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Abstract

Growing on-chip wire delays will cause many future mi-
croarchitectures to be distributed, in which hardware re-
sources within a single processor become nodes on one or
more switched micronetworks. Since large processor cores
will require multiple clock cycles to traverse, control must
be distributed, not centralized. This paper describes the
control protocols in the TRIPS processor, a distributed, tiled
microarchitecture that supports dynamic execution. It de-
tails each of the five types of reused tiles that compose the
processor, the control and data networks that connect them,
and the distributed microarchitectural protocols that imple-
ment instruction fetch, execution, flush, and commit. We
also describe the physical design issues that arose when
implementing the microarchitecture in a 170M transistor,
130nm ASIC prototype chip composed of two 16-wide is-
sue distributed processor cores and a distributed 1MB non-
uniform (NUCA) on-chip memory system.

1 Introduction

Growing on-chip wire delays, coupled with complex-
ity and power limitations, have placed severe constraints
on the issue-width scaling of centralized superscalar ar-
chitectures. Future wide-issue processors are likely to be
tiled [23], meaning composed of multiple replicated, com-
municating design blocks. Because of multi-cycle commu-
nication delays across these large processors, control must
be distributed across the tiles.

For large processors, routing control and data among
the tiles can be implemented with microarchitectural net-
works (ormicronets). Micronets provide high-bandwidth,
flow-controlled transport for control and/or data in a wire-
dominated processor by connecting the multiple tiles, which

are clients on one or more micronets. Higher-level mi-
croarchitectural protocols direct global control across the
micronets and tiles in a manner invisible to software.

In this paper, we describe the tile partitioning, micronet
connectivity, and distributed protocols that provide global
services in the TRIPS processor, including distributed fetch,
execution, flush, and commit. Prior papers have described
this approach to exploiting parallelism as well as high-level
performance results [15, 3], but have not described the inter-
tile connectivity or protocols. Tiled architectures such as
RAW [23] use static orchestration to manage global oper-
ations, but in a dynamically scheduled, distributed archi-
tecture such as TRIPS, hardware protocols are required to
provide the necessary functionality across the processor.

To understand the design complexity, timing, area, and
performance issues of this dynamic tiled approach, we im-
plemented the TRIPS design in a 170M transistor, 130 nm
ASIC chip. This prototype chip contains two processor
cores, each of which implements an EDGE instruction set
architecture [3], is up to 4-way multithreaded, and can exe-
cute a peak of 16 instructions per cycle. Each processor core
contains 5 types of tiles communicating across 7 micronets:
one for data, one for instructions, and five for control used
to orchestrate distributed execution. TRIPS prototype tiles
range in size from 1-9mm2. Four of the principal processor
elements (instruction and data caches, register files, and ex-
ecution units) are each subdivided into replicated copies of
their respective tile type–for example, the instruction cache
is composed of 5 instruction cache tiles, while the compu-
tation core is composed of 16 execution tiles.

The tiles are sized to be small enough so that wire de-
lay within the tile is less than one cycle, so can largely be
ignored from a global perspective. Each tile interacts only
with its immediate neighbors through the various micronets,
which have roles such as transmitting operands between



instructions, distributing instructions from the instruction
cache tiles to the execution tiles, or communicating control
messages from the program sequencer. By avoiding any
global wires or broadcast busses–other than the clock, re-
set tree, and interrupt signals–this design is inherently scal-
able to smaller processes, and is less vulnerable to wire de-
lays than conventional designs. Preliminary performance
results on the prototype architecture using a cycle-accurate
simulator show that compiled code outperforms an Alpha
21264 on half of the benchmarks; and we expect these re-
sults to improve as the TRIPS compiler and optimizations
are tuned. Hand optimization of the benchmarks produces
IPCs ranging from 1.5–6.5 and performance relative to Al-
pha of 0.6–8.

2 ISA Support for Distributed Execution

Explicit Data Graph Execution (EDGE) architectures
were conceived with the goal of high-performance, single-
threaded, concurrent but distributed execution, by allowing
compiler-generated dataflow graphs to be mapped to an exe-
cution substrate by the microarchitecture. The two defining
features of an EDGE ISA are block-atomic execution and
direct communication of instructions within a block, which
together enable efficient dataflow-like execution.

The TRIPS ISA is an example of an EDGE architecture,
which aggregates up to 128 instructions into a single block
that obeys the block-atomic execution model, in which a
block is logically fetched, executed, and committed as a sin-
gle entity. This model amortizes the per-instruction book-
keeping over a large number of instructions and reduces
the number of branch predictions and register file accesses.
Furthermore, this model reduces the frequency at which
control decisions about what to execute must be made (such
as fetch or commit), providing the additional latency toler-
ance to make more distributed execution practical.2.1 Partitioning TRIPS Blo
ks

The compiler constructs TRIPS blocks and assigns each
instruction to a location within the block. Each block is di-
vided into between two and five 128-byte chunks by the mi-
croarchitecture. Every block includes a header chunk which
encodes up to 32read and up to 32write instructions
that access the 128 architectural registers. The read instruc-
tions pull values out of the registers and send them to com-
pute instructions in the block, whereas the write instructions
return outputs from the block to the specified architectural
registers. In the TRIPS microarchitecture, each of the 32
read and write instructions are distributed across the four
register banks, as described in the next section.

The header chunk also holds three types of control state
for the block: a 32-bit “store mask” that indicates which of
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Figure 1. TRIPS Instruction Formats.

the possible 32 memory instructions are stores, block exe-
cution flags that indicate the execution mode of the block,
and the number of instruction “body” chunks in the block.
The store mask is used, as described in Section 4, to enable
distributed detection of block completion.

A block may contain up to four body chunks–each con-
sisting of 32 instructions–for a maximum of 128 instruc-
tions, at most 32 of which can be loads and stores. All pos-
sible executions of a given block must emit the same num-
ber outputs (stores, register writes, and one branch) regard-
less of the predicated path taken through the block. This
constraint is necessary to detect block completion on the
distributed substrate. The compiler generates blocks that
conform to these constraints [19].2.2 Distributed Instru
tion Pla
ement

With direct instruction communication, instructions in a
block send their results directly to intra-block, dependent
consumers in a dataflow fashion. This model supports dis-
tributed execution by eliminating the need for any interven-
ing shared, centralized structures (e.g. an issue window or
register file) between intra-block producers and consumers.

Figure 1 shows that the TRIPS ISA supports direct in-
struction communication by encoding the consumers of an
instruction’s result as targets within the producing instruc-
tion. The microarchitecture can thus determine precisely
where the consumer resides and forward a producer’s result
directly to its target instruction(s). The nine-bit targetfields
(T0 and T1) each specify the target instruction with seven
bits and the operand type (left, right, predicate) with the re-
maining two. A microarchitecture supporting this ISA maps
each of a block’s 128 instructions to particular coordinates,
thereby determining the distributed flow of operands along
the block’s dataflow graph. An instruction’s coordinates
are implicitly determined by its position its chunk. Other
non-traditional elements of this ISA include the “PR” field,
which specifies an instruction’s predicate and the “LSID”
field, which specifies relative load/store ordering.

2



I R R R R G

E E EE D I M M N

C2C

NN
SDC

N
DMA

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

EBCSDCDMA
I R R R R G

E E EE D I M M N

NNN

E E EE D I M M N

E E EE D I M M N

E E EE D I M M N

N

Processor 0

Processor 1

S
e

co
n

d
a

ry
 M

e
m

o
ry

 S
y

st
e

m

C2C (x4)

IRQSDRAM 0

SDRAM 1

EBI

N

N

N

N

N

N

N

N

Figure 2. TRIPS prototype block diagram.

3 A Distributed Microarchitecture

The goal of the TRIPS microarchitecture is a proces-
sor that is scalable and distributed, meaning that it has no
global wires, is built from small set of reused components
on routed networks, and can be extended to a wider-issue
implementation without recompiling source code or chang-
ing the ISA. Figure 2 shows the tile-level block diagram of
the TRIPS prototype. The three major components on the
chip are two processors and the secondary memory system,
each connected internally by one or more micronetworks.

Each of the processor cores is implemented using five
unique tiles: one global control tile (GT), 16 execution tiles
(ET), four register tiles (RT), four data tiles (DT), and five
instruction tiles (IT). The major processor core micronet-
work is the operand network (or OPN), shown in Figure 3.
It connects all of the tiles except for the ITs in a two-
dimensional, wormhole-routed, 5x5 mesh topology. The
OPN has separate control and data channels, and can de-
liver one 64-bit data operand per link per cycle. A control
header packet is launched one cycle in advance of the data
payload packet to accelerate wakeup and select for bypassed
operands that traverse the network.

Each processor core contains six other micronetworks,
one for instruction dispatch (the global dispatch network,or
GDN), and five for control: global control network (GCN),
for committing and flushing blocks; global status network
(GSN), for transmitting information about block comple-
tion; global refill network (GRN), for I-cache miss refills;
data status network (DSN), for communicating store com-
pletion information; and external store network (ESN), for
determining store completion in the L2 cache or memory.
Links in each of these networks connect only nearest neigh-
bor tiles and messages traverse one tile per cycle. Figure 3
shows the links for four of these networks.

This type of tiled microarchitecture iscomposableat de-

I 

I 

I 

I 

I 

Global dispatch network (GDN)

R R R R G

E E EE D 

E E EE D 

E E EE D 

E E EE D 

I 

I 

I 

I 

I 

Global status network (GSN)

R R R R G

E E EE D 

E E EE D 

E E EE D 

E E EE D 

Operand network (OPN)

R R R R G

E E EE D 

E E EE D 

E E EE D 

E E EE D 

I 

I 

I 

I 

I 

Global control network (GCN)

R R R R G

E E EE D 

E E EE D 

E E EE D 

E E EE D 

I 

I 

I 

I 

I 

Issues block fetch command and 

dispatches instructions

Handles transport of all data operands Issues block commit and block flush commands

Signals completion of block execution, I-cache 

miss refill, and block commit completion

Figure 3. TRIPS micronetworks.

sign time, permitting different numbers and topologies of
tiles in new implementations with only moderate changes
to the tile logic, and no changes to the software model. The
particular arrangement of tiles in the prototype produces a
core with 16-wide out-of-order issue, 64KB of L1 instruc-
tion cache, 32KB of L1 data cache, and 4 SMT threads.
The microarchitecture supports up to eight TRIPS blocks in
flight simultaneously, seven of them speculative if a single
thread is running, or two blocks per thread if four threads
are running. The eight 128-instruction blocks provide an
in-flight window of 1,024 instructions.

The two processors can communicate through the sec-
ondary memory system, in which the On-Chip Network
(OCN) is embedded. The OCN is a 4x10, wormhole-routed
mesh network, with 16-byte data links and four virtual
channels. This network is optimized for cache-line sized
transfers, although other request sizes are supported for op-
erations like loads and stores to uncacheable pages. The
OCN acts as the transport fabric for all inter-processor, L2
cache, DRAM, I/O, and DMA traffic.3.1 Global Control Tile (GT)

Figure 4a shows the contents of the GT, which include
the blocks’ PCs, the instruction cache tag arrays, the I-TLB,
and the next-block predictor. The GT handles TRIPS block
management, including prediction, fetch, dispatch, comple-
tion detection, flush (on mispredictions and interrupts), and
commit. It also holds control registers that configure the
processor into different speculation, execution, and thread-
ing modes. Thus the GT interacts with all of the control
networks and the OPN, to provide access to the block PCs.

The GT also maintains the state of all eight in-flight
blocks. When one of the block slots is free, the GT accesses
the block predictor, which takes three cycles, and emits the
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Figure 4. TRIPS Tile-level Diagrams.

predicted address of the next target block. Each block may
emit only one “exit” branch, even though it may contain
several predicated branches. The block predictor uses a
branch instruction’s three-bit exit field to construct exithis-
tories instead of using taken/not-taken bits. The predictor
has two major parts: an exit predictor and a target predic-
tor. The predictor uses exit histories to predict one of eight
possible block exits, employing a tournament local/gshare
predictor similar to the Alpha 21264 [10] with 9K, 16K, and
12K bits in the local, global, and tournament exit predictors,
respectively. The predicted exit number is combined with
the current block address to access the target predictor for
the next-block address. The target predictor contains four
major structures: a branch target buffer (20K bits), a call tar-
get buffer (6K bits), a return address stack (7K bits), and a
branch type predictor (12K bits). The BTB predicts targets
for branches, the CTB for calls, and the RAS for returns.
The branch type predictor selects among the different target
predictions (call/return/branch/sequential branch). The dis-
tributed fetch protocol necessitates the type predictor; the
predictor never sees the actual branch instructions, as they
are sent directly from the ITs to the ETs.3.2 Instru
tion Tile (IT)

Figure 4b shows an IT, which contains a 2-way, 16KB
bank of the total L1 I-cache and acts as a slave to the GT,
which holds the single tag array. Each of the five 16KB IT
banks can hold a 128-byte chunk (for a total of 640 bytes for
a maximum-sized block) for each of 128 distinct blocks.3.3 Register Tile (RT)

To reduce power consumption and delay, the TRIPS mi-
croarchitecture partitions its many registers into banks,with

one bank in each RT. The register tiles are nodes on the
OPN, allowing the compiler to place critical instructions
that read and write from/to a given bank close to that bank.
Since many def-use pairs of instructions are converted to
intra-block temporaries by the compiler, they never access
the register file, thus reducing total register bandwidth re-
quirements by approximately 70%, on average, compared
to a RISC or CISC processor. The four distributed banks
can thus provide sufficient register bandwidth with a small
number of ports; in the TRIPS prototype, each RT bank has
two read ports and one write port. Each of the four RTs con-
tains one 32-register bank for each of the four SMT threads
that the core supports, for a total of 128 registers per RT and
128 registers per thread across the RTs.

In addition to the four per-thread architecture register file
banks, each RT contains a read queue and a write queue, as
shown in Figure 4c. These queues hold up to eight read
and eight write instructions from the block header for each
of the eight blocks in flight, and are used to forward register
writes dynamically to subsequent blocks reading from those
registers. The read and write queues perform a function
equivalent to register renaming for a superscalar physical
register file, but were less complex to implement due to the
read and write instructions in the TRIPS ISA.3.4 Exe
ution Tile (ET)

As shown in Figure 4d, each of the 16 ETs consists of
a fairly standard single-issue pipeline, a bank of 64 reser-
vation stations, an integer unit, and a floating-point unit.
All units are fully pipelined except for the integer divide
unit, which takes 24 cycles. The 64 reservation stations
hold eight instructions for each of the eight in-flight TRIPS
blocks. Each reservation station has fields for two 64-bit
data operands and a one-bit predicate.
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3.5 Data Tile (DT)
Figure 4e shows a block diagram of a single DT. Each

DT is a client on the OPN, and holds one 2-way, 8KB
L1 data cache bank, for a total of 32KB across the four
DTs. Virtual addresses are interleaved across the DTs at
the granularity of a 64-byte cache-line. In addition to the L1
cache bank, each DT contains a copy of the load/store queue
(LSQ), a dependence predictor, a one-entry back-side coa-
lescing write buffer, a data TLB, and a MSHR that supports
up to 16 requests for up to four outstanding cache lines.

Because the DTs are distributed in the network, we im-
plemented amemory-sidedependence predictor, closely
coupled with each data cache bank [17]. Although loads
issue from the ETs, a dependence prediction occurs (in par-
allel) with the cache access only when the load arrives at
the DT. The dependence predictor in each DT uses a 1024-
entry bit vector. When an aggressively issued load causes a
dependence misprediction (and subsequent pipeline flush),
the dependence predictor sets a bit to which the load ad-
dress hashes. Any load whose predictor entry contains a
set bit is stalled until all prior stores have completed. Since
there is no way to clear individual bit vector entries in this
scheme, the hardware clears the dependence predictor after
every 10,000 blocks of execution.

The hardest challenge in designing a distributed data
cache was the memory disambiguation hardware. Since the
TRIPS ISA restricts each block to 32 maximum issued loads
and stores and eight blocks can be in flight at once, up to 256
memory operations may be in flight. However, the mapping
of memory operations to DTs is unknown until their effec-
tive addresses are computed. Two resultant problems are:
(a) determining how to distribute the LSQ among the DTs,
and (b) determining when all earlier stores have completed–
across all DTs–so that a held-back load can issue.

While neither centralizing the LSQ nor distributing the
LSQ capacity across the four DTs were feasible options at
the time, we solved the LSQ distribution problem largely by
brute force. We replicated four copies of a 256-entry LSQ,
one at each DT. This solution is wasteful and not scalable
(since the maximum occupancy of all LSQs is 25%), but
was the least complex alternative for the prototype. The
LSQ can accept one load or store per cycle, forwarding data
from earlier stores as necessary. Additional details on the
DT design can be found in [17].3.6 Se
ondary Memory System

The TRIPS prototype supports a 1MB static NUCA [11]
array, organized into 16 memory tiles (MTs), each one of
which holds a 4-way, 64KB bank. Each MT also includes
an on-chip network (OCN) router and a single-entry MSHR.
Each bank may be configured as an L2 cache bank or as a

scratch-pad memory, by sending a configuration command
across the OCN to a given MT. By aligning the OCN
with the DTs, each IT/DT pair has its own private port into
the secondary memory system, supporting high bandwidth
into the cores for streaming applications. The network tiles
(NTs) surrounding the memory system act as translation
agents for determining where to route memory system re-
quests. Each of them contains a programmable routing table
that determines the destination of each memory system re-
quest. By adjusting the mapping functions within the TLBs
and the network interface tiles (NTs), a programmer can
configure the memory system in a variety of ways includ-
ing as a single 1MB shared level-2 cache, as two indepen-
dent 512KB level-2 caches (one per processor), as a 1MB
on-chip physical memory (no level-2 cache), or many com-
binations in between. The other six tiles on a chip’s OCN
are I/O clients which are described in Section 5.

4 Distributed Microarchitectural Protocols

To enable concurrent, out-of-order execution on this dis-
tributed substrate, we implemented traditionally central-
ized microarchitectural functions, including fetch, execu-
tion, flush, and commit, with distributed protocols running
across the control and data micronets.4.1 Blo
k Fet
h Proto
ol

The fetch protocol retrieves a block of 128 TRIPS in-
structions from the ITs and distributes them into the array
of ETs and RTs. In the GT, the block fetch pipeline takes
a total of 13 cycles, including three cycles for prediction,
one cycle for TLB and instruction cache tag access, and 1
cycle for hit/miss detection. On a cache hit, the GT sends
eight pipelined indices out on the Global Dispatch Network
(GDN) to the ITs. Prediction and instruction cache tag
lookup for the next block is overlapped with the fetch com-
mands of the current block. Running at peak, the machine
can issue fetch commands every cycle with no bubbles, be-
ginning a new block fetch every eight cycles.

When an IT receives a block dispatch command from
the GT, it accesses its I-cache bank based on the index in
the GDN message. In each of the next eight cycles the IT
sends four instructions on its outgoing GDN paths to its as-
sociated row of ETs and RTs. These instructions are written
into the read and write queues of the RTs and the reservation
stations in the ETs when they arrive at their respective tiles,
and are available to execute as soon as they arrive. Since
the fetch commands and fetched instructions are delivered
in a pipelined fashion across the ITs, ETs, and RTs, the fur-
thest RT receives its first instruction packet ten cycles and
its last packet 17 cycles after the GT issues the first fetch
command. While the latency appears high, the pipelining
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Figure 5. TRIPS Operational Protocols.

enables a high-fetch bandwidth of 16 instructions per cycle
in steady state, one instruction per ET per cycle.

On an I-cache miss, the GT instigates a distributed I-
cache refill, using the Global Refill Network (GRN) to
transmit the refill block’s physical address to all of the
ITs. Each IT processes the misses for its own chunk inde-
pendently, and can simultaneously support one outstanding
miss for each executing thread (up to four). When the two
64-byte cache lines for an IT’s 128-byte block chunk return,
and when the IT’s south neighbor has finished its fill, the IT
signals refill completion northward on the GSN. When the
GT receives the refill completion signal from the top IT, the
GT may issue a dispatch for that block to all ITs.4.2 Distributed Exe
ution

An RT may begin to process an arriving read instruction
even if the entire block has not yet been fetched. Each RT
first searches the write queues of all older in-flight blocks.If
no matching, in-flight write to that register is found, the RT
simply reads that register from the architectural registerfile
and forwards it to the consumers in the block via the OPN.
If a matching write is found, the RT takes one of two ac-
tions: if the write instruction has received its value, the RT
forwards that value to the read instruction’s consumers. If
the write instruction is still awaiting its value, the RT buffers
the read instruction, which will be woken up by a tag broad-
cast when the pertinent write’s value arrives.

Arriving OPN operands wake up instructions within the
ET, which selects and executes enabled instructions. The
ET uses the target fields of the selected instruction to de-
termine where to send the resulting operand. Arithmetic
operands traverse the OPN to other ETs, while load and
store instructions’ addresses and data are sent on the OPN

to the DTs. Branch instructions deliver their next block ad-
dresses to the GT via the OPN.

An issuing instruction may target its own ET or a remote
ET. If it targets its local ET, the dependent instruction can
be woken up and executed in the next cycle, using a local
bypass path to permit back-to-back issue of dependent in-
structions. If the target is a remote ET, a control packet is
formed the cycle before the operation will complete execu-
tion, and sent to wake up the dependent instruction early.
The OPN is tightly integrated with the wakeup and select
logic. When a control packet arrives from the OPN, the
targeted instruction is accessed and may be speculatively
woken up. The instruction may begin execution in the fol-
lowing cycle as the OPN router injects the arriving operand
directly into the ALU. Thus, for each OPN hop between de-
pendent instructions, there will be one extra cycle before the
consuming instruction executes.

Figure 5a shows an example of how a code sequence is
executed on the RTs, ETs, and DTs. Block execution be-
gins when the read instruction R[0] is issued to RT0, trig-
gering delivery of R4 via the OPN to the left operand of
two instructions,teq (N[1]) andmuli (N[2]). When the
test instruction receives the register value and the immediate
“0” value from themovi instruction, it fires and produces
a predicate which is routed to the predicate field of N[2].
Since N[2] is predicated on false, if the routed operand has
a value of 0, themuli will fire, multiply the arriving left
operand by four, and send the result to the address field of
thelw (load word). If the load fires, it sends a request to the
pertinent DT, which responds by routing the loaded data to
N[33]. The DT uses the load/store IDs (0 for the load and
1 for the store, in this example) to ensure that they execute
in the proper program order if they share the same address.
The result of the load is fanned out by themov instruction
to the address and data fields of the store.

If the predicate’s value is 1, N[2] will not inject a result
into the OPN, thus suppressing execution of the dependent
load. Instead, thenull instruction fires, targeting the ad-
dress and data fields of thesw (store word). Note that al-
though two instructions are targeting each operand of the
store, only one will fire, due to the predicate. When the
store is sent to the pertinent DT and the block-ending call
instruction is routed to the GT, the block has produced all of
its outputs and is ready to commit. Note that if the store is
nullified, it does not affect memory, but simply signals the
DT that the store has issued. Nullified register writes and
stores are used to ensure that the block always produces the
same number of outputs for completion detection.4.3 Blo
k/Pipeline Flush Proto
ol

Because TRIPS executes blocks speculatively, the
pipeline may be flushed periodically, using a distributed
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protocol, due to a branch misprediction or a load/store or-
dering violation. The GT is first notified when a mis-
speculation occurs, either by detecting a branch mispredic-
tion itself or via a GSN message from a DT indicating a
memory-ordering violation. The GT then initiates a flush
wave on the GCN which propagates to all of the ETs, DTs,
and RTs. The GCN includes a block identifier mask indicat-
ing which block or blocks must be flushed. The processor
must support multi-block flushing because all speculative
blocks after the one that caused the mis-speculation must
also be flushed. This wave propagates at one hop per cycle
across the array. As soon as it issues the flush command
on the GCN, the GT may issue a new dispatch command to
start a new block. Because both the GCN and GDN have
predictable latencies, the instruction fetch/dispatch com-
mand can never catch up with or pass the flush command.4.4 Blo
k Commit Proto
ol

Block commit is the most complex of the microarchitec-
tural protocols in TRIPS, since it involves the three phases
illustrated in Figure 5b: block completion, block commit,
and commit acknowledgment. In phase one, a block is
complete when it has produced all of its outputs, the num-
ber of which is determined at compile-time and consists of
up to 32 register writes, up to 32 stores, and exactly one
branch. After the RTs and DTs receive all of the register
writes or stores for a given block, they inform the GT us-
ing the Global Status Network (GSN). When an RT detects
that all block writes have arrived, it informs its east neigh-
bor. The RT completion message is daisy-chained eastward
across the RTs, until it reaches the GT indicating that all of
the register writes for that block have been received.

Detecting store completion is more difficult since each
DT cannot know a priori how many stores will be sent to
it. To enable the DTs to detect store completion, we imple-
mented a DT-specific network called the Data Status Net-
work (DSN). Each block header contains a 32-bitstore
mask, which indicates the memory operations (encoded as
an LSID bit mask) in the block that are stores. This store
mask is sent to all DTs upon block dispatch. When an exe-
cuted store arrives at a DT, its 5-bit LSID and block ID are
sent to the other DTs on the DSN. Each DT then marks that
store as received even though it does not know the store’s
address or data. Thus, a load at a DT learns when all pre-
vious stores have been received across all of the DTs. The
nearest DT notifies the GT when all of the expected stores of
a block have arrived. When the GT receives the GSN signal
from the closest RT and DT, and has received one branch
for the block from the OPN, the block is complete. Spec-
ulative execution may still be occurring within the block,
down paths that will eventually be nullified by predicates,
but such execution will not affect any block outputs.

During the second phase (block commit), the GT broad-
casts a commit command on the Global Control Network
and updates the block predictor. The commit command in-
forms all RTs and DTs that they should commit their regis-
ter writes and stores to architectural state. To prevent this
distributed commit from becoming a bottleneck, we de-
signed the logic to support pipelined commit commands.
The GT can legally send a commit command on the GCN
for a block when a commit command has been sent for all
older in-flight blocks, even if the commit commands for the
older blocks are still in flight. The pipelined commits are
safe because each tile is guaranteed to receive and process
them in order. The commit command on the GCN also
flushes any speculative in-flight state in the ETs and DTs
for that block.

The third phase acknowledges the completion of com-
mit. When an RT or DT has finished committing its archi-
tectural state for a given block and has received a commit
completion signal from its neighbor on the GSN (similar to
block completion detection), it signals commit completion
on the GSN. When the GT has received commit completion
signals from both the RTs and DTs, it knows that the block
is safe to deallocate, because all of the block’s outputs have
been written to architectural state. When the oldest block
has acknowledged commit, the GT initiates a block fetch
and dispatch sequence for that block slot.

5 Physical Design/Performance Overheads

The physical design and implementation of the TRIPS
chip were driven by the principles of partitioning and repli-
cation. The chip floorplan directly corresponds to the log-
ical hierarchy of TRIPS tiles connected only by point-to-
point, nearest-neighbor networks. The only exceptions to
nearest-neighbor communication are the global reset and in-
terrupt signals, which are latency tolerant and pipelined in
multiple stages across the chip.5.1 Chip Spe
i�
ations

The TRIPS chip is implemented in the IBM CU-11 ASIC
process, which has a drawn feature size of 130nm and seven
layers of metal. The chip itself includes more than 170 mil-
lion transistors in a chip area of 18.30mm by 18.37mm,
which is placed in a 47.5mm square ball-grid array pack-
age. Figure 6 shows an annotated floorplan diagram of the
TRIPS chip taken directly from the design database, as well
as a coarse area breakdown by function. The diagram shows
the boundaries of the TRIPS tiles, as well as the placement
of register and SRAM arrays within each tile. We did not
label the network tiles (NTs) that surround the OCN since
they are so small. Also, for ease of viewing, we have omit-
ted the individual logic cells from this plot.

7



PROC 0

OCN

PROC 1

GT RT

IT

DT

RTRTRT

ET ETETET

ET ETETET

ET ETETET

ET ETETET

DT

DT

DT

IT

IT

IT

IT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

MT

DMA

DMA

EBC

SDC

SDC

C2C

Figure 6. TRIPS physical floorplan.

In addition to the core tiles, TRIPS also includes six
controllers that are attached to the rest of the system via
the on-chip network (OCN). The two 133/266MHz DDR
SDRAM controllers (SDC) each connect to an individual
1GB SDRAM DIMM. The chip-to-chip controller (C2C)
extends the on-chip network to a four-port mesh router
that gluelessly connects to other TRIPS chips. These links
nominally run at one-half the core processor clock and up
to 266MHz. The two direct memory access (DMA) con-
trollers can be programmed to transfer data to and from
any two regions of the physical address space including ad-
dresses mapped to other TRIPS processors. Finally, the ex-
ternal bus controller (EBC) is the interface to a board-level
PowerPC control processor. To reduce design complexity,
we chose to off-load much of the operating system and run-
time control to this PowerPC processor.

TRIPS relies on the trends toward hierarchical design
styles with replicated components, but differs from SOCs
and CMPs in that the individual tiles are designed to have
diverse functions but to cooperate together to implement
a more powerful and scalable uniprocessor. The entire
TRIPS design is composed of only 11 different types of
tiles, greatly simplifying both design and verification. Ta-
ble 1 shows additional details of the design of each TRIPS
tile. TheCell Countcolumn shows the number of placeable
instances in each tile, which provides a relative estimate of
the complexity of the tile. Array Bits indicates the total
number of bits found in dense register and SRAM arrays
on a per-tile basis, whileSizeshows the area of each type of
tile. Tile Countshows the total number of tile copies across
the entire chip, and% Chip Areaindicates the fraction of
the total chip area occupied by that type of tile.

Table 1. TRIPS Tile Specifications.

Cell Array Size Tile % Chip
Tile Count Bits (mm2) Count Area

GT 52K 93K 3.1 2 1.8
RT 26K 14K 1.2 8 2.9
IT 5K 135K 1.0 10 2.9
DT 119K 89K 8.8 8 21.0
ET 84K 13K 2.9 32 28.0
MT 60K 542K 6.5 16 30.7
NT 23K – 1.0 24 7.1
SDC 64K 6K 5.8 2 3.4
DMA 30K 4K 1.3 2 0.8
EBC 29K – 1.0 1 0.3
C2C 48K – 2.2 1 0.7

Chip Total 5.8M 11.5M 334 106 100.05.2 Area Overheads of Distributed Design
The principal area overheads of the distributed design

stem from the wires and logic needed to implement the
tile-interconnection control and data networks shown in Ta-
ble 2. The most expensive in terms of area are the two
data networks: the operand network (OPN) and the on-chip
network (OCN). In addition to the 141 physical wires per
link, the OPN includes routers and buffering at 25 of the 30
processor tiles. The 4-port routers and the eight links per
tile consume significant chip area and account for approx-
imately 12% of the total processor area. Strictly speaking,
this area is not entirely overhead as it takes the place of the
bypass network, which would be much more expensive than
the routed OPN for a 16-issue conventional processor. The
OCN carries a larger area burden with buffering for four vir-
tual channels at each of the 4-ported routers. It consumes a
total of 14% of the total chip area, which is larger than a bus
architecture for a smaller scale memory system, but neces-
sary for the TRIPS NUCA cache. In general, the processor
control networks themselves do not have a large area im-
pact beyond the cost of the wires interconnecting the tiles.
However, we found that full-chip routing was easily accom-
plished, even with the large number of wires.

Another large source of area overhead due to partition-
ing comes from the oversized load/store queues in the DT,
accounting for 13% of the processor core area. The LSQ
cell count and area are skewed somewhat by the LSQ CAM
arrays which had to be implemented from discrete latches,
because no suitable dense array structure was available in
the ASIC design library. Across the entire chip, the area
overhead associated with the distributed design stem largely
from the on-chip data networks. The control protocol over-
heads are insignificant, with the exception of the load/store
queue.
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Table 2. TRIPS Control and Data Networks.

Network Use Bits
Global Dispatch (GDN) I-fetch 205
Global Status (GSN) Block status 6
Global Control (GCN) Commit/flush 13
Global Refill (GRN) I-cache refill 36
Data Status (DSN) Store completion 72
External Store (ESN) L1 misses 10
Operand Network (OPN) Operand routing 141 (�8)
On-chip Network (OCN) Memory traffic 138 (�8)5.3 Timing Overheads
The most difficult timing paths we found during logic-

level timing optimization were: (1) the local bypass paths
from the multi-cycle floating point instructions within the
ET, (2) control paths for the cache access state machine in
the MT, and (3) remote bypass paths across the operand net-
work within the processor core. The operand network paths
are the most problematic, since increasing the latency in cy-
cles would have a significant effect on instruction through-
put. In retrospect, we underestimated the latency required
for the multiple levels of muxing required to implement the
operand router, but believe that a customized design could
reduce routing latency. These results indicate a need for
further research in ultra-low-latency micronetwork routers.5.4 Performan
e Overheads

We examine the performance overheads of the dis-
tributed protocols via a simulation-based study using a
cycle-level simulator, calledtsim-proc, that models the
hardware at a much more detailed level than higher-level
simulators such as SimpleScalar. A performance validation
effort showed that performance results fromtsim-procwere
on average within 4% of those obtained from the RTL-level
simulator on our test suite and within 10% on randomly
generated test programs. We use the methodology of Fields
et al. [7] to attribute percentages of the critical path of the
program to different microarchitectural activities and parti-
tioning overheads.

The benchmark suite in this study includes a set of mi-
crobenchmarks (dct8x8, sha, matrix, vadd), a set of ker-
nels from a signal processing library (cfar, conv, ct, genalg,
pm, qr, svd), a subset of the EEMBC suite (a2time01,
bezier02, basefp01, rspeed01, tblook01), and a handful of
SPEC benchmarks (mcf, parser, bzip2, twolf, and mgrid).
In general, these are small programs or program fragments
(no more than a few tens of millions of instructions) because
we are limited by the speed oftsim-proc. The SPEC bench-
marks use the reference input set, and we employ subsets of
the program as recommended in [18]. These benchmarks
reflect what can be run through our simulation environ-

ment, rather than benchmarks selected to leave an unreal-
istically rosy impression of performance. The TRIPS com-
piler toolchain takes C or FORTRAN77 code and produces
complete TRIPS binaries that will run on the hardware. Al-
though the TRIPS compiler is able to compile major bench-
mark suites correctly (i.e., EEMBC and SPEC2000) [19],
there are many TRIPS-specific optimizations that are pend-
ing completion. Until then, performance of compiled code
will be lacking because TRIPS blocks will be too small.

While we report the results of the compiled code, we
also employed some hand optimization on the microbench-
marks, kernels, and EEMBC programs. We optimized
compiler-generated TRIPS high-level assembly code by
hand, feeding the result back into the compiler to assign
instructions to ALUs and produce an optimized binary.
Where possible, we report the results of the TRIPS compiler
and the hand-optimized code. We have not optimized any
of the SPEC programs by hand and are working to improve
compiler code quality to approach that of hand-optimized.

Distributed protocol overheads: To measure the con-
tributions of the different microarchitectural protocols, we
computed the critical path of the program and attributed
each cycle to one of a number of categories. These cate-
gories include instruction distribution delays, operand net-
work latency (including both hops and contention), execu-
tion overhead of instructions to fan operands out to mul-
tiple target instructions, ALU contention, time spent wait-
ing for the global control tile (GT) to be notified that all
of the block outputs (branches, registers, stores) have been
produced, and the latency for the block commit protocol
to complete. Table 3 shows the overheads as a percentage
of the critical path of the program, and the column labeled
“Other” includes components of the critical path also found
in conventional monolithic cores including ALU execution
time, and instruction and data cache misses.

The largest overhead contributor to the critical path is
the operand routing, with hop latencies accounting for up to
34% and contention accounting for up to 25%. These over-
heads are a necessary evil for architectures with distributed
execution units, although they can be mitigated through bet-
ter scheduling to minimize the distance between producers
and consumers along the critical path and by increasing the
bandwidth of the operand network. For some of the bench-
marks, the overheads of replicating and fanning out operand
values can be as much as 12%. Most of the rest of the dis-
tributed protocol overheads are small, typically summing to
less than 10% of the critical path. These results suggest that
the overheads of the control networks are largely overlapped
with useful instruction execution, but that the data networks
could benefit from further optimization.

Total performance: To understand the impact of the
distributed protocols on overall performance, we compared
execution time ontsim-procto that of a more conventional,
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Table 3. Network overheads and preliminary performance of p rototype.

Distributed network overheads as a percentage of program critical path Preliminary Performance
OPN OPN Fanout Block Block Speedup IPC IPC IPC

Benchmark IFetch Hops Cont. Ops Complete Commit Other TCC Hand Alpha TCC Hand
dct8x8 5.39 30.57 10.04 3.76 3.24 2.11 44.89 2.25 2.73 1.69 5.13 4.78
matrix 7.99 20.25 17.24 4.89 4.10 3.17 42.36 1.07 3.36 1.68 2.85 4.12
sha 0.57 17.91 6.29 11.73 0.10 0.66 62.74 0.40 0.91 2.28 1.16 2.10
vadd 7.41 17.66 13.79 5.61 5.99 7.48 42.06 1.46 1.93 3.03 4.62 6.51
cfar 3.75 32.06 9.39 9.78 2.44 0.99 41.59 0.66 0.81 1.53 1.35 1.98
conv 4.10 34.29 16.16 2.71 2.49 2.48 37.77 1.48 2.48 2.08 4.27 5.94
ct 6.23 18.81 16.25 6.04 3.65 3.79 45.23 1.29 3.84 2.31 4.22 5.25
genalg 3.85 18.60 5.76 8.82 2.21 0.62 60.14 0.51 1.46 1.05 1.10 1.65
pm 2.89 25.86 6.21 3.86 1.86 1.03 58.29 0.57 0.99 1.19 1.41 1.96
qr 4.53 22.25 8.85 11.97 2.72 2.23 47.45 0.47 0.98 1.30 1.94 2.36
svd 5.13 15.77 3.84 4.59 3.15 1.46 66.06 0.29 0.68 1.02 1.25 1.11
a2time01 4.94 13.57 6.47 9.52 2.05 4.02 59.43 1.21 4.38 0.95 1.50 4.11
bezier02 2.59 16.92 5.22 12.54 0.21 2.63 59.89 1.61 3.30 1.05 1.91 3.20
basefp01 3.36 13.63 5.44 6.34 2.74 2.90 65.59 1.35 8.02 0.78 1.03 3.55
rspeed01 0.76 28.67 10.61 11.77 0.39 0.14 47.66 1.26 4.18 1.03 1.82 3.38
tblook01 2.88 28.83 9.38 5.68 1.73 0.69 50.81 0.18 0.61 1.44 0.77 1.46
181.mcf 1.64 28.52 6.10 0.00 0.08 0.18 63.48 0.51 — 0.54 0.78 —
197.parser 2.96 30.76 3.99 0.84 0.30 0.66 60.49 0.60 — 1.18 1.10 —
256.bzip2 1.97 33.87 15.17 0.18 0.01 0.18 48.62 0.36 — 1.40 1.27 —
300.twolf 3.01 18.05 3.08 0.75 0.25 0.84 74.02 0.65 — 1.00 1.24 —
172.mgrid 5.06 18.61 25.46 4.03 3.00 2.78 41.06 1.49 — 1.33 4.89 —

albeit clustered, uniprocessor. Our baseline comparison
point was a 467MHz Alpha 21264 processor, with all pro-
grams compiled using the native Gem compiler with the
“-O4 -arch ev6” flags set. We chose the Alpha because
it has an aggressive ILP core that still supports low FO4
clock periods, an ISA that lends itself to efficient execu-
tion, and a truly amazing compiler that generates extraor-
dinarily high-quality code. We use Sim-Alpha, a simulator
validated against the Alpha hardware to take the baseline
measurements so that we could normalize the level-2 cache
and memory system and allow better comparison of the pro-
cessor and primary caches between TRIPS and Alpha.

Table 3 shows the performance of the TRIPS processor
compared to the Alpha. Since our focus is on the disparity
between the processor cores, we simulated a perfect level-2
cache with both processors, to eliminate differences in per-
formance due to the secondary memory system. The first
column shows the speedup of TRIPS compiled code (TCC)
over the Alpha. We computed speedup by comparing the
number of cycles needed to run each program. The second
column shows the speedup of the hand-generated TRIPS
code over that of Alpha. Columns 3–5 show the instruction
throughput (instructions per clock or IPC) of the three con-
figurations. The ratio of these IPCs do not correlate directly
to performance, since the instruction sets differ, but they
give an approximate depiction of how much concurrency
the machine is exploiting. Our results show that on the hand
optimized codes, TRIPS executes between 0.6 and 1.8 times

as many instructions as Alpha, largely due to fanout instruc-
tions and single-to-double conversions required by TRIPS
for codes that use 32-bitfloats. The current code bloat
is currently larger for compiled code, up to 4 times as many
instructions in the worst case.

While these results are far from the best we expect to ob-
tain, they do provide insight into the capabilities of TRIPS.
The results show that for the hand optimized programs, the
TRIPS distributed microarchitecture is able to sustain rea-
sonable instruction-level concurrency, ranging from 1.1 to
6.5. The speedups over the Alpha core range from 0.6 to
just over 8. sha sees a slowdown on TRIPS because it is
an almost entirely serial benchmark. What little concur-
rency there is is already mined out by the Alpha core, so the
TRIPS processor sees a slight degradation because of the
block overheads, such as inter-block register forwarding.
Convolution (conv), andvadd have speedups close to two
because the TRIPS core has exactly double the L1 memory
bandwidth as Alpha (four ports as opposed to two), result-
ing in an upper-bound speedup of two. Compiled TRIPS
code does not fare as well, but does exceed the performance
of Alpha on about half of the benchmarks. The maturation
time of a compiler for a new processor is not short, but we
anticipate significant improvements as our hyperblock gen-
eration and optimization algorithms come on line.

We conclude from this analysis that the TRIPS microar-
chitecture can sustain good instruction-level concurrency–
despite all of the distributed overheads–given kernels with
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sufficient concurrency and aggressive handcoding. Whether
the core can exploit ILP on full benchmarks, or whether the
compiler can generate sufficiently optimized code, remain
open questions that are subjects of our current work.

6 Related Work

Much of the TRIPS architecture is inspired by impor-
tant prior work across many computer architecture domains,
including tiled architectures, dataflow architectures, super-
scalar processors, and VLIW architectures.

Tiled architectures: With transistor counts approach-
ing one billion, tiled architectures are emerging as an ap-
proach to manage design complexity. The RAW architec-
ture [23] pioneered research into many of the issues fac-
ing tiled architectures, including scalar operand networks, a
subset of the class of micronetworks designed for operand
transport [22]. Another more recent tiled architecture that,
like RAW, uses homogeneous tiles is Smart Memories [14].
Emerging fine-grained CMP architectures, such as Sun’s
Niagara [12] or IBM’s Cell [16], can also be viewed as a
tiled architectures. All of these architectures implementone
or more complete processors per tile. In general, these other
tiled architectures are interconnected at the memory inter-
faces, although RAW allows register-based inter-processor
communication. TRIPS differs in three ways: (1) tiles are
heterogeneous, (2) different types of tiles are composed to
create a uniprocessor, and (3) TRIPS uses distributed con-
trol network protocols to implement functions that would
otherwise be centralized in a conventional architecture.

Dataflow architectures: The work most similar to
TRIPS are the two recent dataflow-like architectures that
support imperative programming languages such as C.
These architectures, developed concurrently with TRIPS,
are WaveScalar [21] and ASH [2]. WaveScalar breaks pro-
grams into blocks (or “waves”) similar to TRIPS, but differs
in the execution model because all control paths are mapped
and executed, instead of the one speculated control path of
TRIPS. Other major differences include dynamic, rather
than static placement of instructions, no load speculation,
and more hierarchy in the networks, since WaveScalar pro-
vides many more execution units than TRIPS. ASH uses a
similar predication model and dataflow concepts, but targets
application-specific hardware for small programs, as op-
posed to compiling large programs into a sequence of con-
figurations on a programmable substrate like TRIPS. The
behavior inside a single TRIPS block builds on the rich his-
tory of dataflow architectures including work by Dennis [6],
Arvind [1], and hybrid dataflow architectures such as the
work of Culler [5] and Iannucci [9].

Superscalar architectures:The TRIPS microarchitec-
ture incorporates many of the high-ILP techniques devel-
oped for aggressive superscalar architectures, such as two-

level branch prediction and dependence prediction. The
TRIPS block atomic execution model is descended from the
Block-Structured ISA proposed by Patt et al. to increase
the fetch rate for wide issue machines [8]. Other current re-
search efforts also aim to exploit large-window parallelism
by means of checkpointing and speculation [4, 20].

VLIW architectures: TRIPS shares some similarities
to VLIW architectures in that the TRIPS compiler de-
cides where (but not when) instructions execute. While
the TRIPS compiler does not have to decide instruction
timing–unlike VLIW architectures–the VLIW compilation
algorithms for forming large scheduling regions, such as
predicated hyperblocks [13], are also effective techniques
for creating large TRIPS blocks.

7 Conclusions

When the first TRIPS paper appeared in 2001 [15], the
high-level results seemed promising, but it was unclear
(even to us) whether this technology was implementable
in practice, or whether it would deliver the performance
indicated by the high-level study. The microarchitecture
described in this paper is an existence proof that the de-
sign challenges unanswered in 2001 were solvable; the dis-
tributed protocols we designed to implement the basic mi-
croarchitecture functions of instruction fetch, operand de-
livery, and commit are feasible and do not incur prohibitive
overheads. The distributed control overheads are largely
overlapped with instruction execution, the logic requiredto
implement the protocols is not significant, and the pipelined
protocols are not on critical timing paths.

The data networks, however, carry a larger area and per-
formance burden because they are on the critical paths be-
tween data dependent instructions. In the prototype, we are
working to reduce these overheads through better schedul-
ing to reduce hop-counts; architectural extensions to TRIPS
may include more operand network bandwidth. The orig-
inal work assumed an ideal, centralized load/store queue,
assuming that it could be partitioned in the final design. Be-
cause partitioning turned out to be unworkable, we elected
to put multiple full-sized copies in every DT, which com-
bined with an area-hungry standard-cell CAM implementa-
tion, caused our LSQs to occupy 40% of the DTs. Solving
the problem of area-efficiently partitioning LSQs has been
a focus of our research for the past year.

These distributed protocols have enabled us to construct
a 16-wide, 1024-instruction window, out-of-order proces-
sor, which works quite well on a small set of regular, hand-
optimized kernels. We have not yet demonstrated that code
can be compiled efficiently for this architecture, or that the
processor will be competitive even with high-quality code
on real applications. Despite having completed the proto-
type, much work remains in the areas of performance tun-
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ing and compilation before we will understand where the
microarchitectural, ISA, and compiler bottlenecks are in the
design. Once systems are up and running in the fall of 2006,
we will commence a detailed evaluation of the capabilities
of the TRIPS design to understand the strengths and weak-
nesses of the system and the technology.

Looking forward, partitioned processors composed of in-
terconnected tiles provide the opportunity to dynamically
adjust their granularity. For example, one could subdivide
the tiles of a processor to create multiple smaller processors,
should the balance between instruction-level and thread-
level parallelism change. We expect that such substrates
of heterogeneous or homogeneous tiles will provide flexi-
ble computing platforms which can be tailored at runtime
to match the concurrency needs of different applications.
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