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Abstract 

A new method of retiming plesiochronous data is described. This method features latency 
of less than a cell-time and requires only minimal support circuitry. No flow control or 
handshaking signals are used, allowing true undirectional signalling between transmitter 
and receiver. 

Application areas include communication networks in parallel computers, and general 
communication network repeaters, hubsI bridges, and routers. 

1: Introduction 

The Reliable Router [l] project at MIT is developing a VLSI communications chip for 
use in large parallel computers. The research goals of the project have been on exploring 
mechanisms to  aid in the design of large, high-performance, reliable systems. 

One of the many problems facing the designer of a large digital system is clock dis- 
tribution. The large system is typically composed of communicating subsystems. These 
subsystems are internally synchronous and clocking uncertainty within a subsystem is 
wekontrolled. Between subsystems, communications becomes more difficult, owing to  
larger amounts of clock uncertainty. As clock speeds increase, the uncertainty becomes 
the performance limiting factor. 

In addition, the large clock tree is a single point of failure. The builder of a large system 
tries to avoid single points of failure wherever possible. The designer may not be trying 
to  achieve complete fault-tolerance, but the goals of graceful degradation and hot-plug-in 
are very important and conflict with a single clock distribution system. 

Existing solutions to  this problem include asynchronous and mesochronous (same clock 
source, unknown clock phase) timing methods. Messerschmitt [2] offers a good discussion 
of these terms. None of these methods seemed particularly well-suited for use in the router. 
Asynchronous timing requires a synchronizer delay for each data item. Mesochronous 
timing involved some small amount of delay but still required a single system clock source. 

A third method, plesiochronous timing, looked promising, as demonstrated in well- 
known embodiments such as SONET. It removed the need for a single clock and requires 
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no flow control handshaking. The difficulty with plesiochronous timing is keeping the data 
items transferred one-for-one between transmitter and receiver. Dependent on the rela- 
tive rates, transmitted data may be either undersampled or oversampled by the receiver. 
Previous designs used fairly deep FIFOs (> 4 elements!) and had complex finite state 
machines. In general, prior designs use FIFOs of a depth large enough to compensate for 
a synchronizer delay. 

The solution described in this paper separates the synchronizer from the data retiming, 
giving minimum data latency and minimum data storage requirements. By carefully 
chosing the point at which a data retiming adjustment takes place, data items are kept 
one-for-one without requiring any additional circuitry. 

This solution does differ from other synchronizer-avoidance methods, as it addresses the 
issue of keeping the data items one-for-one between transmit and receive clock domains. 
Glasser and Rettberg [3] use dynamic delay adjustment to avoid the synchronizer penalty 
on the data path, but rely on mesochronous timing to keep the data one-for-one. Stewart 
and Ward [4] extend the idea of synchronizer avoidance to cover plesiochronous timing, 
but do not address the issue of keeping data one-for-one while providing minimal latency. 

2: Plesiochronous Requirements 

A pleisochronous system is one where all the clocks operate at approximately the same 
frequency, f o .  In point-to-point communications, there is a transmitter operating at  fre- 
quency f t  and a receiver operating at frequency f , . .  Both ft and f i .  are in the interval 

If the transmitter were to send data to the receiver at the transmitter’s clock rate, one 
of two things will eventually happen, dependent on the relative speeds of the two clocks. If 
the transmitter is running faster than the receiver ( f t  > f r ) ,  the receiver will be presented 
with more information than it can handle causing an overrun condition. If the receiver is 
running faster (ft < f , . ) ,  it becomes starved resulting in an underrun condition. 

To avoid underruns and overruns, the transmitter and receiver agree that the trans- 
mitter will not always send data. The transmitter simply sends data at rate lower than 
the receiver is operating. The receiver distinguishes between data and non-data, and only 
processes data. More formally, the transmitter produces a constant stream of cells, where 
each cell can contain either data or non-data. The rate at which the stream of cells is pro- 
duced is defined to be the transmitter’s frequency. The rate at which the receiver is able 
to consume data cells is defined to be the receiver’s frequency. As long as the transmitter 
does not send data cells at rate faster than the receiver’s consumption rate, no overrun 
condition will exist. If the receiver can tolerate an occasional delay in the arrival of the 
next data cell, no underrun condition will exist. 

In a system where communication occurs by linking up several point-to-point hops, all 
transmitters in the system must produce data at a rate lower than the slowest receiver 
frequency. This is not as bad as it sounds, as this is usually nothing more than the 
worst-case transmitter/receiver frequency mismatch. Since the transmitter does not know 
the relative frequencies, it presumes that its clock is fast and the receiver is slow ( f t  = 
f o  + Af, f , .  = fo - Af) .  To avoid the overrun, the transmitter sends data at the rate 

[ f o  - A f , f o  + MI. 

f o  - A f  
f o  + A f  

f d  = ft- 
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Figure 1: Valid and Exclusion Regions 

When ft > f T ,  the transmitted data rate exactly matches the receiver’s consumption 
rate. When ft < fT, the data rate is not matched and a degradation occurs which is 
approximately 2 A f . 

3: Retiming 

Retiming is the movement of a cell from the transmitter’s clock domain to  the receiver’s 
clock domain. The incoming cells have a portion of the cell time (t&) where their value 
is stable and can be sampled by a flip-flop using some clock edge. This is called the valid 
region, tual. Over the rest of the cell, either the value of the cell is changing or the value 
has not met the setup or hold times of a flip-flip. This region is called the exclusion region, 
text. By definition, 

tclk = tva l  + t e z c  

For ease of explanation, the width of the valid region is assumed to  be much larger than 
the width of the exclusion region (tUa, >> text). A waveform with both regions illustrated 
is shown in figure 1 

In a synchronous system, the cell can be safely retimed into the receiver’s clock do- 
main if the receiver’s clock edge occurs during the valid region. The design of a correct 
synchronous system is guaranteeing that the clock edge occurs exactly in that region. 

3.1: Mesochronous Retiming 

For a mesochronous system, the placement of the receiver’s clock edge relative to the 
valid region is not controlled. In fact, the clock edge could occur during the exclusion 
region. To get around this, a waveform is constructed which is simply the transmitted 
waveform delayed by half a clock period. For notational ease, the original transmitted 
waveform will be called the &-waveform, the delayed will called the R-waveform’. 

It easy to  see that if tval > t&/2 ,  at any point in time either the original waveform or 
the delayed waveform are in the valid region. Now, if the receiver clock edge occurs in 
the exclusion region of the Q waveform, the R waveform is sampled instead. To build a 
complete mesochronous retiming circuit, one needs to  construct a subcircuit which delays 

~ 

’Q because it comes from the Q output of a flipflop in the implementation, R because it came after Q 
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Figure 2: Q and R waveforms 
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Figure 3: Mesochronous Retiming Circuit 

the transmitted cell, a circuit for detecting sampling during the exclusion region, and a 
multiplexor. A block diagram is shown in figure 3. 

When tval < t& /2 ,  multiple delayed versions of the incoming waveform are required. 
In general, one needs [k] versions. 

3.2: Plesiochronous Retiming 

Plesiochronous retiming looks very similar to mesochronous retiming, except the relative 
phase 0 between the transmit and receive clocks will vary with time 

@ ( t )  = 0 0  + 2n(f, - fr)t (2) 

To extend the mesochronous case to the plesiochronous case, one could simply allow 
dynamic switching between the Q and R waveforms. However, indiscriminate switching 
can result in either duplicate cells or missing cells. Figure 4 shows a case where the receiver 
has been sampling the Q waveform. The receive clock is running slower than the transmit 
clock, so the receive clock edge encounters Q's exclusion region on the right hand side. 
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Figure 4: Cell Oversampling 

Figure 5: Cell Undersampling 

The receiver then shifts to  sampling the R waveform, resulting in cell 1 appearing twice 
at the ouput of the receiver. 

Similarly, figure 5 shows a case where the receiver has been sampling the R waveform. 
The receive clock is running fast relative to  the transmit clock, so the receive clock bumps 
into R's exclusion region on the left hand side. The receiver then shifts to  sampling the 
Q waveform, causing the receiver output to skip over cell 1. 

3.3: Correct Plesiochronous Retiming 

Suppose one wanted to control the switching between the Q and R waveforms using an 
automaton clocked in the transmit domain. The phase of the transmit clock relative to 
the receive clock is unknown, so the best time to flip the control input to the multiplexor 
is when both Q and R are valid and have the same value. This occurs at of the way 
into a cell, measured on the Q waveform. Figure 6 shows the correct point. Of course, 
the multiplexor should be hazard free. When the circuits are done properly, the receiver 
is always sampling a waveform during its valid region. 

To solve undersampling/oversampling, recall that cells are either data or non-data. It 
is perfectly acceptable to insert or delete non-data cells, but it would be bad form to insert 
or delete data cells. If one restricts switching between the Q and R waveforms to  the times 
when both Q and R contain a non-data cell, only non-data cells will be undersampled or 
oversampled. 

There are four cases to consider: 

The receive clock is faster than the transmit clock, and the automaton switches from 
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R to Q .  

The receive clock is faster than the transmit clock, and the automaton switches from 
Q to R. 

The receive clock is slower than the transmit clock, and the automaton switches 
from R to Q. 

The receive clock is slower than the transmit clock, and the automaton switches 
from Q to R. 

The case of fr > ft, R + Q is shown in figure 7. The fast receive clock implies that the 
sampling edge will encounter R's exclusion region on the right hand side. The figure shows 
that as the switchover is made, no cells are added or dropped. Figure 8 illustrates fr > ft, 
Q --+ R. The fast clock implies that the sampling edge will encounter Q's exclusion region 
on the right hand side. The figure shows that as the switchover is made, the non-data cell 
is duplicated. In combination, these two cases show that when the receive clock is faster 
than the transmit clock, extra non-data cells are generated by the receiver to compensate. 

The case of fr < ft, R -+ Q is shown in figure 9. The fast receive clock implies that the 
sampling edge will encounter R's exclusion region on the left hand side. The figure shows 
that as the switchover is made, the non-data cell is dropped. Figure 10 illustrates f,. < ft ,  

Q + R. The fast clock implies that the sampling edge will encounter Q's exclusion region 
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Figure 8: RxClk fast, Q - R 
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on the right hand side. The figure shows that as the switchover is made, no cells are added 
or dropped. In combination, these two cases show that when the receive clock is slower 
than the transmit clock, non-data cells are deleted by the receiver to compensate. 

Knowing when Q and R contain non-data implied that the automaton was operating 
in the transmit clock domain, hence the reason for the earlier supposition. 

Cell 2 Cell 3 

4: Latency 

An optimal low-latency synchronous retiming is one where the receive clock samples the 
transmit data at the very beginning of the valid region. The latency for such a retiming 
is defined to  be zero. 

A plesiochronous retiming circuit samples either the Q or R waveforms uniformly along 
their valid regions. When the width of the valid region approaches the entire cell-time, the 
average latency sampling the Q waveform is 0.5 cell-times. Similarly, the average latency 
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Figure 10: RxClk slow, Q + R 
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sampling the R waveform is 1.0 cell-times. Thus, the average latency is 0.75 cell-times. 
However, when the width of the valid region drops to about half a cell-time, the latency 

for sampling the Q waveform drops to 0.25 cell-times and the latency for sampling the R 
waveform drops to 0.75 cell-times. The average drops to .5 cell-times. 

A biased waveform selection finite state machine would try to use the Q waveform 
whenever possible. Under these conditions, the average latency is 0.5 cell-times. 

5: Circuit Pragmatics 

This section describes the circuits used in the Reliable Router. There are many pos- 
sible good implementations of plesiochronous communications, so this should be used as 
guidance only. The circuits involved are used to regain timing margin between devices, to 
construct the Q and R waveforms, to detect the exclusion region, and to control waveform 
selection. 

Please note that the unit of transfer commonly used by communication engineers is a 
cell. In the parallel processing community, the term flow control control digit or Pit is 
used. Since plesiochronous retiming does not require flow control, descriptions of router 
operations are presented in terms of cells rather than flits. 

Between reliable routers, a transmit clock is sent along with a cell. As mentioned in 
the retiming section, several timing events in the transmit clock domain are required per 
cell. Needed are: 

Q goes into valid 

Q goes into exclusion 

R goes valid 

R goes into exclusion 

Change between Q and R now. 
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Figure 11: Cell reassembly 

For many reasons unrelated to plesiochronous communications, in the router a cell is 
broken into four smaller pieces, each transmitted on four subsequent transmit clock edges. 
Both positive and negative edges are used, so a cell time is two transmit clock periods (the 
router uses a lOOMhz transmit clock). A transmit phase signal is used to distinguish piece 
number zero from piece number two, and piece number one from piece number three. The 
edge of the transmit clock indicates whether the piece is even or odd. These pieces are 
reassembled by the receiver into a complete cell. A sketch of the waveforms in shown in 
figure 11. 

When the cell is finally reassembled, the actual exclusion region for the Q waveform is 
relatively small and straddles a transmit clock edge. The other three transmit clock edges 
can be used to construct the R waveform and control the Q ti R crossing point. 

The discussion of the exclusion region detection was a little simplified. One does not 
want to wait until the receive clock is sampling in the exclusion region before deciding to 
change! Instead, a keep-out region which encompasses the exclusion region is constructed 
using transmit clock edges. The transmit clock edges thus represent: 

R goes into keep-out, Q goes into valid 

R changes 

Q goes into keep-out, R goes into valid, change mux control here. 

Q changes 

Figure 12 shows the waveforms and their relative timing. 
To determine if a change between Q and R waveforms is required, the keep-out regions 

are first sampled using the receive clock. The output of these sampling flip-flops are then 
fed back into the transmit clock domain using a synchronizer for use by the automaton. 

The entire automaton has two states: select-Q and select-R, and is shown in figure 13. 
Note that the synchronizer delay does not delay the movement of data. “Stale” in- 

keepout information is perfectly okay, as long as the relative clock drift is not too fast. 
Since the delay is out of the critical path, fast metastability resolution is not required of 
the synchronizer. In the router, lOOns are alloted to synchronizer resolution. 
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Figure 12: Waveforms derived from transmit clock 
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Figure 13: Select Q ci R Finite State Diagram 
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One of the nice features of this implementation is that no circuit tricks were required. 
Slowing down the clock will improve timing margins, just in case one missed a critical 
path. 

5.1: Non-Data Transmission Rate 

In the previous section, a distinction between the exclusion region and the keep-out 
region was made. A non-data cell must be received somewhere in the time it takes the 
receive clock edge to drift from the edge of the keep-out region to the edge of the exclusion 
region. This time is the maximum amount of time allowed between transmission of non- 
data cells. 

To begin the calculation, the time from keepout region edge to exclusion region edge, 
tkie, is expressed as a phase angle: 

= 2Ktkiefr (3) 

From equation 2, the change in phase angle with respect to a change in time is: 

A@(At)  = 2~ ft - fpAt 

For worst case ft and f r :  
A@(At)  = 4aAfAt  

Setting 3 and 4 equal 
4nA f At = 2~tk,, fr 

Assuming Af << fo: 
f o  

2Af 
At N tk-e- 

Converting into transmit cell times: 

f o  
2Af 

# cell times N &-+e - ft 

(4) 

(5) 

For example, suppose that the keep-out region exceeds the exclusion region by 2ns, the 
base frequency is 50Mhz (i.e. 50 million cells per second), and that the accuracy is zt 5khz 

2e-9 x 50e6 x 50e6 
2 x 5e3 

= 500 cell times 

In this example, 0.2% of the available bandwidth must be given over to non-data. 
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6: Integral Subrate Extensions 

The method may be extended to allow retiming between clock domains where the 
frequency of one domain is an integral multiple of the other domain. That is, either 
ft M i x f,. or f,. M i x ft must hold. 

When fT z i x f t ,  the circuit changes are fairly minor. The receiver must sample both 
the keep-out windows and the incoming Q or R cell once every i periods. For clock periods 
when the incoming cell is not sampled, the receiver creates a non-data cell. 

If ft M i x fi., the transmitter must drastically reduce its sending of data to one of i 
cells. Note that it still must occasionally insert non-data cells to meet the plesiochronous 
requirements. 

This technique is used in the Reliable Router to allow slower-speed processors to inter- 
face easily to a higher speed router. 

7: Summary 

A new technique for plesiochonous data retiming has been described. This technique 
offers latencies on the order of a fraction of a cell-time as well as modest implementation 
requirements. These acheivements were gained by moving the synchronizer out of the 
data path and carefully choosing the time to make a phase adjustment. 

In addition, the technique allows true unidirectional retiming. The transmitter can send 
information to a receiver without any flow control information sent back to the transmitter 
from the receiver. 

Extensions include the ability to handle integral subrates. This should prove to be 
useful in the design of systems where multiple clock rates are present. 
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