
An Adaptive Cache Coherence Protocol

Optimized for Migratory Sharing

Per Stenstrom, Mats Brorsson, and Lars Sandberg

Department of Computer Engineering, Lund University

P.O. Box 118, S-221 00 LUND, Sweden

Abstract
Parallel programs that use critical sections and are

executed on a shared-memory multiprocessor with a write-

invalidate protocol result in invalidation actions that
could be eliminated. For this type of sharing, called

m“gratory sharing, each processor typically causes a

cache miss followed by an invalidation request which

could be merged with the preceding cache-muss request.

In this paper we propose an adaptive protocol that

invokes this optimization dynamically for n’gratory

blocks. For other blocks, the protocol works as an ordi-

nary write-invalidate protocol. We show that the protocol

is a simple extension to a write-invalidate protocol.
Based on a program-driven simulation model of an

architecture sim”lar to the Stanford DASH, and a set of

four benchmarks, we evaluate the potential performance

improvements of the protocol. We jind that it effectively

eliminates most single invalidations which improves the

performance by reducing the shared access penalty and

the network trajic.

1 Introduction

In order for shared-memory multiprocessors to achieve a

high performance, memory system tatency and contention

must be kept as low as possible. A viable solution to this

problem has been to attach private caches to each process-

ing node and maintain cache coherence using a directory-

based write-invalidate protocol. Notable examples of real

implementations of large-scale multiprocessors that

exploit this technique are the Stanford DASH [12], the

MIT Alewife [1], the SICS Data Diffusion Machine (the

DDM) [9], and the Kendall Square Research’s KSR1 [2],

Write-invalidate protocols maintain cache coherence by
invalidating copies of a memory block when the block is
modified by a processor. The advantage of this is that at

most the first write, in a sequence of writes to the same

block with no intervening read operations from other proc-

essors, causes global interaction. Consequently, write-

invalidate protocols perform fairly well for a broad range

of sharing patterns. However, there exist common sharing
patterns for which atl invalidation~ could have been

entirely avoided. A notable example is the invalidation

overhead associated with data structures that are accessed

within critical sections. Typically, processors read and

modify such &ta structures one at a time. Processors that

access data this way cause a cache miss followed by an
invalidation request being sent to the cache attached to the
processor that most recently exited the critical section. If

the cache coherence protocol were aware of this sharing

pattern, it would be possible to merge the invalidation

request with the preceding read-miss request and thus

eliminate all explicit invalidation actions. This sharing

behavior, denoted migratory sharing, has been previously

shown to be the major source of single invalidations by

Gupta and Weber in [8].

Eliminating invalidation requests can help performance
in many important ways. First, if access requests cannot

overlap invalidation requests due to memory consistency

model or implementation constraints [6], the access pen-

alty is redueed by reducing the number of global invalida-

tion requests. Second, the network traffic is reduced

which, as a secondary effect, may reduce the read and

write penalty due to less network contention. Conse-

quently, eliminating the number of invalidation requests
may improve the performance significantly.

In this paper, we propose an implementation of an

adaptive write-invalidate protocol that effectively elimi-
nates most invalidation requests associated with migratory

sharing. The protocol dynamically detects whether a mem-

ory block exhibits migratory sharing or not. For blocks

deemed migratory, the invalidation request is merged with

the preeeding read-miss request and for other blocks, it

maintains coherence according to the default write-invali-

date policy. In addition, the protocol can dynamically, on a

per block basis, switch between these operating modes,

would the block change sharing behavior. As a case-study,

we show that our protocol is a simple extension of a wnte-
invalidate protocol by presenting the modifications needed
for a state-of-the-art write-invalidate protocol, in essence

the directory-based protocol of the Stanford DASH [11].

To validate the correctness of the protocol and evaluate

its performance, we have implemented and evaluated it

using a detailed program-driven simulation model of a

DASH-like architecture and a set of four benchmarks, of
which three are taken from the SPLASH suite [14]. We

have found that by eliminating the invalidation requests to

0884-7495/93 $3.0001993 IEEE
109

migratory blocks, performance can be improved due to

less access penalty and nehvork trafftc. We show that these

factors can improve the performance significantly for

high-performance multiprocessors.

The organization of the rest of the paper is as follows.

Since the adaptive protocol can be applied to most write-
invalidate protocols, we provide in Section 2 a high-level

description of the coherence optimization it provides and

how it detects migratory sharing. As a base for our imple-

mentation and performance study, we use the Stanford

DASH protocol. In Section 3, we describe how the DASH

protocol can be extended to adaptively detect and optimize

migratory sharing. Sections 4 and 5 present the experi-

mental results starting with the architectural assumptions

and the benchmarks in Section 4. We finally generalize our
findings in Section 6 and conclude the paper in Section 7.

2 The Adaptive Protocol: A High-Level View

In this section, we first identify the type of migratory shar-

ing that incurs invalidation overhead in write-invalidate

protocols in Section 2.1. Then in Section 2.2, we present a

high-level description of an a&ptive protocol that detects

such sharing and eliminates its overhead.

2.1 Migratory Sharing

Gupta and Weber classify data structures based on the
invalidation pattern they exhibit [8]. According to their

definition, data structures manipulated by only a single

processor at any given time are called m“gratory objects.

Typically, such sharing occurs when a data structure is

modified within a critical section. Protecting modifications

of shared objects by locks is important to eliminate data

races. Therefore, many parallel languages, such as e.g.

Modula-2 and Ada, use critical sections (or monitors) as

the recommended mechanism to support shared data

access. Consequently, reducing access penalties incurred
by migratory objects is important.

Assuming a write-invalidate protocol, all blocks that
correspond to a migratory object being modified by a

processor end up dirty in the processor’s cache. When a

subsequent processor modifies the migratoty object, it

causes a single invalidation for each block that belongs to

the object. If a migratory block is PA and then modified

by each processor, the first read access will cause a miss
and the first write access will cause a single invalidation,

both being sent to the cache associated with the processor

that previously modified the block. Clearly, the invali&-

tion request could be merged with the precding miss
request.

To formally define all access sequences that cause such
invalidation overhead due to migratory sharing, we use the

symbols Ri ad Wi todenote a IW@ ~d W& ZWW.SSto a

memory block by processor i. The following regular exp-

ression defines all such sequences:

(R~(R~*(W~(Ril Wi)”(Rj)(Rj)*(Wj)(Rj / Wj)”... (’l)
In the above xegular expression a ‘*’ succeeding a string

designates a string of arbitrary length including the empty

Wing and a ’1’ denotes the OR-operator. In this sequence,
there is one global read followed by a globrd write access

by the same processor before this processor relinquishes

exclusive axess of the block for another processor. These

accesses are marked with boldface.

2.2 Adaptive Detection and Optimization

As a base for the adaptive protocol, we assume a shared-

memory multiprocessor that contains a number of proces-

sors with associated caches. To maintain coherence, there
is an explicit home associated with each memory block

that keeps tmck of the global coherence state of the block

(e.g. uncached, shared, or dirty). Home dynamically

decides whether a block is m“gratory, meaning that it does

adhere to the sharing pattern in (1) above, or ora?nary,

meaning it does not adhere to (l). Below we describe the

coherence actions for migratory and ordinary blocks and

the detection algorithm to choose between these coherence

policies.

For ordinary blocks, cache coherence is maintained by

a write-invalidate protocol as follows. If a read access

causes a miss in the cache, a read-nu”ss request is sent to
home. Depending on whether the memory block is valid or

no~ either home or the cache that keeps the dirty copy

responds with a copy of the block to the local cache. In

either case, home will keep a valid copy in state shared. If

the local cache copy is shared or invalid, a write access

causes an invalidation rcques~ called read-exclusive

request, to be sent to home. Home is responsible for inval-

idating all copies of the block.

For migratory blocks, when home receives a read-miss

reques~ it converts this request into a read-exclusive
request and forwards it to the cache that has the block in
state dirty. This cache gives up its copy for the requesting

cache that will load the block in state dirty. As a result, a
subsequently issued write access by the requesting proces-

sor can be carried out locally and all explicit invalidation

actions have been eliminated.

Since all memory blocks are tagged ordinary by

default, home can detect migratory sharing based on the

fact that it receives the global sequence of read-miss (Rri)

~d read-exclusive (Rxqi) requests from each processor i
for a block. If an ordinary block starts exhibiting migra-

tory shtig, the global sequence i.%Rri R~i Rrj R~j Rrk

Rxqb . . By always keeping track of the identity of the

processor that most recently wrote to the block, say i, a

block can be nominated as migratory at a point when

home receives a read-exclusive rquest from j given that

110

(1) the read-exclusive request comes from a different proc-

essor (j # i) and (2) the number of copies is exactly two.

In summary, the notion of home is important for imple-

menting the adaptive protocol because home sees all read-

miss and read-exclusive requests for the block. Cache-

coherent NUMA (CC-NUMA) machines [16] constitute

an example where home is the memory in which the block
is allocated. We will next consider the detailed implemen-

tation of the adaptive optimization in an example CC-

NUMA machine — the Stanford DASH.

3 An Implementation Study: Stanford DASH

The usefulness of the coherence optimization of migratory

blocks as described in the previous section is dictated by

the extra hardware complexity required by the protocol

and the performance improvements that can be obtained.

As a base to address these issues, we have chosen the

Stanford DASH protocol [11, 12] because it has been

implemented and sufficiently tested and documented. In

Section 3.1, we review the Stanford DASH protocol with

respect to the actions taken for migratory sharing. In Sec-

tion 3.2, we describe how these coherence actions are opti-

mized by the adaptive protocol extension. Finally, in

Sections 3.3 and 3.4, we present how we extend the DASH
protocol to detect and optimize coherence actions for

migratory blocks.

3.1 The DASH Write-Invalidate Protocol

In Figure 1, we show the organization of each node. To

simplify, we assume that each node contains a single proc-

essor. The processor with its associated cache is connected

to the local memory module by a local bus. Shared mem-

ory is distributed across the processing nodes, which are
interconnected by two two-dimensional worrnhole-routed

mesh networks — one for requests and one for replies.

Cache coherence at the system level is maintained by a

directory-based write-invalidate protocol by a directory

for each memory module that keeps track of the global

state of all memory blocks in this memory module (the

home of its blocks). Three. global states are associated with

each memory block Uncached (not cached by any other

node than home), Shared-Remote (valid copies exist in

other nodes), and Dirty-Remote (the block is modified in

some other node’s cache). Furthermore, if the global state
is not Uncached, home keeps track of the nodes that have a

copy, the sharing list, by a presence-flag vector containing

the same number of bits as nodes.

Similarly, each cache keeps track of the local state of its

copy by three states:]ttvalid (nonexistent in the cache),

Shared (valid block in this cache and possibly in other
nodes’ caches), and Dirty (the only copy exists in this

cache). We now review the coherence actions taken by the

DASH protocol by denoting the issuing node local and a

Figure 1: Processing node organization.

2(a)

Rr(l)

m

L H

Sw(3b)

Rp(3a) R Rr(2)

2(b)

,ack~J’nv(2a)
Figure 2: Example coherenee actions for DASH. (a)
Read-miss and (b) read-exclusive request actions

associated with migratory sharing.

node other than the local or the home node remote. For

simplicity, we will assume that local, home, and remote

are distinct nodes.

Processor reads are satisfied by the local cache if the

local state is Shared or Dirty. If the state is Invalid, or if

there is a tag mismatch, local (L) sends a read-miss request

(Win Figure 2(a)) to home (H). If the global state of the

block is Uncached or Shared-Remote, a copy is returned to

the local node and home updates the sharing list to incor-
porate the new keeper. If the global state is Dirty-Remote

(as in Figure 2(a)), home forwards the read request to the

node that keeps tie dirty copy. This node, the remote node

(R), returns the block to local (Rp) and to the home node

(Sw) and changes the state of its copy to Shared. The final

global state is Shared-Remote.

Moving on to the actions associated with processor
writes, we first note that if the local state is Dirty, they can

be carried out locally. If the state is Shared or Invalid,

111

“’PEE%% Ftr

Rr(l)

-

Mack(3&&Mr(2,
Figure 3: Coherence actions for migratory blocks.

local sends a read-exclusive request to home to acquire

ownership as depicted in Figure 2(b) as Rxq. If the global

state is Uncached, an exclusive copy is mhumed to local

(Rxp). If the global state is Shared-Remote, however,

home also sends invalidations to all remote nodes that

have a copy of the block (Inv in Figure 2(b)). When

receiving such an invalidation, each node changes the state

of its copy to Invalid and sends an acknowledgment to the

local node (Iack). The final global state is Dirty-Remote.

In the DASH protocol, coherence of all blocks are

maintained according to the actions described in this sec-

tion. In the adaptive protocol extension we evaluate in this

paper, ordinary blocks are handled according to the DASH
protocol. How migratory blocks are handled is described

next.

3.2 Coherence Maintenance of Migratory Blocks

Recalling the regular expression for global accesses to

migratory blocks (1) in Section 2.1, we note that when a

new processor starts to access the block, a dirty copy

exists in the cache associated with the processor that most

recently relinquished exclusive access to the block. Conse-

quently, the read-modify-write access to the migratory

block results in a read-miss request (according to the

actions in Figure 2(a)) followed by a read-exclusive
request (according to the actions in Figure 2(b)) resulting

in a single invalidation assuming the DASH protocol.

The adaptive protocol converts these two transactions

into a single one that takes place at the time a read-miss

request is sent to home according to Figure 3. As in Figure

2(a), local sends a read-miss request to home. Then home

forwards the read-miss request to the remote node

(depicted Mr in Figure 3). Unlike the actions in Figure
2(a), however, remote gives up ownership of the block by
sending its copy to local (Mack). It also notifies home

about the ownership change with a request (DT). When
local receives the reply message from remote, the cache is
filled and the processor is restarted. As a result, the proces-

sor stall-time to service the read request, counted in net-
work hops, is the same as in Figure 2(a). However, the

local node is not allowed to replace the block until home

has updated its directory. This is acknowledged by MIack

Rxqi /LW=i j “’”,.,..,,.... Rxq i / LW=i Cortd~ No.ig)
.........
RerN.............

Rr

Legend: u
Rr Read-miss request Rr
Rxq Read-excluswe request
Repl Replacement request
Cond Rxq i && N==2 && LW !. i
LW Last-writer pointer

Figure 4: State-transition raph for detection of
tmigratory locks.

in Figure 3. The extra acknowledgment is needed to avoid

corrupting the directory.

The performance improvement from this optimization

is due to a reduction of write accesses causing global

actions, which may reduce the write penalty under sequen-

tial consistency [10] and network traffic. The latter can
reduce read and write penalty because of a reduction of

network contention. In Section 5, we will quantify these

effects.

3.3 The Detection Algorithm

The finite-state machine that keeps track of the global state

of each block in DASH consists of three state~ Uncached,

Shared-Remote, and Dirty-Remote. Transitions between

these states occur as a result of read-miss, read-exclusive,

and replacement requests for ordinary blocks according to
Figure 4. In order to detect and keep track of migratory

blocks, we have augmented the finite-state machine with

two states Migratory-Dirty and Migratory-Uncached.

To deteet migratory blocks, we recall from Section 2.2

that we have to keep track of the identity of the processor

that most recently modified the block. This is done by

associating a pointer, the last-writer pointer (LW), with

each memory block which is updated at each transition to

Dirty-Remote in Figure 4 (LW=i). In addition, we must
detect when there are exactly two copies. In the DASH

protocol this is known from the presence-flag vector.
According to condition Cond in Figure 4, an ordinary

block is now nominated as migratory at the time home
receives a read-exclusive request from processor i @xq i

in Figure 4) and (1) the number of cached copies is two

(N=2), and (2) the writing processor is not the same as
the previous writer (LW != i). Requirement (1) prevents a

state transition as a result of intervening read-miss

112

requests from other processors while the global state is

Shared-Remote. Otherwise, the following sequence could

be detected as migratory: Rxqi Rrj Rrk Rxqj. Requirement

(2) prevents a producer-consumer sequence, such as Rxqi

Rrj R~i Rrj from being detected as migratory. Note dsO

that we must associate a valid bit with the last-writer

pointer, which is initially reset. It must also be reset as

soon as the size of the sharing list exceeds two to prevent

an erroneous transition to Migratory-Dirty as a result of
replacements such ~ in: Rri Rxqi Rrj Rrk Replk Rxqj,
where Replk denotes that the block is replaced in cache k.

Once the block has been nominated as migratory, the

memory controller will handle all subsequent read-miss

requests according to the actions depicted in Figure 3; a

read request will result in an ownership to be obtained.

Consequently, there is only a single copy in the system and

invalidations for migratory blocks are eliminated. To

avoid having to re-detect a blcxk as migratory when it is

written back to memory as a result of replacement, we
have added the state Migratory-Uncached.

3.4 Adaptivity to Alterations in Sharing Behavior

To cope with alterations in the sharing behavior, the proto-

col can perform transitions between the write-invalidate

and the migratory policy. We study below a few situations

our protocol supports.

The fact that the memory controller sees only read-miss

requests for migratory blocks means that it cannot detect if

a block starts to be read-only. For example, if processors i

and j alternately read from a migratory block, the memory

controller will see the following sequence of read

requests: Rri Rrj Rri Rrj... Cl~ly, the block will ping-

pong back and forth between cache i and j. To avoid this,

we have added a local cache state denoted Migrating

which is used as follows. When processor i reads the

block, the initial local cache state is Migrating instead of

Dirty. A subsequent write to the block results in a transi-

tion to Dirty without any global action being taken. How-

ever, if the cache receives a migratory read request (Mr in

Figure 3) and the local state is Migrating, then instead of

giving up ownership, it performs the same actions as in

Figure 2(a) by notifying the memory controller with a

NoMig request (see Figure 4). The block is also written

back to home and the global state is Shared-Remote. The

block is considered as ordinary from this point.

We have assumed that the first access to a migratory

block by a processor is always a read. If it is a write, how-

ever, should we still regard it as migratory, or should we

make a transition to Dirty-Remote? As a default policy, we

still consider the block as migratory but we have also eval-

uated the heuristic of making a transition to Dirty-Remote
when home receives a read-exclusive request, which is

depicted with dashed arrows in Figure 4.

In summary, the adaptive extension to the DASH proto-

col consists of a pointer per block with log2 N bits assum-

ing N nodes, two global and one local cache state in

addition to the mechanisms that are already there. In the
next two seetions, we will see what this extra hardware

complexity can buy us in terms of increased performance.

4 Evaluation Methodology

To validate the correctness of the adaptive cache coher-

ence protocol and its potential performance benefits, we
have used a simulation methodology using detailed archi-

t@ural models in conjunction with a suite of parallel
applications. We next present the simulation environment,

the architectural parameters, and the benchmark programs

used.

4.1 Simulation Environment

The simulation platform used is the CacheMire test bench

[4] — a program-driven simulator of multiple SPARC
processors on top of which it is possible to run parallel

applications written in C using the Argonne National Lab-

oratory’s macro package to express parallelism [3]. The

test bench consists of two parts: (i) a functional simulator

and (ii) an architectural simulator. The functional simula-

tor generates memo~ references that are performed in the

architectural simulator. In order to maintain a correct inter-

leaving of memory references, the architectural simulator

maintains the global time and delays the processors

according to its timing model. As a result, a correct inter-

leaving of events in the architectural model is maintained.

This is in contrast to e.g. trace-driven simulation, where

the memory reference trace is not affected by timing.

4.2 Architectural Model and Assumptions

The basic architectural model is similar to the Stanford

DASH and we show the overall organization of the archi-

tecture in Figure 1. Although we present results for archi-

tectural variations, we will only focus on the default

assumptions in this section.

We assume a 16 node configuration interconnected by

two 4x4 wormhole-muted meshes — one for requests and

one for replies. Each processing node contains a memory

module and a 64 Kbyte, direct-mapped, copy-back cache

with a line size of 16 bytes. As for the memory allocation,

we allocate shared data pages in a round-robin fashion

with the least significant bits of the virtual page number

designating the node number. The page size is 4 Kbytes.

For simplicity, we only model shared data reference

instruction and private data references are assumed to

always hit in the on-chip processor caches.
The cache and the memory module are connected by a

128-bit wide split-transaction bus which atso provides a

connection to the network interface. The network interface

113

Table 1: Latency numbers (1 pclock = 10 ns).

Latency for Read and Write Requests Tmte

Hit in Cache lpct ock

FiU from Local Memory 22 pclocks

Fill from Remote (2-hop) 54 pcloeks

Fill from Remote (3-hop) 73 peloeks

Read-Exclusive Request to Remote (2-hop) 51 peloeks

Read-Exclusive Request to Remote (3-hop) 70 peloeks

routes requests and replies to the corresponding mesh net-

work. It also keeps track of all outstanding requests fkom

the node by means of a mechanism similar in function to

the remote-access cache (RAC) in DASH [11].

The two wormhole-routed meshes have a link width of

16 bits. The node fall-through time corresponds to three
pipeline stages: arbitrate, route, and send. Infinite buffers

are associated with each of the four inputs (X+1 X-1, Y+ 1,

and Y-1) to each network router.
As for the timing model parameters, we assume that the

processors are clocked at 100 MHz (1 pclock = 10 ns) and

that the cache access time is 10 ns. Moreover, the local bus

is assumed to be clocked at 50 MHz — it takes 20 ns for

arbitration and 20 ns for the bus transfer. The memory

cycle time is assumed to be 100 ns including buffering.

Finally, we assume a fairly aggressive mesh implementa-

tion that is synchronously clocked at 100 MHz which
results in a peak bandwidth of 400 Mbytes/see out from

and into each node.

We model contention correctly at the memory modules,

the local buses, and the mesh networks. In Table 1, we list

the latencies for processor reads and writes depending on

where in the memory hierarchy they are serviced. A 2-hop

remote latency means that the request is serviced in two

network traversals, e.g. a read to a block that is clean at

home and home is not the local node. The remote latencies

we model depend on where in the mesh the interacting
nodes are situated and on contention. For the latent y num-

bers in Table 1, however, we assume no contention and an

average distance of 2.67 links for a network traversal

between two arbitrary nodes (the mean distance in a 4x4

mesh).

As far as the memory consistency model is concerned,

we assume sequential consistency (SC) [10]. We imple-

ment SC by stalling the processor on every read-exclusive

request to a cache copy that is Shared or Invatid until the

write has been performed. Finally, for simplicity we han-
dle synchronization requests (locks and barriers) ideally

with a single-cycle delay outside the architecture model

because we feel that their implementations are orthogonal
issues to the focus of this study.

4.3 Benchmark Programs

In order to study the relative performance of the DASH

protocol with and without the adaptive extension, we have

used a set of four scientific applications developed at Stan-
ford University of which three (MP3D, Cholesky, and

Water) are from the SPLASH suite [14]. A summary of

these applications is given in Table 2. We picked this set of

applications to show different aspects of migratory shar-

ing.

Table 2: Benchmark programs.

Benehrnark Description

Cholesky Cholesky factorization of sparsematrices

Water Water molecular dynamics simulation

LU LU decanpositien of dense matrices

MP3D was run with 10K particles for 10 time steps.

Cholesky was run using the bcsst kl 4 benchmark

matrix. Water was run with 288 molecules for 4 time steps,

and finally, LU uses a 200x200 matrix.

The applications were compiled using gcc (version

2.0) with the optimization level -02. Statistics acquisition

is started when the applications enter the parallel section

to study steady-state behavior.

5 Experimental Results

In this section, we study the performance improvements

provided by the adaptive protocol. In Section 5.1, we com-
pare the execution times of the benchmarks for the adap-

tive and the write-invalidate protocol by analyzing the

occurrence of migratory sharing. Then we move on to see

how the adaptive protocol can help performance by reduc-

ing the network traffic in Section 5.2. Section 5.3 deals

with the impact of cache size on performance, and finally,

in Section 5.4, we study the stability of the detection algo-

rithm.

5.1 Performance of Write-invalidate and
Adaptive

The performance improvement of the adaptive protocol is

dictated by the occurrence of migratory objects in the

applications. In Figure 5, we show the execution time

under the adaptive protocol (AD) normalized to the execu-

tion time without the adaptive extension (W-I).

We observe that the adaptive protocol performs consist-
ently better than write-invalidate by examining the execu-
tion-time ratio (ETR) of W-I relative to AD. For example,

the adaptive protocol results in 54% better performance

(ETR=l.54) for MP3D. The reason for this is that the

processors have to stall less as a result of invalidation

requests since the adaptive protocol reduces the number of

read-exclusive requests. To see this, we have broken down

114

W-1 AD W-1 AD W-1 AD W.1 AD

ETR 1.01

&i!D Ch%ity 42 w

Figure 5: Reiative performance of W-f and AD.

the execution time into the contributions due to busy time,

synchronization (time waiting for a lock or at a barrier),
read, and write stall-time from the bottom to the top. For

example, the busy time for W-I running MP3D is 17%,

while the synchronization stall-time is 970. We see that the

write stall-time has been significantly reduced for most

applications under the adaptive protwol. We therefore

review each application below with respect to the occur-

rence of migratory sharing.

In a previous work, Gupta and Weber [8] studied the

invalidation pattern for two of the applications we use.

They observed for MP3D and Water that more than 98%
of the read-exclusive requests resulted in single invalida-

tions. In MP3D, most accesses to shad data are caused

by reading and modifying the particle and space-array

entries. Even though the modifications are not protected

by locks, they behave as migratory beeause a modification

by a processor follows closely after the read access. In

Table 3, we show the reduction of read-exclusive requests

for each application. As expected, we see a reduction of

read-exclusive requests for MP3D by as much as 8790.

Cholesky performs factorization using supemodal

modifications. Supemodes are groups of columns with a

similar structure. The computation is mastered by a global

task queue that keeps track of all supemodai modifications

that are to be done. Typically, a processor pulls a super-
node off the task queue and performs modifications on

other super-nodes which are protected by locks. The

migratory sharing that shows up is due to the task queue

and to the supemodal modifications themselves. As

expected, the number of read-exclusive requests is

reduced by 69% (see Table 3), which results in 2570 better

performance for AD according to Figure 5.

Since Cholesky dynamically schedules work among the

processors, there is a discrepancy in the busy time for W-I

and AD. It should therefore be noted that not all of the per-
formance improvements are due to a write-stall reduction.

In Water, the molecule array is statically split among

processors. Mch processor calculates the pair-wise inter-

aeuon lxmween ns molecules arm tnose or omers. “Inese
modifications are protected by locks and result in migra-

tory sharing. As a result, virtually all read-exclusive

requests are eliminated by the adaptive protocol (a %%

reduction). Surprisingly, the execution time is reduced by

only 4%. As we easily can make out from Figure 5, the

reason is that there is not more to gain — the write stall-

titne is 4%.

Tabb 3: Reduotion of reed-axci. requeete and traffic.

ApplicationI Read-cxcl. Reduction] Trsffic Reduction

In LU there are virtually no migratory objects, and con-

sequently, no performance improvement. However, LU

demonstrates that the adaptive protocol does not impact

adversely on the performance as a result of erroneous

detections.

In summary, we have seen that the adaptive protocol is

successful in reducing the number of read-exclusive

requests to migratory blocks. The execution-time reduc-

tion is due to the reduced write penalty associated with the

sequential consistency model.

5.2 Network ~affic Reduction Effects

The adaptive protocol can also reduce the access penalty

by reducing network contention as a result of traffic reduc-

tion which is the foeus of this section. The reduced traffic

is due to the fact that the messages associated with a read-

miss request (according to Figure 2(a) in Section 3.1) and

a read-exclusive request (according to Figure 2(b)) under

W-I have been replaeed by the messages according to Fig-

ure 3 under AD. To get a feel for the traffic reduction, we

review how many bits these messages occupy.

Requests and replies contain the identity of the issuing

and receiving node (assuming 16 processors this corre-

spondsto 4+4= 8 bits), the block address (28 bits,

assuming 16 bytes blocks and 32-bit addresses), and a

command (4 bits). In addition, all replies contain data (16

bytes = 128 bits). For the read-miss request under W-I,

two requests (2x Rr) and two replies containing data (Sw
+ Rp) are sent. As for the read-exclusive reques~ we note

that a single invalidation is sent which results in three

requests (Rxq + Inv + Iack) and one reply (Rxp). Alto-

gether, five requests and three replies are sent. Under AD,

four requests @r + Mr + DT + MIack) and one reply

(Mack) are sent. Thus, the total number of bits sent under
W-I to serve a read-miss request and a subsequent read-

exclusive request is 704 bits. This number should be com-

pared to 328 bits that are required under AD, To conclude,

115

--
W-1 AD W-1 AD W-1 AD

se WO (Cont.) WO(NoCont.)

Figure 6: Normalized execution time for AD relative to
W-1under SC, aeeumin sequential consistency (SC)

V?and weak ordering (O) for the MP3D application.

there is a 53% traffic reduction for each read-miss request

to a migratory blcck under AD. We next study how this

reduction affects the overall traffic for the four applica-

tions we have run.

In Table 3, we show the traffic reduction data. In MP3D

and Water, which contain the largest amount of migmtory

sharing, traffic is reduced by more than 30%. The traffic

reduction in Cholesky, although not as spectacular, is 2270

because of a smaller reduction in the number of read-

exclusive requests. As we will show, this traffic reduction

can have a dramatic impact on performance, even for

aggressive network implementations as we assume in this

study.

Relaxed consistency models, such as weak ordering [5]

and release consistency [6] can hide write stall-time by

allowing global requests to overlap each other and local

computation. Therefore, one would expect W-I and AD to

perform the same under relaxed consistency models. How-

ever, as we allow global requests to overlap, the applica-

tions will require more bandwidth because the global

request rate then increases. Since the adaptive protocol

reduces the number of invalidation requests, it is expected

to exhibit a lower global access rate. To see this, we meas-

ured the execution time for MP3D under weak ordering.

We implemented weak ordering by assuming a lockup-
free cache [15] that allows an infinite number of global

requests to be outstanding as long as synchronizations are

respected.

In Figure 6, we show the execution time for MP3D for
two consistency model implementations relative to the

execution time of W-I under sequential consistency (SC).

To the right of SC, we show the execution time under the

aggressive weak ordering implementation (VVO Cont.). As

we would expect, weak ordering manages to hide all write

latency for W-I and AD, However, because of a higher

global access rate, the read penalty has increased substan-

tially for W-I. As a result, AD performs 1670 better under

WO. Surprisingly, AD even performs better under SC than

does W-I under WO. To confirm that the read penalty

increase is because of network contention we ran the same

experiments assuming infinite network bandwidth but the

same latency. The results are demonstrated by the two
rightmost bars in Figure 6 (WO No Cont.). As expected,

the performance of W-I and AD are now nearly identical.
We also studied the relative performance of AD and W-I

Tabte 4: Write penalty reduction (WPR) of W-1by AD
and repl. mlee-ratee (MR) for 64 and 4Kbyte caches.

\
MP3D Cbole-sky Water LU

64 Kbyte-MR 3% 3% 3% 3%

4Kbyte-MR 7% 18% 9% 21%

64 Kbyte — WPR 66% 67% 94% 3.7%

4 Kbyte — WPR 67% 32% 85% 0.2%

under WO for the other applications but did not see any

significant differences. The reason for this is that they do

not have the same bandwidth requirements as MP3D

which can be seen from the larger busy time fractions in

Figure 5. Remember that we have assumed a fairly aggres-

sive network implementation (100 MHz synchronous

meshes). Therefore, for large system configurations, or

networks with less bandwidth such as buses, these effects

can show up for applications with less bandwidth require-

ments than MP3D. A smaller but significant effect from

Figure 6 is that the synchronization stall-time is shorter for
AD than W-I. The reason for this is due to less contention

for critical sections because of global write request reduc-

tions.

The bottom-line of these experiments is that while WO

cart hide the write latency it cannot reduce its traffic. The

adaptive technique reduces write latency and traffic. This
is critical to performance for applications with larger

bandwidth requirements than the network can sustain.

5.3 Impact of Cache Size on Improvements

In the experiments in the previous sections, we have used

a cache size of 64 Kbyte. Since the data sets for our appli-

cations are quite small, we end up having virtually no
replacement misses as shown in Table 4. To study how the

adaptive protocol performs when the replacement miss-

rate is higher, we scaled down the cache size to 4 Kbytes.

The effect of replacement misses on migratory sharing
is as follows. When a processor has relinquished exclusive

access to the block, the block may be replaced from the

cache if it is not accessed sufficiently soon by the same

processor or invalidated by another processor. As a result,

the block is written back to home and the global state

becomes Migratory-Uncached under AD and Uncached

under W-I. Since the copy is now at home, a subsequent

read-exclusive request is performed in at most two net-

work hops, instead of at most three, were the block dirty in

116

a remote node. As a result, the Auction of write penalty

under sequential consistency is expected to be smaller.

In Table 4, we show how much of the write penalty of

W-I that is reduced by the adaptive technique for 64 and 4

Kbyte caches. As expected, the performance improvement

of AD is now smaller. For example, while AD reduces the

write penalty for MP3D by 86% at 64 Kbyte caches, the

write penalty reduction drops to 67% at 4 Kbyte. Cholesky
shows an even more dramatic change which has to do with

the larger increase in replacement miss-rate. Nevertheless,
the adaptive protocol stitl turned out to be effective in

detecting migratory sharing.

5.4 Adaptivity to Sharing Behavior Alterations

After a block has been deemed migratory, it will stay in

that state unless it starts to be read-only. According to Sec-

tion 3.4, read-only sharing is detected by the local cache if

it receives a migratory read request and the local processor

has not written to the block. When this happens, the local

cache notifies home by sending a NoMig request (see Fig-
ure 1). One could ask whether a block stays migratory for
a long time, meaning that NoMig requests are rare. To see

this, we measured the fraction of migratory read requests

that trigger a NoMig request. We found that these numbers

were 0.5%, 0.09%, and O.OIVO for MP3D, Cholesky, and

Water, respectively. In other words, the migratory sharing

that shows up in these applications turns out to be stable.

However, we also found that if we disabled this transition,

it impacted significantly on the performance which means

that this mechanism is needed. Another possibility to

make a transition back to write-invalidate depicted in Fig-

ure 1 is when home receives read-exclusive requests for

blocks nomimted as migratory. For all experiments pre-

sented in this section, we did not use this heuristic because

it did not provide consistent performance improvements.

In summary, the quantitative evaluation has shown that

the adaptive protocol can improve performance of a write-

invalidate protocol as a result of write-penalty reduction

under sequential consistencey and read-penalty reduction

under relaxed consistency models if the application con-

sumes a lot of bandwidth. We generalize our contributions
in the next section.

6 Discussion

We have presented the implementation and evaluation of

an adaptive protocol that dynamically can optimize coher-

ence actions due to migratory sharing. Based on the exper-

iments in the previous section, we have found that the

adaptive protccol can improve performance of a DASH-

like system by reducing the access penalty and network

traffic. In this section, we generalize the results to other
system organizations and a wider class of applications.

Our implementation is based on a specific cache coher-

ence protocol, in essence the Stanford DASH protocol.

However, the adaptive protocol can be built on top of any

write-invalidate protocol provided that there is an explicit

notion of a home of the coherence state, The detection
mechanism relies on the fact that all global read and write

requests must interrogate the home directory. In fact, even

a COMA architecture that have an explicit home directory

for the coherence state, such as the Flat-COMA proposal

[16], can use the adaptive protocol. Note also that the pro-

tocol is applicable to bus-based systems with snoopy-
cache protocols. In such systems a primary concern is to

reduce network traffic rather than reducing latency. The

adaptive technique is an adequate candidate for such sys-

tems.

In our experiments, we considered a rather small sys-

tem configuration of 16 processors. The implications of

our results for larger system configurations are as follows.

First, for larger system configurations it will be more diffi-

cult to obtain a scalable bandwidth. Secondly, latencies
will be larger and thus, the access penalty due to invalida-

tion requests will be higher. The adaptive technique can
help performance by reducing both problems.

A limitation of the scope of our results is due to the

small number of applications. We found two types of

shared data usage that contributed to migratory sharing (i)

shared data access protected by locks and (ii) tight read-

modify-write operations to shared data. The first type is

expected to be common since protixted data access is a

means to promote correctness. The second type is not so

unusual either and happens when a variable is read and
modified in the same high-level language statement. It is

also interesting to note that migratory sharing is independ-

ent of system size. Gupta’s and Weber’s data of invalida-

tion patterns for 8, 16, and 32 processors [8] support this.

They found that the single invalidation numbers for MP3D

and Water did not change significantly with system size.

An alternative to the adaptive technique is to use soft-

ware-controlled, non-binding read-exclusive prefetching

[13]. Under this scheme, the programmer/compiler inserts

prefetch-instructions so as to get ownership of the block
prior to the point when it is accessed. Although this tech-

nique can be as effective, it relies on the programmer/com-

piler to detect the occurrence of read-modify-write

operations on shared data which in general can be difficult.

7 Conclusions

The focus of this paper has been to optimize cache coher-

ence actions that arise as a result of migratory objects

causing migratory sharing.

We have proposed an adaptive cache coherence proto-
col that can detect migratory sharing and eliminate all
invalidation actions associated with migratory blocks. We

117

have shown that the mechanisms to support this technique

add little to the complexity of coherence mechanisms of

directory-based write-invalidate protocols such as the

Stanford DASH. Based on a simulation study and four
parallel applications, we have found that the adaptive tech-

nique can help performance in many important respects.

First, because it reduces the number of read-exclusive

requests, the write stall-time can be reduced under sequen-

tial consistency. Second, even when we go to relaxed con-

sistency models, the read-stall time can be reduced

because of contention reduction, especially for applica-

tions that require a substantial communication bandwidth,

Third, the network traffic was reduced by more than 20%

for the studied applications that exhibit migratory sharing,

which is as critical for small bus-based as large system

configurations.
Because of the limited availability of parallel applica-

tions, it is an open question what type of sharing behavior

is common and worthwhile to optimize. However, on the

premise that migratory objects are common, we feel that
the adaptive technique is important because of its simplic-

ity and consistent performance improvements.

Acknowledgments

The authors are deeply indebted to Magnus Karlsson who

implemented the DASH simulator. We would also like to

thank Kourosh Gharachorloo of Stanford University, Fre-
drik Dahlgren and Jonas Skeppstedt of Lund University,

and the anonymous reviewers for helpful comments.

Thanks are also directed to Jeff McDonald, Ed Rothberg,

and Jaswinder Pal Singh, who provided us with the paral-

lel applications which made our experiments possible.

This research has been sponsored by the Swedish

National Board for Industrial and Technical Development

(NUTEK) under the contract number 9001797.

References

[1]

[2]

[3]

[4]

[51

Anant Agarwal, Beng-Hong Lim, David Kranz, and

John Kubiatowicz. APRIL A Processor Architecture

for Multiprocessing. In Proceedings 01 the 17th

Annual International Symposium on Computer Archi-

tecture, pages 104-114, May 1990.

Kendall Square Research. Kendall Square Rescarchl

(KSR1) Technical Summary. 1992.
J. Boyle et al. Portable Programs for Parallel Proces-

sors. Holt, Rinehart, and Winston Inc. 1987.

Mats Brorsson, Fredrik Dahlgren, Hlllcan Nilsson and

Per Stenstrom. The CacheMire Test Bench — A Flex-

ible and Effective Approach for Simulation of Muh.i-

processors. In Proceedings of the 26th Annual

Simulation Symposium, to appear, March 1993.
Michel Dubois, Christoph Scheurich, and Faye

Briggs. Memory Access Buffering in Multiproces-

[6]

[7]

[81

[9]

sors. In Proceedings of the 13th Annual International

Symposium on Computer Architecture, pages 434-

442,1986.

Kourosh Gharachorloo, Anoop Gupta, John L. Hen-
nessy. Performance Evaluation of Memory Consis-

tency Models for Shared-Memory Multiprocessors.

In Fourth ASPLOS, pages 245-257, April 1991.

Kourosh Gharachorloo, Daniel E. Lenoski, James P.

Lzmdon, Philip Gibbons, Anoop Gupta, and John L.

Hennessy. Memory Consistency and Event Ordering

in Scalable Shared-Memory Multiprocessors. In Pro-

ceedings of the 17th Annual International Symposium

on Computer Architecture, pages15-26, May 1990.
Anoop Gupta and Wolf-Dietrich Weber. Cache Invali-

dation Patterns in Shared-Memory Multiprocessors.
Transactions on Computers, Volume 41, Number 7,

pages 794-810, July 1992.

Erik Hagersten, Anders Landin, and Seif Haridi.

DDM — A Cache-Only Memory Architecture. IEEE

Computer Magazine, pages 44-54, September 1992.

[10] Leslie Lamport. How to make a Multiprocessor Com-

puter That Correctly Executes Multiprocess Pro-

grams. Transactions on Computers. C-28(9), pages

241-248, September 1979.

[11] Daniel E. Lenoski, James P. Laudon, Kourosh Ghara-

chorloo, Anoop Gupta, and John L. Hennessy. The
Directory-Based Cache Coherence Protocol for the

DASH Multiprocessor. In Proceedings of the 17th

Annual International Symposium on Computer Archi-

tecture, pages 148-159, May 1990.

[12] Daniel E. Lenoski, James P. Laudon, Kourosh Ghara-

chorloo, Wolf-Dietrich Weber, Anoop Gupta, John L.

Hennessy, Mark Horowitz, and Monica S. Lam. The

Stanford DASH Multiprocessor. IEEE Computer
Magazine, pages 63-79, Mamh 1992.

[13] Todd Mowry and Anoop Gupta. Tolerating Latency

Through Software-Controlled Prefetching in Shared-

Memory Multiprocessors. Journal of Parallel and
Distributed Computing, 2(4), pages 87-106, June

1991.

[14] Jaswinder P. Singh, Wolf-Dietrich Weher, and Anoop

Gupta. SPLASH: Stanford Parallel Applications for

Shared-Memory. Computer Architecture News, 20(1).

pages 5-44, Mamh 1992.

[151 Per Stenstrbm, Fredrik Dahlgren, and Lars Lundberg.
A Lockup-free Multiprocessor Cache Design. In Pro-

ceedings of 1991 International Conference on Paral-

lel Processing, Vol. I, pages 246-250, August 1991.

[16] Per Stenstr6m, Truman Joe, and Anoop Gupta. Com-

parative Performance Evaluation of Cache-Coherent

NUMA and COMA Architectures. In Proceedings of

the 19th Anruud International Symposium on Com-

puter Architecture, pages 80-91, May 1992.

118

