruction input (certain WaveScalar in-
structions, such as data steering instructions, can have three
inputs®). Each column is divided into four banks to allow up
to four messages to arrive each cycle. Reducing the number
of banks to two reduced performance by 5% on average and
15% for ammp. Increasing the number of banks to eight had
negligible effect. In addition to the three columns, the match-
ing table contains a tracker board, which holds operand tags

3The third column is special and supports only single-bit operands. This
is because three input instructions in WaveScalar always have one argument
which need only be a single bit. Other columns hold full 64 bit operands.

Figure 3. The WaveScalar proces-
sor and cluster: The hierarchical
organization of the WaveScalar
microarchitecture.

(wave number and consumer instruction number) and tracks
which operands are present in each row of the matching ta-
ble.

Since the matching table is a cache, we can apply tra-
ditional cache optimizations to reduce its miss rate. Our
simulations show that 2-way set associativity increases per-
formance by 10% on average and reduces matching table
misses (situations when no row is available for an incoming
operand) by 41%. 4-way associativity provides less than 1%
additional performance, hence the matching table is 2-way.
The matching table comprises about 60% of PE area.

To achieve good performance, PEs must be able to ex-
ecute dependent instructions on consecutive cycles. When
DISPATCH issues an instruction with a local consumer of
its result, it speculatively schedules the consumer instruc-
tion to execute on the next cycle. The schedule is specula-
tive, because DISPATCH cannot be certain that the dependent
instruction’s other inputs are available. If they are not, the
speculatively scheduled consumer is ignored.

To allow back-to-back execution of instructions in differ-
ent PEs, we combine two PEs into a single pod. PEs in a
pod snoop each others bypass networks, but all other parts
of their design remain partitioned — separate matching ta-
bles, instruction store, etc. Our simulations show that the
2-PE pod design is 15% faster on average than isolated PEs.
Increasing the number of PEs in each pod further increases
performance but adversely affects cycle time.

3.3 The Memory Subsystem

The WaveScalar processor’s memory system has two
parts: the wave-ordered store buffers that provide von Neu-
mann memory ordering and a conventional memory hierar-
chy with distributed L1 and L2 caches. Both components
contribute significantly to chip area.

3.3.1 Wave-ordered Interface

WaveScalar provides a memory interface called wave-
ordered memory (described in [5]) that enables it to execute
programs written in imperative languages (such as C, C++,
or Java [6, 25]), by providing the well-ordered memory se-
mantics these languages require.

The store buffers, one per cluster, are responsible for im-
plementing the wave-ordered memory interface that guaran-
tees correct memory ordering. To access memory, processing

Mem. Requests Partial store data

— |

Partial Store

Ordering Queues

Table

Wave- 4
ordering <+
Logic
L yes
Data Cache
| Ready Addr ==
ready ops. b

Figure 4. The store buffer: architecture.
The main area consumer is the ordering
table. The processing logic is pipelined
(3 stages, not shown) and of negligible
area. Two partial store queues (right)
were found to be sufficient for perfor-
mance.

elements send requests to their local store buffer via a spe-
cialized PE in their domain, the MEM pseudo-PE (described
below). The store buffer will either process the request or di-
rect it to another buffer via the inter-cluster interconnect. All
memory requests for a section of code (called a wave in [5]),
such as a loop iteration, including requests from both local
and remote processing elements, are managed by the same
store buffer. Each store buffer can handle four iterations si-
multaneously.

The store buffer uses a technique called store decoupling
to process store address and store data messages separately.
If a store address arrives and is ready to issue to the data
cache before its data value has arrived, the store buffer as-
signs the store address to a partial store queue, where it
awaits its data value. In the meantime, any requests that is-
sue from the store buffer and target an address assigned to a
partial store queue are placed in that partial store queue as
well. When the missing data value finally arrives, the partial
store queue can issue all its requests in quick succession.

Our design includes two partial store queues, each of
which can hold four memory requests. Each partial store
queue has one read and one write port. In addition, a 2-entry
associative table detects whether an issued memory opera-
tion should be written to a partial store queue or be sent to the
cache. Adding partial store queues increases performance
between 5 and 20%, depending upon the application. Adding
more than two partial store queues provides a negligible ad-
ditional increase in performance, but makes achieving a short
cycle time difficult.

All the store buffer hardware for one cluster, including the
partial store queues, occupies 2.6mm? in 90nm technology
or approximately 6.2% of the cluster, depending on the clus-
ter’s configuration. The size of the store buffer is an architec-
tural parameter exposed to the ISA, so its area requirements
are fixed. Each store buffer can handle four wave-ordered
memory sequences at once.

3.3.2 Data-cache System

WaveScalar provides two levels of data cache. Each cluster
contains an L1 cache, and the banks of an L2 cache and a
coherence directory surround the array of clusters. The L1

intra-domain

R interconnect _ intra-cluster
interconnect

[—{ South

L{ East

Switch

Stoi
$

> inter-cluster

domain switch

Figure 5. The cluster interconnects: A
high-level picture of the interconnects
within a cluster.

data cache is 4-way set associative and has 128-byte lines.
An L1 hit costs 3-cycles (2 cycles SRAM access, 1 cycle
processing), which can overlap with store buffer processing.
A directory-based, MESI coherence protocol keeps the L1
caches coherent [26]. All coherence traffic travels over the
inter-cluster interconnect. The L2’s hit delay is 20-30 cycles,
depending upon address and distance to a requesting cluster.
Main memory latency is modeled at 200 cycles.

An area analysis of the data-cache system appears with
the rest of the results in Section 4.

3.4 Interconnection Network Scalability

Section 3.2 describes WaveScalar’s execution resource,
the PE. PEs communicate by sending and receiving data
via a hierarchical, on-chip interconnect. This hierarchy has
four levels: intra-pod, intra-domain, intra-cluster and inter-
cluster. Figure 5, which depicts a single cluster, illustrates
all on-chip networks. While these networks serve the same
purpose — transmission of instruction operands and memory
values — they have significantly different implementations.
Section 3.2 described the intra-pod interconnect. Here, we
present the salient features of the remaining three.

3.4.1 The intra-domain interconnect

The intra-domain interconnect is broadcast-based. Each of
a domain’s PEs has a dedicated result bus that carries a sin-
gle data result to the other PEs in its domain. Widening the
broadcast busses makes little sense, since the PE can only
generate one output value per cycle (it has only one ALU)
and fewer than 1% of messages need to be broadcast more
than once (e.g. when a receiver cannot yet handle an incom-
ing message).

In addition to the normal PEs, each domain contains two
pseudo-PEs (called MEM and NET) that serve as gateways to
the memory system and PEs in other domains or clusters, re-
spectively. PEs and pseudo-PEs communicate over the intra-
domain interconnect using identical interfaces.

Although the intra-domain interconnect is the largest
broadcast structure in the processor, it has far less impact
on total chip area than its size might indicate, because the in-
terconnect wires reside mostly in metal layers above the PE

WaveScalar Capacity | 4K static instructions (128 per PE)
PEs per Domain 8 (4 pods) Domains / Cluster 4
PE Input Queue 128 entries, 4 banks Network Latency within Pod: 1 cycle
PE Output Queue 4 entries, 2 ports (1r, 1w) within Domain: 5 cycles
PE Pipeline Depth 5 stages within Cluster: 9 cycles
inter-Cluster: 9 + cluster dist.
L1 Cache 32KB, 4-way set associative, || Network Switch 2-port, bidirectional
128B line, 4 accesses per cycle
Main RAM 200 cycle latency

Table 1. Microarchitectural parameters: The configuration of the baseline WaveScalar processor

logic. Accessing the interconnect and accommodating vias
causes the PE logic to expand by 7%. This expansion is es-
sentially the intra-domain network area.

3.4.2 The intra-cluster interconnect

The intra-cluster interconnect is a small network that shut-
tles operands between the domains. The NET pseudo-PEs of
the four domains within a cluster are connected to each other
and to the inter-cluster network switch in a complete, point-
to-point network. Every point-to-point link is capable of
moving one operand per cycle in each direction, although the
NET pseudo-PEs can only introduce a single operand to their
respective domains each cycle. Area for the intra-cluster in-
terconnect is negligible. Its largest resource, the wires, reside
in metal layers above the intra-domain network.

3.4.3 The inter-cluster interconnect

The inter-cluster interconnect is responsible for all long-
distance communication in the WaveScalar processor, in-
cluding operands traveling between PEs in different clusters
and coherence traffic for the L1 data caches. At each cluster,
the network switch routes messages between six input/output
ports. Four of the ports lead to the network switches in the
four cardinal directions, one is shared among the domains’
NET pseudo-PEs, and one is dedicated to the store buffer and
L1 data cache.

Each input/output port supports the transmission of up to
two operands per cycle. The inter-cluster network provides
two virtual channels which the interconnect uses to prevent
deadlock [27]. Each output port contains two 8-entry out-
put queues, one for each virtual network. The output queues
rarely fill completely (less than 1% of cycles). Our exper-
iments found that lowering bandwidth to one operand per
cycle significantly hurt performance (by 52% on average),
while increasing it to four had a negligible effect. In this
paper, we do not examine variations of the switch config-
uration further, primarily because it comprises an extremely
small area compared to the rest of the design. Its queues con-
sume negligible area, and the inter-cluster wires comprising
the switch fabric are routed through the upper layers of metal
on the chip. All told, the inter-cluster interconnect represents
only 1% of the total chip area for all of the configurations we
consider in this work.

4 Evaluation

The architecture described in the previous sections de-
fines a large set of WaveScalar processors of varying sizes
and configurations. At one end of the spectrum is a
small WaveScalar processor, comprising just a single cluster,
which would be suitable for small, single-threaded or embed-
ded applications. At the other end, a supercomputer proces-
sor might contain tens of clusters and hundreds or thousands

of processing elements. The ability to move easily along
this design continuum is a key objective of tiled architec-
tures. A second objective is that they be able to tolerate such
drastic changes in area by localizing data communication,
thereby reducing latency. This section explores how well the
WaveScalar architecture achieves these goals.

We begin in Section 4.1 with a detailed look at the area
budget of a particular WaveScalar processor configuration.
Then, to understand a larger design space, Section 4.2 uses
data from our RTL synthesis to develop an area model
that describes the area requirements for a range of designs.
We use the resulting model to enumerate a large class of
WaveScalar processor designs that could be built in mod-
ern process technology. We evaluate these designs using a
suite of single- and multi-threaded workloads and use the re-
sults to perform a area/performance pareto analysis of the
WaveScalar design space covered by our RTL design and
area model. Lastly, in Section 4.3, we examine changes in
the network traffic patterns as the size of the WaveScalar pro-
cessor increases.

4.1 Area and timing results

Our RTL toolchain provides both area and delay values
for each component of the WaveScalar processor. For this
study, we restrict ourselves to processors that achieve a clock
rate of 22 FO4, which occurs for a wide range of designs in
our Verilog model. This is the shortest cycle time allowed
by the critical path within the PE. For most configurations,
the critical path is through the execution unit’s integer mul-
tiplier, when using operands from the other PE in the pod.
However, enlarging the matching cache or instruction cache
memory structures beyond 256 entries makes paths in the
MATCH and DISPATCH stages critical paths. Floating point
units are pipelined to avoid putting floating-point execution
on the critical path. INPUT and OUTPUT devote 9 and 5 FO4
respectively to traversing the intra-domain network, so there
is no need for an additional stage for intra-domain wire delay.

Since the critical path is the ALU for designs with smaller
than 256-entry matching caches and 256-entry instruction
caches, we can resize these structures downward for opti-
mum area-performance without dramatically altering the cy-
cle time. This allows us to evaluate a large number of poten-
tial processing element designs based on area without wor-
rying about an accompanying change in cycle time. We con-
firmed this by synthesizing designs with 16- to 256-entry
matching caches and with 8- to 256-entry instruction caches.
The clock cycle for these configurations changed by less than
5% until the structures reached 256 entries, at which point the
cycle time increased by about 21% for the matching cache
and 7% for the instruction cache. These latencies and struc-
ture size limits for our study are summarized in Table 1 and

H Areain PE Areain Domain Areain Cluster | % of PE = % of Domain % of Cluster
PE
INPUT 0.01mm? 0.09mm? 0.37mm? 1.2% 1.1% 0.9%
MATCH 0.58mm? 4.60mm? 18.41mm? 61.0% 55.2% 43.3%
DISPATCH 0.01mm? 0.05mm? 0.18mm? 0.6% 0.6% 0.4%
EXECUTE 0.02mm? 0.19mm? 0.77mm? 2.5% 2.3% 1.8%
OUTPUT 0.02mm? 0.14mm? 0.55mm? 1.8% 1.7% 1.3%
instruction store 0.31mm? 2.47mm? 9.88mm? 32.8% 29.6% 23.2%
total 0.94mm? 7.54mm? 30.16mm? 100% 90.5% 71.0%
Domain
MemPE 0.13mm? 0.53mm? 1.6% 1.2%
NetPE 0.13mm? 0.53mm? 1.6% 1.2%
8xPE 7.54mm? 30.16mm? 90.5% 71.0%
FPU 0.53mm? 2.11mm? 6.3% 5.0%
total 8.33mm? 33.32mm? 100% 78.4%
Cluster
4% domain 33.32mm? 78.4%
network switch 0.37mm? 0.9%
store buffer 2.62mm? 6.2%
data cache 6.18mm? 14.5%
total 42.50mm? 100.0%

Table 2. A cluster’s area budget: A breakdown of the area required for a single cluster.

Table 3, respectively.

Table 2 shows how the die area is spent for the baseline
design described in Table 1. Note that the vast majority of
the cluster area (71%) is devoted to PEs. Also, as shown in
the table, almost all of the area, ~80%, is spent on SRAM
cells which make up the instruction stores, matching caches,
and L1 data caches.

4.2 Area model and Pareto analysis

Many parameters affect the area required for WaveScalar
designs. Our area model considers the seven parameters with
the strongest effect on the area requirements. Table 3 sum-
marizes these parameters (top half of the table) and how they
combine with data from the RTL model to form the total area,
W Clyrea (bottom of the table). For both the matching table
and instruction store, we synthesized versions from 8 to 128
entries to confirm that area varies linearly with capacity. For
the L1 and L2 caches, we used the area of 1IKB and 1MB
arrays provided by a memory compiler to perform a similar
verification. The “Utilization factor” is a measure of how
densely the tools managed to pack cells together, while still
having space for routing. Multiplying by its inverse accounts
for the wiring costs in the entire design.

The area model ignores some minor effects. For instance,
it assumes that wiring costs do not decrease with fewer than
four domains in a cluster, thereby overestimating this cost
for small clusters. Nevertheless, the structures accounting
for most of the silicon area (80% as discussed in Section 4.1)
are almost exactly represented.

The area model contains several parameters that enumer-
ate the range of possible WaveScalar processor designs. For
parameters D (domains per cluster), P (processors per do-
main), V' (instructions per PE) and M (matching-table en-
tries), we set the range to match constraints imposed by the
RTL model. As mentioned in Section 4.1, increasing any
of these parameters past the maximum value impacts cycle
time. The minimum values for M and V" reflect restrictions
on minimum memory array sizes in our synthesis toolchain.

The ranges in the table allow for over twenty-one thou-

sand WaveScalar processor configurations, but many of them
are clearly poor, unbalanced designs, while others are ex-
tremely large (up to 12,000mm?). We can reduce the number
of designs dramatically if we apply some simple rules.

First, we bound the die size at 400mm? in 90nm to allow
for aggressively large yet feasible designs. Next, we remove
designs that are clearly inefficient. For instance, it makes no
sense to have more than one domain if the design contains
fewer than eight PEs per domain. In this case, it is always
better to combine the PEs into a single domain, since reduc-
ing the domain size does not reduce the cycle time (which is
set by the PE’s EXECUTE pipeline stage) but does increase
communication latency. Similarly, if there are fewer than
four domains in the design, there should be only one cluster.
Applying these rules and a few more like them reduces the
number of designs to 201.

We evaluated all 201 design points on our benchmark set.
For the Splash applications, we ran each application with
a range of thread counts on each design and report results
for the best-performing thread count. Figure 6 shows the
results for each group of applications. For all our perfor-
mance results we report AIPC instead of IPC. AIPC is the
number of Alpha-equivalent instructions executed per cycle.
All additional WaveScalar-specific instructions [28, 15] are
not included, so that performance is more intuitive. Each
point in the graph represents a configuration, and the cir-
cled points are pareto optimal configurations (i.e., there are
no configurations that are smaller and achieve better perfor-
mance). We discuss multi- and single-threaded applications
separately and then compare WaveScalar to two other archi-
tectures in terms of area efficiency.

Splash2 Figure 6 shows that Splash2’s use of multiple
threads allows it to take advantage of additional area very
effectively, as both performance and area increase at nearly
the same rate. The clusters of pareto optimal points are re-
flected in Table 4, which contains the optimal configurations
for Splash2 divided into five groups of designs with similar
performance (column “Avg. AIPC”).

Parameter Symbol Description Range
Clusters C Number of clusters in the WaveScalar processor | 1...64
Domains/cluster D Number of domains per cluster 1...4
PEs/domain P Number of PEs per domain 2...8
PE virtualization degree 1% Instructions capacity of each PE 8...256
Matching table entries M Number of matching table entries 16...128
L1 Cache size L1 KB of L1 cache/cluster 8...32
L2 Cache size L2 total MB of L2 cache 0...32
Area component Symbol Value
PE matching table Mrea = 0.004mm?/entry
PE instruction store Varea = 0.002mm? /instruction
Other PE components Carea = 0.05mm?
Total PE PEarea =M x Marea + V x Varea + €area
Pseudo-PE PPFEgres | = 0.1236mm?
Domain Dren =2X PPEyca + P X PE,¢q
Store buffer SBarea = 2.464mm?
L1 cache Ll,ca = 0.363mm?/KB
Network switch Narea = 0.349mm?
Cluster Carea =D x Darea + SBarea + L1 x Llarea + Narea
L2 area L2arca = 11.78mm?/MB
Utilization factor U =0.94
’ Total WaveScalar processor area \ W Caren \ = %(C’ X Carea) + L2arca
Table 3. WaveScalar processor area model.
Splash2 Speclnt
18.00
16.00 o 1.40
14.00 50 e® - 1.20
12.00 — 1.00
10.00 o Q 0.80
@R '
8.00 o 0.60
6.00 T
400 g: '...... RO 040 ' ..5‘,':’. .:.: =
2.00 g e 0.20 s RN
0-00 T T T 1 0.00 T T T 1
0 100 200 300 400 0 100 200 300 400
Mediabench SpecFP
1.40 1.40
1.20 1.20
1.00 §?® 1.00
0.80 - 0.80
0.60 0.60
0.40 0.40 <
@t
0.20 0.20
0-00 T T T 1 0.00 T T T 1
0 100 200 300 400 0 100 200 300 400

Figure 6. Pareto-optimal WaveScalar designs: Small points are all designs. Circles are pareto-optimal
points. Vertical axis measures AIPC. Horizontal axis is mm?2. Note the difference in AIPC scale for the
Splash2 data.

Group A is the single-cluster configurations. Designs 1,
2, 5, and 6 contain only two domains per cluster. Designs
5 and 6 outperform smaller, four-domain designs (3 and 4)
because pressure in the L1 data cache outweighs the benefits
of additional processing elements.

Moving to four clusters without an L2 cache (Group B) in-
creases the chip’s size by 52% and its performance by 38%.
Doubling the size of the L1 provides an additional 11% per-
formance boost.

Group C (configurations 13 and 14) “trades-in” large L1
caches for an on-chip L2. For configuration 13, this results
in a 43.5% improvement in performance for a negligible in-
crease in area.

The first four 4-cluster designs (Groups B and C) all have
much smaller virtualization degrees than the best-performing
single-cluster designs (64 vs. 128-256). Configuration 15,
the first in Group D, has 128 instructions per PE. The change
leads to 43% more performance and requires only 12% addi-
tional area.

The remaining designs in Group D increase slowly in area
and performance. Virtualization degree is most important to
performance followed by matching table size and cache ca-
pacity. With few exceptions the gains in performance are
smaller than the increase in area that they require. As a result,
the area efﬁc1ency of the designs falls from 0.07 AIPC/mm?
to 0.04 AIPC/mm?2.

The configurations in Group E (33-39) have 16 clusters.
The transition from 4 to 16 clusters mimics the transition
from 1 to 4: The smallest 16 cluster designs have less virtual-
ization and increase their performance by increasing match-
ing table capacity and cache sizes. The larger designs “trade-
in” matching table capacity for increased virtualization.

The results demonstrate that WaveScalar is scalable both
in terms of area efficiency and peak performance. Design
3 is the most area efficient design, and design 15 uses the
same cluster configuration to achieve the same level of effi-
ciency. As aresult, the designs are approximately a factor of
5 apart in both area and performance. Scaling the same clus-
ter configuration to a 16-cluster machine (conﬁguratlon 38)
reduces the area efficiency to 0.04 AIPC/mm?, however. A
more efficient alternative (0.05 AIPCmm?) is conﬁguratron
33, which corresponds to scaling up configuration 13 and us-
ing a slightly smaller L2 data cache.

Design 10 outperforms all the other 1 cluster designs
(2.2 AIPC), and configuration 28 uses the same cluster de-
sign to achieve 4.2x the performance (9 AIPC) in 4.6x the
area. This level of performance is within 5% of the best per-
forming 4 cluster design (configuration 32), demonstrating
scalability of raw performance.

This slightly imperfect scalability, however, (the last 5%)
raises a complex question for chip designers. For instance,
if an implementation of configuration 38’s cluster is avail-
able (e.g., from an implementation of configuration 3), is it
more economic to quickly build that larger, slightly less ef-
ficient design or to expend the design and verification effort
to implement configuration 33 instead? At the very least, it
suggests tiled architectures are not inherently scalable, but
rather scalability claims must be carefully analyzed.

Single-threaded workloads The data for all three groups
of single-threaded workloads follow the same trend (see Fig-
ure 6). The configurations fall into three clumps depend-
ing on how many clusters they utilize. Both SpecINT and
SpecFP see the most benefit from four cluster designs. On a
single cluster they achieve only 58% and 46% (respectively)
of the peak performance they attain on four clusters. Media-
bench sees smaller gains (9%) from four clusters.

None of the workloads productively utilize a 16 cluster
design. In fact, performance decreases for these configura-
tions because instructions become more spread out, increas-
ing communication costs. This agrees with prior WaveScalar
research [5].

Area efficiency and other architectures The above re-
sults show that WaveScalar’s area efficiency scales as we
build larger WaveScalar processors, but they do not show
whether WaveScalar is efficient compared to other architec-
tures. To investigate this we compare WaveScalar’s area ef-
ficiency to two other architectures: the Alpha 21264 and the
Sun’s Niagara processor.

To compare to the Alpha we use sim—alpha configured
to model the Alpha EV7 [29, 30], but with the same L1, L2,
and main memory latencies we model for WaveScalar. To
estimate the size of the Alpha, we examined a die photo of
the EV7 in 180nm technology [30, 31]. The entire die is
396mm?. From this, we subtracted the area devoted to sev-
eral components that our area model does not include (e.g.,
IO pads, and inter-chip network controller) We estimate the
remaining area to be ~291mm?. Scaling to 90nm technol-
ogy yields ~72mm?.

For our single threaded workloads the Alpha achieves an
area efficiency of 0.008 AIPC/mm? (0.6 AIPC). Depend-
ing on the configuration, WaveScalar’s efficiency for the
single-threaded applications is between 0.004 AIPC/mm?
(0.71 AIPC; configuration 31) and 0.033 AIPC/mm?
(0.45 AIPC; configuration 1). WaveScalar configuration 4
closely matches the Alpha s performance with an efficiency
of 0.024 AIPC/mm?, three times that of the Alpha.

The 21264 is a s1ngle -threaded processor, but WaveScalar
can execute multiple threads as well. To gauge its effi-
ciency in this arena, we compare to Sun’s Niagara proces-
sor [32]. Niagara is an 8-way CMP targeted at large multi-
threaded workloads. We are unaware of any published eval-
uation of Splash2 on Niagara, but [32] shows Niagara run-
ning at 4.4 IPC (0.55 IPC/core) at 1.2 GHz (an approxi-
mately 10% faster clock than WaveScalar’s). Niagara’s die
measures 379mm?, giving an efficiency of 0.01 IPC/mm?2.
Since each N1agara core is single-issue and in-order, and all
eight cores share a floating point unit, the theoretical maxi-
mum efficiency is 0.02 IPC/mm?. The least efficient pareto
optimal WaveScalar design (configuration 39) is twice as ef-
ficient (0.04 ATIPC/mm?).

4.3 Network traffic

One goal of WaveScalar’s hierarchical interconnect is to
isolate as much traffic as possible in the lower levels of the
hierarchy, namely, within a PE, a pod or a domain. Figure 7
breaks down all network traffic according to these levels.
It reveals the extent to which the heirarchy succeeds on all
three workloads, and for the parallel applications, on a vari-
ety of WaveScalar processor sizes. On average 40% of net-
work traffic travels from a PE to itself or to the other PE in
its pod, and 52% of traffic remains within a domain. For
multi-cluster configurations, on average just 1.5% of traf-
fic traverses the inter-cluster interconnect. The graph also
distinguishes between operand data and memory/coherence
traffic. Operand data accounts for the vast majority of mes-
sages, 80% on average, with memory traffic less than 20%.

These results demonstrate the scalability of communica-
tion performance on the WaveScalar processor. Applications
that require only a small patch of the processor, such as Spec,
can execute without ever paying the price for long distance
communication. In addition, the distribution of traffic types
barely changes with the number of clusters, indicating that
the interconnect partitioning scheme is scalable. Message

Group | Id || Clusters | Domains/ PEs/ Virt. | Matching L1 L2 Inst. Area Avg. | AIPC/ Area AIPC

’ ‘ H Cluster Domain ‘ Entries ‘ (KB) ‘ (MB) ‘ Cap. H (mm?) ‘ AIPC ‘ mm? Increase | Increase
A I I 2 8 256 16 8 0 4096 19 1.4 0.07 na na
2 1 2 8 256 32 8 0 4096 21 1.4 0.07 6.3% 0.7%

3 1 4 8 128 16 8 0 4096 22 1.5 0.07 7.4% 4.0%

4 1 4 8 128 32 8 0 4096 25 1.5 0.06 11.1% 5.0%

5 1 2 8 256 16 32 0 4096 29 1.7 0.06 16.6% 13.2%

6 1 2 8 256 32 32 0 4096 30 1.8 0.06 4.3% 1.8%

7 1 4 8 128 16 32 0 4096 31 2.0 0.06 5.1% 11.9%

8 1 4 8 128 32 32 0 4096 34 2.0 0.06 7.8% 3.7%

9 1 4 8 128 64 32 0 4096 39 2.1 0.05 14.5% 3.2%

10 1 4 8 256 32 32 0 8192 44 2.2 0.05 14.5% 3.1%

B 11 4 4 8 64 16 8 0 8192 67 3.0 0.04 51.9% 37.8%
12 4 4 8 64 16 16 0 8192 80 33 0.04 18.4% 11.5%

13 4 4 8 64 16 8 1 8192 80 4.8 0.06 0.2% 43.5%

14 4 4 8 64 32 8 1 8192 90 5.0 0.06 12.3% 4.0%

D 15 4 4 8 128 16 8 I 16384 101 7.2 0.07 12.5% 43.4%
16 4 4 8 128 32 16 1 16384 123 7.4 0.06 22.0% 3.9%

17 4 4 8 128 64 8 1 16384 130 7.6 0.06 5.9% 2.0%

18 4 4 8 128 32 16 2 16384 136 7.6 0.06 4.1% 0.9%

19 4 4 8 128 16 32 1 16384 138 7.7 0.06 1.8% 0.1%

20 4 4 8 128 16 8 4 16384 138 7.7 0.06 0.4% 1.0%

21 4 4 8 128 64 8 2 16384 143 8.0 0.06 3.1% 3.6%

22 4 4 8 128 32 32 1 16384 148 8.2 0.06 3.5% 2.1%

23 4 4 8 256 32 8 1 32768 153 8.2 0.05 3.4% 0.3%

24 4 4 8 256 32 8 2 32768 165 8.5 0.05 8.2% 3.2%

25 4 4 8 128 64 32 1 16384 167 8.5 0.05 1.3% 0.2%

26 4 4 8 256 32 16 2 32768 178 8.7 0.05 6.1% 3.0%

27 4 4 8 256 64 8 2 32768 185 8.8 0.05 4.1% 1.0%

28 4 4 8 256 32 32 1 32768 190 9.0 0.05 2.7% 2.0%

29 4 4 8 256 32 32 2 32768 202 9.3 0.05 6.6% 3.2%

30 4 4 8 256 64 32 1 32768 209 9.4 0.04 3.5% 1.1%

31 4 4 8 256 64 32 2 32768 222 9.7 0.04 6.0% 2.9%

32 4 4 8 256 64 32 4 32768 247 9.8 0.04 11.3% 1.2%

E 33 16 4 8 64 16 8 I 32768 282 12.9 0.05 14.1% 31.8%
34 16 4 8 64 16 8 2 32768 294 13.4 0.05 4.4% 4.0%

35 16 4 8 64 32 8 1 32768 321 14.0 0.04 9.1% 4.1%

36 16 4 8 64 32 8 2 32768 334 14.3 0.04 3.9% 2.6%

37 16 4 8 64 32 8 4 32768 359 15.5 0.04 7.5% 8.0%

38 16 4 8 128 16 8 1 65536 366 15.7 0.04 2.0% 1.3%

39 16 4 8 128 16 8 2 65536 378 15.8 0.04 3.4% 0.9%

Table 4. Pareto optimal configurations for Splash2.

latency does increase with the number of clusters (by 12%
from 1 to 16 clusters), but as we mentioned above, overall
performance still scales linearly. One reason for the scalabil-
ity is that the WaveScalar instruction placement algorithms
isolate individual Splash threads into different portions of the
die. Consequently, although the average distance between
two clusters in the processor increases from 0 (since there is
only one cluster) to 2.8, the average distance that a message
travels increases by only 6%. For the same reason, network
congestion increases by only 4%.

4.4 Discussion

We have presented a design space analysis for WaveScalar
processors implemented in an ASIC tool flow. However, our
conclusions also apply to full-custom WaveScalar designs
and, in some ways, to other tiled architectures such as CMPs.

The two main conclusions would not change in a full-
custom design. For the first conclusion, that WaveScalar
is inherently scalable both in terms of area efficiency
and raw performance, our data provide a lower bound
on WaveScalar’s ability to scale. Custom implementation
should lead to smaller designs, faster designs, or both. Our
second conclusion, that WaveScalar’s area efficiency com-
pares favorably to more conventional designs, would hold in
a full custom design for the same reason.

WaveScalar’s hierarchical interconnect would serve well
as the interconnect for an aggressive CMP design, and our
results concerning the scalability and performance of the net-
work would apply to that domain as well. In a conventional
CMP design, the network carries coherence traffic, but as re-
searchers strive to make CMPs easier to program it might
make sense to support other types of data, such as MPI mes-

sages, as well. In that case, our data demonstrate the value of
localizing communication as much as possible and the feasi-
bility of using a single network for both coherence traffic and
data messaging.

5 Related Work

Several research groups have proposed tiled architec-
tures, with widely varying tile designs. Smart Memories [2]
provides multiple types of tiles (e.g., processing elements,
reconfigurable memory elements). This approach allows
greater freedom in configuring an entire processor, since the
mix of tiles can vary from one instantiation to the next, per-
haps avoiding the difficulties in naive scaling that we found
in our study.

TRIPS [3, 4] provides two levels of tiles. The processor
consists of a uniform array of functional units that combine
to form a processor. The processor itself can be tiled as well.
The TRIPS group is building a prototype, but they have not
yet published a systematic study of area/performance trade-
offs.

The RAW project [11] uses a simple processor core as a
tile and builds a tightly-coupled multiprocessor. One study of
the RAW architecture [33] shares similar goals to ours, but
it takes a purely analytical approach and creates models for
both processor configurations and applications. That study
was primarily concerned with finding the optimal configura-
tion for a particular application and problem size.

FPGAs can be viewed as tiled architectures and can of-
fer insight into the difficulties tiled processor designers may
face. FPGAs already provide heterogeneous arrays of tiles
(e.g., simple lookup tables, multipliers, memories, and even
small RISC cores) and vary the mix of tiles depending on the

100%
90% 1
80% -
70% 4

Ointer-cluster memory
Elintra-cluster memory
inter-cluster operand
fAintra-cluster operand
Eintra-domain operand
M intra-pod operand

60% 1
50% +
40% -
30% 1
20% 1
10% -

0% -

S
N
’(\’»
S
N &
R L

Figure 7. The distribution of traffic in the
WaveScalar processor: The vast majority of
traffic in the WaveScalar processor is con-
fined within a single cluster and, for many ap-
plications, over half travels only over the intra-
domain interconnect.

size of the array.
6 Conclusion

This paper explored the area/performance trade-offs in a
tiled WaveScalar architecture. We use RTL synthesis and
cycle-level simulation to perform a pareto analysis of designs
with a 22 FO4 clock cycle ranging from 19mm? to 378mm?.
Using applications from SPEC, Splash2, and Mediabench,
we investigated over 200 WaveScalar processor configura-
tions.

Exploring the design space reveals some interesting con-
clusions. First, WaveScalar processors tuned for either area
efficiency or maximum performance scale across a wide
range of processor sizes. Second, the WaveScalar architec-
ture is more efficient than an aggressive out-of-order super-
scalar and a modern 8-way CMP at converting silicon area
into bottom-line performance.

Finally, we explored the behavior of WaveScalar’s hier-
archical, on-chip interconnect. Without a scalable intercon-
nect, a tiled architecture cannot scale efficiently. Our inter-
connect is very effective in this regard. Over 50% of mes-
sages in WaveScalar stay within a domain and over 80% stay
within a cluster, with memory accounting for nearly all inter-
cluster traffic.

7 Appendix

In Section 3 we described the WaveScalar processor ar-
chitecture. This appendix contains an example illustrating
the pipeline operation for a PE. Figure 8 illustrates the two
key differences between the PE pipeline and a conventional
processor pipeline. Data values, instead of instructions, flow
through this pipeline. Also, instructions A and B are specu-
latively scheduled in order to execute on consecutive cycles.
In the sequences shown in Figure 8, A’s result is forwarded
to B when B is in EXECUTE. In the diagram, X [n] is the nth
input to instruction X. Five consecutive cycles are depicted;
before the first of these, one input each from instructions A
and B have arrived and reside in the matching table. The
“clouds” in the dataflow graph represent results of instruc-
tions at other processing elements, which have arrived from
the input network.

Cycle 0: Operand A[0] arrives and INPUT accepts it.

Cycle 1: MATCH writes A[0] into the matching table and,
because both its inputs are now available, places a pointer to
A’s entry in the matching table in the scheduling queue.
Cycle 2: DISPATCH chooses A for execution, reads its
operands and sends them to EXECUTE. At the same time, it
recognizes that A’s output is destined for B. In preparation
for this producer-consumer handoff, a pointer to B’s match-
ing table entry is inserted into the speculative fire queue.
Cycle 3: DISPATCH reads B[0] from the matching table and
sends it to EXECUTE. EXECUTE computes the result of A,
which is B[1].

Cycle 4: EXECUTE computes the result of instruction B
using B[0] and the result from the bypass network, B[1].
Cycle 5 (not shown): OUTPUT will send B’s output to Z.

Acknowledgments:

This work has been made possible through the generous
support of an NSF CAREER Award (ACR-0133188), ITR
grant (CCR-0325635), and doctoral fellowship (Swanson);
Sloan Research Foundation Award (Oskin); Intel Fellow-
ships (Swanson, Mercaldi); ARCS Fellowships (Putnam,
Schwerin); and support from Intel and Dell. We would like
to thank our sponsors, the reviewers for their helpful feed-
back, Seth Bridges for tool-chain support, and the Synopsys
and Cadence support staff for their assistance.

References

[1] W. Lee et al., “Space-time scheduling of instruction-level par-
allelism on a Raw machine,” in Proceedings of the 8th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems ASPLOS-VIII, Octo-
ber 1998.

[2] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz, “Smart memories: A modular reconfigurable
architecture,” in International Symposium on Computer Ar-
chitecture, 2002.

[3] R. Nagarajan, K. Sankaralingam, D. Burger, and S. Keckler,
“A design space evaluation of grid processor architectures,” in
Proceedings of the 34th Annual International Symposium on
Microarchitecture, 2001.

[4] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore, “Exploiting ILP,
TLP, and DLP with the polymorphous TRIPS architecture,”
in Proceedings of the 30th annual international symposium
on Computer architecture, 2003.

[5] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin,
“WaveScalar,” in Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, p. 291, 2003.

[6] A.H. Veen, The Misconstrued Semicolon: Reconciling Imper-
ative Languages and Dataflow Machines. Mathematish Cen-
trum, 1980.

[7] M. Mercaldi, “An instruction placement model for distributed
ilp architectures,” Master’s thesis, University of Washington,
2005.

[8] “Synopsys website.” http://www.synopsys.com.
[9] “Cadence website.” http://www.cadence.com.

[10] “TSMC 90nm technology platform.” http://www.tsmc.com/
download/english/a05_literature/90nm_Brochure.pdf.

[11] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, 1. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, J. Kim, J. Psota,
A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amaras-
inghe, and A. Agarwal, “Evaluation of the raw microproces-
sor: An exposed-wire-delay architecture for ilp and streams,”
in Proceedings of the 31st annual international symposium on
Computer architecture, p. 2, IEEE Computer Society, 2004.

| |

Al0]
B[0]

Input
= Iﬁ
3
5g
82
@

Match

1
! Q

B[0]

B[0]

anenb -pauos

Dispatch

Execute

&

-1+ {BII=AlOWAD] |-+

Output

Cycle 0 Cycle 1

Cycle 2

Cycle 3 Cycle 4

Figure 8. The flow of operands through the PE pipeline and forwarding networks: The figure is de-
scribed in detail in the text.

[12]
[13]

[14]

[15]

[16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

D. Chinnery and K. Keutzer, Closing the Gap Between ASIC
& Custom. Kluwer Academic Publishers, 2003.

SPEC, “Spec CPU 2000 benchmark
SPEC2000 Benchmark Release, 2000.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Media-
bench: A tool for evaluating and synthesizing multimedia and
communicatons systems,” in International Symposium on Mi-
croarchitecture, pp. 330-335, 1997.

“The wavescalar architecture.” In submission to ACM Trans-
actions on Computer Systems, TOCS.

specifications.”

J. B. Dennis, “A preliminary architecture for a basic dataflow
processor,” in Proceedings of the 2nd Annual Symposium on
Computer Architecture, 1975.

A. L. Davis, “The architecure and system method of DDM1:
A recursively structured data driven machine,” in Proceedings
of the 5th Annual Symposium on Computer Architecture, (Palo
Alto, California), pp. 210-215, IEEE Computer Society and
ACM SIGARCH, April 3-5, 1978.

T. Shimada, K. Hiraki, K. Nishida, and S. Sekiguchi, “Eval-
uation of a prototype data flow processor of the sigma-1 for
scientific computations,” in Proceedings of the 13th annual
international symposium on Computer architecture, pp. 226—
234, IEEE Computer Society Press, 1986.

J. R. Gurd, C. C. Kirkham, and I. Watson, “The manchester
prototype dataflow computer,” Communications of the ACM,
vol. 28, no. 1, pp. 34-52, 1985.

M. Kishi, H. Yasuhara, and Y. Kawamura, “Dddp-a distributed
data driven processor,” in Conference Proceedings of the tenth
annual international symposium on Computer architecture,
pp. 236242, IEEE Computer Society Press, 1983.

V. G. Grafe, G. S. Davidson, J. E. Hoch, and V. P. Holmes,
“The epsilon dataflow processor,” in Proceedings of the 16th
annual international symposium on Computer architecture,
pp- 3645, ACM Press, 1989.

G. Papadopoulos and D. Culler, “Monsoon: An explicit token-
store architecture,” in Proceedings of the 17th International
Symposium on Computer Architecture, May 1990.

D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and
J. Wawrzynek, “Fine-grain parallelism with minimal hard-
ware support: A compiler-controlled threaded abstract ma-
chine,” in Proceedings of the4th International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, 1991.

Arvind and R. Nikhil, “Executing a program on the mit
tagged-token dataflow architecture,” IEEE Transactions on
Computers, vol. 39, no. 3, pp. 300-318, 1990.

S. Allan and A. Oldehoeft, “A flow analysis procedure for the
translation of high-level languages to a data flow language,”
IEEE Transactions on Computers, 1980.

[26]

(27]

(28]

[29]

[30]

(31]

[32]

(33]

A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz,
“An evaluation of directory schemes for cache coherence,”
SIGARCH Comput. Archit. News, vol. 16, no. 2, pp. 280-298,
1988.

W.J. Dally and C. L. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Trans. Com-
put., vol. 36, no. 5, pp. 547-553, 1987.

S. Swanson, A. Putnam, K. Michelson, M. Mercaldi, A. Pe-
tersen, A. Schwerin, M. Oskin, and S. Eggers, “The microar-
chitecture of a pipelined wavescalar processor: An rtl-based
study,” Tech. Rep. TR-2004-11-02, University of Washington,
2005.

R. Desikan, D. Burger, S. Keckler, and T. Austin, “Sim-alpha:
a validated, execution-driven alpha 21264 simulator,” Tech.
Rep. TR-01-23, UT-Austin Computer Sciences, 2001.

A.J. et. al.,, “A 1.2ghz alpha microprocessor with 44.8gb/s
chip pin bandwidth,” in IEEE International Solid-State Cir-
cuits Conference, vol. 1, pp. 240-241, 2001.

K. Krewel, “Alpha ev7 processor: A high-performance tradi-
tion continues,” Microprocessor Report, April 2005.

J. Laudon, “Performance/watt: the new server focus,”
SIGARCH Comput. Archit. News, vol. 33, no. 4, pp. 5-13,
2005.

C. A. Moritz, D. Yeung, and A. Agarwal, “Exploring
performance-cost optimal designs for raw microproces-
sors,” in Proceedings of the International IEEE Sympo-
sium on Field-Programmable Custom Computing Machines,
FCCM98, April 1998.

